the photometer--lecture by dr. J. ogder Reported for the New York Tribuna

Prof. J. Ogden Doremus delivered the ninth lecture of the scientinie course before the American Institute, January 22, at Steinway IIall. He said:
"In the beginning od creatcd the heavens and the earth, and they were withoutform and void ; and darkness was upon the face of the profound. "What pen shall describe, what tongue shall tell, what human imagination conceive of that tide of glory and splendor which undulated throughout immensity when God said, "Let light be" and light was! Such is the most beautiful and terse description offered in that Wor of God which the Christian, as he leaves his anchorage on earth, blesses the Almighty that he can pillow his head upon To tell the story of the first light which dawned upon the universe of God is beyond the power of man. To tell indeed what has been discovered concerning it would extend beyond
the short time allotted to a lecture. That light moves through the short time allotted to a lecture. That light moves through
space with the immense velocity of nearly 200,000 miles in a space with the immense velocity of nearly 200,000 miles in a
second of time; that when we look at the sun we gaze at the light that parted from it minutes ago; that when we look a the stars, no one is so near us but that three and a quarter years have elapsed during the passage of that mysterious in fluence; and when we look up on such a beautiful cloudless night as this evening, and see the magnificent scenery of the heavens, that those worlds send us light which started on its march long before we were born, and, in many cases, ages before our race was existing upon this world-all this is known to modern science. After some further preliminary this lecture, to discuss these questions, but should come dow to three simple points: 1. How do we produce light? 2. Of what is light constituted produce light, first, by the simple production of heat. II illustrated the production of light and heat by various beautiful experiments-burning the metal antimony in chlorine gas phosphorus with iodine, and in the oxygen of the air ; potas-
sium on a piece of ice; zinc in oxygen and melting and burnsium on a piece of ice; zinc in oxygen, and melting and burn
ing iron before the oxyhydrogen blowpipe. The lights thu produce before the oxyhydrogen blowpipe. The lights thu liancy. But, said he, it is not enough to produce heat. If the product of the combustion is only gas-as he showed with the flame of a common Bunsen burner-intense heat, but very little light is produced. To change the heat to light, we must have a solid body to give out the light. By heating a bit of lime in common street gas, burned

He showed the same light with small pieces of compressed magnesia, heated the same way. He also produced a similar brilliant light by burning the metal magnesium in the air. But, said the lecturer, we can produce light by certain means which farsurpasses any of them. He then exhibited the electric light, produced by the aid of a battery of 250 jars, such as are used in our electric telegraphing. By using points of brass, copper, and iron, light of different colors, and degrees of intensity was produced, but with points of charcoal he produced electric light of most dazzling brilliancy, almost equal to the light of the sun. He also showed beautiful re volving lights of different colors, produced by sparks from the electric machine passing throagh partial vacuums of different gases. He stated several means of measuring light: by means of degrees of heat-its chernical action-or its illuminating power. He exhibited two kinds of photometers for measuring the illuminating powe rof light-one, that of Bun sen, the one commonly used-and the other a large screen, on which the shadows produced were successively obliterated by the light of a candle. The gas-burner, the Drummond light the magnesium light, were successively obscured and obliter
ated, until the more brilliant electric light obliterated then ated, until the more brilliant electric light obliterated them all. The lecture was full of valuable instruction, and his experiments as brilliant and beautiful as his theme. But perhaps the most interesting of all was what ho said of the new and cheap method of making oxygen gas by passing super heated steam over manganate of soda, and of the great im provement this will effect in lighting our streets, public buildings, and light-houses. He said that the improvement would effect a saving of 30 to 40 per cent, and would not render the air impure by burning up its oxygen or filling it with noxious gases, and by its harmonious blending of the different colors would furnish a more beautiful and perfect light resembling that of the sun. It is already used in Paris and soon will be in New York, some of our heaviest capitalists having take it in hand. With 18 burners lighted in this way, he illum-
inated the entire hall most brilliantly, the large number inated the entire hall most brilliantly, the large number
common gas burners paling before it into a sickly yellow light. It was greeted by the delighted audience with the greatest cnthusiasm.

HOTES ON THE VELOCIPEDE.

The Commissioners of Prospect Park, Brooklyn, have not only decided to admit velocipedes, but are, we understand making preparations to afford special facilities for this de
lightful sport. In regard to school of instruction in that lightful sport. In regard to schools of instruction in that city the Brooklyn Morning Union of Jan. 20th, says: "The first school for instruction in the art of riding velodipedes had not
opened its doors a month before it had to be enlarged, for opened its doors a month before it had to be enlarged, for
though commencing with twenty-five pupils, it closed the first month's book with a list of two hundred and twenty-five Of course another school had to be started, and Pearsall's Twenty-second Street Academy, up town, was followed by Monod's William Street School, down town, the former being crowed at early morning and in the evening, and the latter Parker opened a school middle of the day. Last night, too
and the IIanlons open another on eleventh street and Broa way. What New York had Brooklyn must have ; and as we found a man who could beat New York fearfully in gymna siums, we looked to him to whip them in velocipede schools, and our energetic, enterprising townsman, Avon C. Burnham, has gone and done it' in his usual masterly style, and now we can crow over having the best velocipede school in the country." It is proposed to use the Clermont Avenue Rink as great school, as soon as the frost breals ; and it is stated also that the Capitoline, a popular skating park, will also be atilized in this way. So much for Brooklyn, which nobody hought to be a fast place.
The velocipede fever is raging in Massachasetts. A flourshing school exists in Middleboro', and another one is to be opened in Plymouth, where a building recently occupie
The Cincinnati Velocipede Club have been giving a series of innati which the following is a brief account from the Cin innati Commercial: "The first race was one of a mile in hree heats, six runs around the hall being counted one thir of a mile. The contestants were Mr. George W. Gosling and Mr. George C. Miller.
" Mr. Gosling lost the first heat by a fall. Mr. Miller made his first third of a mile in one minute and twenty seconds. Mr. Gosling maintaine his equilibrium in his second heat and came home in $1: 16$. Mr. Miller beat this time in his secnd heat, finishing his sixth round in $1: 15 \frac{1}{2}$. Mr. Gosling made his third heat in $1: 16 \frac{1}{2}$, and Mr. Miller accomplished his hird heat in $1: 16$, and was declared winner of the race, and he prize, a handsome silver goblet, worth $\$ 100$, given by Mr. Wilson McGrew.
" The second race was one of a third of a mile, the fastest ider to receive a silver wine-service the contribution of IIen y R. Smith \& Co
"Mr. Gosling was the first in the field. He made the third o mile in 1:29 2-5. Mr. Miller followed, and made the dis tance in $1: 16$ 3-5. Master Curtis, a vigorous little velocipedist, made a valorous struggle for the prize, but his brisk little pony was not equal to the task. He made the six rounds in way to Mr. II. L. Perry, who lost by touching the floor with his foot in the second round. At this juncture St. Clair, the? skater, plunged in with an impetuous steed, which made di rectly for a post, and threw him to the floor, thus being the means of losing the race for Mr. St. Clair. Mr. Wm. II. Davis put his animal on the track, but unfortunately gave him so much rein that he broke badly in the third round and lost the race. This ended the race, and Mr. Miller was declared the winner.
"The third prize, a silver goblet, contributed by Duhme \& Co., was the person who could ride the velocipede at the lo: est gait. This slow riding on the velocipede is a delicate n the part of the his three circles around the hall to $3: 153-5$, and the specta. ors thought him very slow. But Mr. Miller, his only rival, was much slower, and crept around the hall like a tortoise, inishing the feat in $\tilde{5}: 10$. By this achievement he won the hir prize and the plaudits of the whole assembly. The sport wound up with an exhibition of the skill of all the velocipedists present. All the races were interesting, and those or the fastest time were very exciting indeed, rousing the pectators, and drawing from them cheer after cheer as the articular favorites gained advantages."
One of the Troy, N. Y., dailies having asked the question, Who is the young man destined to be the first to introduce the velocipead in Troy?" has received the following answer rom a correspondent :
You ask in your Thursay's issue, 'Who is the young' roy $?$, That to be the first to introduce the velocipede in from whence no traveler returns.' The velocipede is no new thing in Troy-it may be new to the present generation, but it long since rattled over the streets of cur city at a rate of speed that would make the famous 'Dexter' sweat, or a second class locomotive puff and blow like a rihird avenue clam horse. Forty-six years ago, or thereabouts, a then young man and one of the best that ever lived in this city, too), by the name of Silas Davis, who resided on the south-wcist corner of Liberty and First streets, exactly opposite to where the holy
temple of St John now stands, and who was an apprentice to temple of St John now stands, and who was an apprentice to
one of the best machinists that ever lived in or carried on the business in Troy, by the name of John Rogers (father of our fellow-townsman Alexander Rogers), and whose business was then located on the south-west corner of Division and First streets, which shop is now a dwelling, and was lately occupied by Justice Neary; and he, in connection with said John velocipedes, and introduced them upon the streets of Troy, for the use and benefit of all who were disposed to pay the then considerable sum of twenty-five cents an hour for their use The first one, if I remember correctly, was brought out for cxhibition and trial on a magnificent moonlight night in the month of June. No public announcementheralded its coming. It appeared, nevertheless, in front of the hotel of the late William Pierce, located on River street between Congress and Fcrry streets, between 8 and 9 o'clock in the evening, and although the mansions of our city in those days were as far
apart, on the average, as village lamp posts, and our population could hardly be counted for the paucity of its number compared to what it can be now, a respectable crowd soon gathered, and a disposition to try the untamed and wonderfully curious steed was soonmanifested by many of the young men who had there gathered. The first man to mount and give an exhibition of its operation was Davis himself. He
velocity from Congress street to Washington street and back. All were astonished and delighted. The velocipede was declared to be one of the world's greatest wonders-bound to supersede horse flesh for traveling purposcs. Livery men kegan to look blue and almost mode up their minds that their occupation was in danger of simmering down to such small ends that they might as well abandon the business at once, and substitute, on dry and pleasant weather at least, velocipedes for saddle horses. The next person to mount the prodigy was Benjamin Bayeux. He was the fícrunate possessor of 'quarter,' an' could use the thing for an hour. After one r two capsizes he got under full head way and made excel ent work of it, driving the machine at a $2 \cdot 40$ gait down River to Division, up Division to Third up Third to River up River to Mount Olympus, and back to the hotel, in an incredible short space of time, when he sarrendered it to Moses V. Yernett, who was equally successful in its oporation, and the velocipede was pronounced a success. They were used after locipede was pronounced a success. They were used after
that about the embryo city for a year or two by the young that about the embryo city for a year or two by the young
bloods of the town, and then finally disappeared, to re-appear again at the expiration of almost a half century, to make a sensation and excite the greater admiration and astonishment of their beholders." This velocipede was probably one of the old style propelled by contact of the feet t ifl: the ground
Captain Du Buisson, Commander of Prince Napoleon's yacht, he J_{3} rome Napoleon, has an invention whereby he proposee to run a velocipede upon the water with almost the same facility that Burnham and IIanlon run theirs upon the land. It is composed of two parallel tubes of castiron, cigar-shaped, connected by iron cross-picces. In the center is a propelling wheel, covered by a house or dium, on the top of which the person using the vessel sits comfortably in a sort of saddle, with stirrups. By means of these stirrups and a hand crand, upon each side, he gives the whcel iis motion, precisely 2.3 : s given to a velocipede on shore. The novel craft is easils propelled at the rate of six miles an bour.
A correspondent of an English paper announcestbat he has ind whortly exhibit, a one-wheeled velocipede, wheel that it is safer and in every way superior to the triin England, an engraving of which, with description, will be shortly given to our readers.

A gentleman residing in Twenty-second street, in this city

 omes down to his business in Church street, on a velocipede, every morning, in twelve minutes.A lady residing in Rrooklyn, writes to us that, for her part she objects to the double side-saddle plan, suggested by cur fair correspondent firom Georgia, noticed last week. She sees no objection to ladies donning a proper dress and using the velocipede pure and simple. She argues that the exercise would be much more thorough and healthful, than it could be on any such mongrel machine as the one suggested by our Georgia correspondent, while one of the principal charms of velocipedesport, its delightful independence, would be entirely lost in such a machine. She is willing to grant that the $\mathrm{c} \cdot \mathrm{m}$; pany of an agreeable gentieman would go far to reconcile her tothe disadvantages of such a machine, bat if two ladies were to be paired thus she thinks it would be simply intolerable. One thing is certain, the ladies can not be left out in the conideration of this subject by manufacturers.
Speaking of manufacturers, we understand that estabish ents devoted to velocipede making, have their hands more than full to meet the present demand.

The "仿enosha" steam Frigate,

We have received the following account of a splendid ship ust finished at the Brooklyn yard, built under the superis. ion of B. F. clano, constructor at this station: "The U. S. \& Kenosha, built at the navy yard, Brooklyn, N. Y., is of the same class as the Alaska, built at Boston, the Algoma, at Portsmouth, N. H., and the Omaka, building at Philadelphia. They are all from one design by John Lenthail, Chief of Ba reau of Construction and Repair. The macbinery was de signed by B. F. Isherwood, Chief of Bureau, Steam Kngieering.

The first frame of this ship was raised on the 2% th o June, 1867, and she was launched on the 8th of fugust, 1868 Her principal dimensions are: Length, extreme, 268 feet 9 nches; length on load line, 250 feet 6 inches; extreme breadth, 38 feet ; depth of hold, 19 feet 7 inches; tunnage (new), 1119.68 tuns. She has two decks becide the poop and forecastle, with 6 feet head room in clear of beams. The ward room is arranged with ten comfortablestate-rcoms, five on each side, and a goodsized "country" betwecn. In ihe ater end
is a large ward room pantry and two store rooms. Forward o the wardroom is the steerage, which contains three goodstate rooms, beside a room for assistantengineers, 12 feetlong, and the midshipmen's room, 18 fect long. The necessary store and mess rooms are forward of the stecrage. Relew decks are the magazines, shell rooms, stcre rooms, ete, forward and abait the machinery. The rig of the vessel is barque. The armament is one 11 -inch pivot, six 8 -inch guns on ircn car riages, one 60 -pounder on forecastle deck, and two 24 -pound ers on poop, keside two 12-pounder boat howitzeus.
Her engines are double piston rod, back acting, having iw cylinders, 50 inches diameter by 42 -inch stroke, Sewell's con denser ; 4 main boilers, 5 furnaces in each, superheater in up take; grate surface 390 square feet; total heating surfac 7,260 square feet ; two smoke pipes 64 feet above grates, ' 72 inches diarueter; two bladed, hoisting screw, 16 feet 4 inches ameter.
The ship will soon be in commission, the wohk on ler being yn navy your Washington yard.

Improvement in Cotton and Hay Presses.

The simplest device for pressing and baling cotton is the screw, usually of wood, and is employed on three-fourths of the Southern plantations. It has generally a diameter of from sixteen to twenty inches, with a pitch of thread of from six to nine inches, and is operated by two long levers extend ing from the top of the screw at an angle until they nearly reach the ground, to the ends of which horses or mules are attached for working it. Various attempts have been mad to supersede these presses, which are rude and cumbersome work wreat loss of power from friction, and, as they cannot be housed, wear out more from exposure to the weath er than from actual use; and a great many presses have been
invented, none of which has realized the anticipations of invented, none of which has
their inventors. They worked their inventors. They worked
too slow, were too weak to give too slow, were too weak to give
the enormous pressure required to bale cotton, could not be repaired, if broken, by means at hand on the plantation, or, perhaps, more than from any other reason, were too expensive. The wood screw has these advantages, which overcome in a measure its many disadvantages: It can be built entirely from material to be found on from material to be found on the plantation, requires butlittle
iron work, works with great iron work, works with great power, and is not complicated
with levers, ropes, pulleys, and windlasses. Owing to its coarse pitch but few turns are required to run it up and down, a very important matter when it is considered that the horses move in a path from thirity to forty feetin diameter. Of late years the cast-iron screws have found favor, as the planter has only to purchase theiron work, and the wood work is done, as heretofore, on the plantation; and many forms of adapting these screws to theire work have been devised, some of them having great merit.
The objections to the common cast-iron screws are these: They cannot be made of a diameter large enough to receive the coarse pitch of thread that is required to save the travel of the horse, and bale the cotton rapidly; and being of cast iron and small diameter are liable to be twisted off, as the screw pres. ents the greatest length when the strain is the heaviest. The design of the screw here shown is to be obviate as far as possible the objections against bot the wood and iron screws.
The receiver is a box, or pentstock, in the usual form, having at its upper part hinged sides or loors for removing the bale. A follower traverses the lower portion, being connectcd with the elevating screw. The whole is supported on a pedestal composied of two plates of any required size and form, one bolted to the receiver and the lower one to a suitable platform. They are represented in Fig. 2 by A for the upper plate and B for the lower. The follower is bolted to the end, C, of the screw. The screw is a double or triple segment of threads-in the engraving double-recessed below the depth of the thread on either side. Segments of a cylinder, D, forming portions of the plates, A and B , and hollow, admit bolts through to secure the two plates together. Between these plates turns a nut, outside the segments of the cylinder which represent the size of the screw, the nut being furnished with sockets for the reception of levers to the outer ends of which the power-animal-is attached. It will be seen that the pedestal is the entire support of the superstructure and the power being applied directly, near the ground, and the screw traversing through a fixed column, no unnecessary torsion or twisting of the fabric occurs.
The screw, however, may be secured to the top of the press, or, in other words, the press be inverted, if desired, although the friction and consequent power required will be greater. It will be seen that the screw cannot receive any twist, being firmly held by the pedestal at the point where the power e the nut is received by the screw, and the only strain that the serew receives is in the direction of its lengtli. By relieving the screw from twist, the following important advantages are secured: The screw can be made very light in comparison to the weight that would be required for a cylinder receiving the twist, and any desired pitch, however coarse, can be used There is no friction of the follower on the sides of the press box. The nut is supported by, and revolves entirely on the body of the pedestal. The iron work can be made and shipped to the plantation, and the wood work of the press made there as heretofore.
$=$ This press was patented December 15 th, 1868, by James M Albertson, of New London, Conn., to whom all letters for in formation regarding the manufacture and sale should be ad dressed.

Nearly two millions of false teeth are annually turned out of a single manufactory in Philadelphia.

The Philosophy of Tea-Making.

The results of the investigations of careful experimenters are hardly, perhaps, sufficiently known to the multitude of tea-drinkers. The whole subject is carefully summarized by Dr. Letheby in his recent lectures. Thereis a popular notion, which is an incorrect one, that soft water is best for tea-making. As a matter of fact, water which has about five degrees of hardness when boiled, makes the best flavored tea, provided that it be allowed to stand upon the tea sufficiently long. Boiling tea is one of the follies of which the officials in workhouses and other large establishments are guilty. This makes deep-colored solution containing the worthless bitter extro ve matter which ond

ALBERTSON'S PATENT SCREW PRESS FOR BULKY MATERIALS.

 dized. Packings of rubber are interposed between the axis of the rotating disk and the side of the stand to make a hermetical joint and secure sufficient friction to keep the disk in place. These are important advantages and if they can be secured by so simple a device as the one illustrated are certainly worthy attention. We have never yet used an inkstand that fulfilled all the requirements necessary to a proper enjoyment of the delights of writing or the demands of business. If this is not perfect we are certain that its suggestions will not be lost on our inventors.
Acarus Sacchari, The Sugar Insect

The following is a synopsis of Robert Niccol's research as to the acarussacchari: Every variety of unrefined sugar contains more or less acari, minute insects, resembling somewhat the sea crab. These are well known in sugar warerooms; and no one who sees them running nimbly along the tables would ever use raw sugar. Many believe it more economical, and sweetens better, and really a teaspoonful does go farther than the white article, but it is because it is heavier, but if an equal weiorh of the refined was weigh would be far better. It not would be far better. It not only impairs the flavor of the tea and coffee, but also is injurious to the health; the dry large-grained, and light-col ored is the most nutritious and economical. In a pound of sugar there are no less than 100,000 of these insects. Dr. Hassel says that out of seven-ty-two samples, he observed sixty-nine in a living state. By dissolving a spoonful of raw sugarin a glass of water, these may be seen on the surface as white specks. In refined suga white specks. In refined sugar they do not occur, because they cannot pass through the charcoal filters of the refinery, and because it does not contain any nitrogenous substance, as al bumen, for even the most insignificent animal cannot exis if entirely deprived of nitrogen. When the refined article is left too long in iron cisterns, after its solution in water has been effected, a trace of the fusions of tca and coffee are strong enough when about two metal may become dissolved, in which the sugar is imand a half teaspoonfuls of tea, or two ounces of freshly roasted coffee, are infused in boiling water.

THE STOLTZ ROTARY INKSTAND

Years ago we suggested as a worthy object of scientific re search and mechanical ingenuity the discovery and production of something to supersede the slow, dirty, annoying, and la borious device of pen and ink. The mere muscular effort of carrying the hand back and forth from paper to inkstand and vice versa is no small tax on the bodily powers, and no less a tax on time. So firmly are we rooted in this opinion that we prefer the use of the common lead pencil to pen and ink whenever its use is permissible. But, in addition to this annoyance,

ill not and mad a pent that ill not shed the ink, and ink that blurs, blots, leaves a bas relief of dirt on the paper, or sticks to the pen like molasses
are not calculated to soothe the ruffled feathers of the hurried are not calculated to so
We copy from the London Mechanic's Magazine two views of rotary inkstand, which, it is claimed, prevents the introduc tion of foreign bodiss, allows the contents to be shaken without spilling, and permits the quantity presented for use to be varied according to demand, while at all times the ink is preserved from contact with the air and consequent oxidation. Fig. is a cross section and Fig. 2 a vertical section of the inkstand A disk, A, containng four cuns, rotates in the body of the inkstand being turned by a button, B, projecting on the outside Turning the button to the right fills one of the cups and brings its top or mouth to the aperture in the stand. Turn ing it to the left empties the ink contained in the cups and leaves the solid part of the disk under the aperture, closing the orifice. Thus the ink need never stand long enough ex-
pure, this rarely however occurs. Grocers and sugar-warehouse men are subject to a kind of "itch," affecting their hands and wrists only, and as they are usually of cleanly habits, the disease can only be accounted for in this way, that the acarus sacchari, like its congener, the acarus scabici, has burrowing propensities, bores into their skin, and breeds there These two resemble each other closely, though the sugar insect is larger and more formidable. Pure sugar is almost as desirable as ${ }^{*}$ pure water, and who would, who has any pretension to cleanliness, drink stag̀nant water if he could as easily obtain it pure, and who would eat raw sugar, teeming with animalcules and vegetable impurities, if the refined article were as easily purchased?

Utilization of the Refuse Lime of the Gas Worka for tee Manufacture of Sal Ammoniac and Prussian BLed. - The lime used in the gas works for the purification of BLew. - The lime used in the gas works for the purification of
the gas becomes charged chiefly with two products of the dethe gas becomes charged chiefly with two products of the de-
structive distillation of coal-results qf the combination of structive distillation of coal-results of the combination of
its nascent nitrogen, viz., ammonia NH_{3} and cyanogen NC_{2}. When steam is passed over such lime the ammonia escapes and may be passed through sulphuric acid, when sulphate of ammonia is obtained. By treating this with common salt (chloride of sodium) is easily decomposed into sulphate of soda and chloride of ammonium or salammoniac. The remaining lime, freed from the ammonia, contains the soluble ferro-cy anide of calcium ; this is extractcd by solution in water, and after filtration the clear solution is mixed with a solution of sulphate of iron, when the ferro-cyanide of iron or Prussian blue is precipitated. This is collected, washed, and dried.

Dr. Detheir, of Constantinople, gives a description of the great bronze cannon used by Mahomet in the siege of Con stantinople. Its weight was $80,596 \mathrm{lbs}$. ; length, thirty feet; caliber, 46 inches; and ${ }_{\xi}^{2}$ the charge of powder required was 200 lbs. The balls used were stones, weighing $1,200 \mathrm{lbs}$. The American Rodman gun weighs $116,49^{\prime}$ lbs. ; has a length of 25 feet; caliber, 20 inches, and carries a ball of 1,000 los. with a charge of 100 lbs . of powder.
A System of metallic ceilings, which consists in the appli cation to the joisling of very thin stamped metal in ornamen tal embossed panels, has lately been invented. These stamped panels are fitted for every kind of decoration in color, and if inserted as plain surfaces may be used as the ground for every description of cartoon painting, combining with light ness and durabillty, artistic and ornamental effect.

