the photometer--lecture by dr. J. ogder DOREMUS.
 \section*{Reported for the New York Tribuna,}

Prof. J. Ogden Doremus delivered the ninth lecture of the scientinic course before the American Institute, January 22, at Steinway IIall. IIe said :
"In the beginning ©od creatcd the heavens and the earth, and they were without form and void; and darkness was upon the face of the profound. "What pen shall describe, what tongue shall tell, what human imagination conceive of that tide of glory and splendor which undulated throughout immensity when od said, "Let light be" and light was! Such is the most beautiful and terse description offered in that Word of God whicl the Christian, as he leaves his anchorage on ce:th, blesses the Almiglty that he can pillow his head upon. To tell the story of the first light which dawned upon the universe of od is beyond the power of man. To tell indeed what has been discovered concerning it would extend beyond the short time allotted to a lecture. That light moves through space with the immense velocity of nearly 200,000 miles in second of time; that when we look at the sun we gaze at the
light that parted from it minutes ago; that when we look at light that parted from it minutes ago; that when we look at
the stars, no one is so near us but that three and a quarter years have elapsed daring the passage of that mysterious in fluence; and when we look up on such a beautiful cloudless night as this evening, and see the magnificent scenery of the heavens, that those worlds send us light which started on its march long before we were born, and, in many cases, age before our race was existing upon this world-all this is known to modern science. After some further preliminary remarks, Prof. Doremus said that he should not attempt, in this lecture, to discuss these questions, but should come down to three simple points: 1. How do we produce light? 2. Of what is light constituted? 3. How do we measure it? We produce light, first, by the simple production of heat. IIe illustrated the production of light and heat by various beautiful experiments-burning the metal antimony in cllorine gas, phosphorus with iodine, and in the oxygen of the air ; potas sium on a piece of ice; zinc in oxygen, and melting and burn ing iron before the oxyhydrogen blowpipe. The lights thu produced were of different colors, and of grrat heat and brilliancy. But, said he, it is not enough to produce heat. If the product of the combustion is only gas-as he showed with the flame of a common Bunsen burner-intense heat, but very little light is produced. To change the heat to light, we must have a solid body to give out the light. By heating a bit of lime in common street gas, burned
IIe showed the same lighth with s
He showed the same light with small pieces of compressed magnesia, heated the same way. He also produced a simila brilliant light by burning the metal magnesium in the air But, said the lecturer, we can produce light by cestain means which farsurpasses any of them. He then exhibited the electric
light, produced by the aid of a battery of 250 jars, such as light, produced by the aid of a battery of 250 jars, such a are used in our electric telegraphing. By using points of brass, copper, and iron, ligltt of different colors, and degrees of intensity was produced, but with points of clarcoal he produced electric light of most dazzling brilliancy, almost equal to the light of the sun. He also showed beautiful revolving lights of different colors, produced by sparks from the electric machine passing througl partial vacuums of different gases. IIe stated several means of measuring light: by means of degrees of heat-its chernical action-or its illuminating power. He exhibited two kinds of photometcrs for measuring the illuminating power of light-one, that of Bun sen, the one commonly used -and the other a large screen, on which the shadows produced were successively obliterated by the light of a candle. The gas-burner, the Drummond light,
the magnesium light, were sucessively obscured and obliter the magnesium light, were successively obscured and olliter-
ated, until the more brilliant electric light obliterated them ated, until the more brilliant electric light obliterated them
all. The lecture was full of valuable instruction, and his experiments as brilliant and beautiful as his theme. But perhaps the most interesting of all was what ho said of the new and cheap method of making oxygen gas by passing superheated stram over manganate of soda, and of the great im ings, and light-houses. in said that the impropent would effect a saving of 30 to 40 per cent, and would not render the air impure by burning up its oxygen or filling it with noxious gases, and by its harmonious blending of the different colors, would farnish a more beautiful and perfect light resembling that of the sun. It is already used in Paris and soon will be in New York, some of our heaviest capitalists having taken it in hand. With 18 burners lighted in this way, he illum-
inated the entire hall most brilliantly, the large number if common gas burners paling before it into a sickly yellow light. It was greeted by the delighted audience with the
greatest cnthusiasm.

NOTES ON THE VELOCIPEDE.

The Commissioners of Prospect Park, Brooklyn, have not only decided to admit velocipedes, but are, we understand making preparations to afford special facilities for this de lightful sport. In regard to schools of instruction in that city the Brooklyn Morning Vnion of Jan. 20th, says: "The first school for instruction in the art of riding velodipedes had not opened its doors a month before it had to be enlarged, for though commencing with twenty-five pupils, it closed the first month's book with a list of two hundred and twenty-five. Of course another school lad to be started, and Pearsall' Twenty-second Street Academy, up town, was followed by Monod's William Street School, down town, the former being crowded at early morning and in the evening, and the latter at spare half hours in the middle of the day. Last niglt, too Parker opened a school on Broadway and Forty-ninth street
and the IIanlons open another on eleventh street and Broadway. What New York had Brooklyn must have; and as we found a man who could beat New York fearfully in gymnasiums, we looked to him to whip them in velocipede schools, and our energetic, enterprising townsman, Avon C. Burnham, has gone and done it' in his usual masterly style, and now we can crow over having the best velocipede school in the country." It is proposed to use the Clermont Avenue Rink as great school, as soon as the frost breaks; and it is stated also that the Capitoline, a popular skating park, will also be utilized in this way. So much for Brooklyn, which nobody hought to be a fast place.
The velocipede fever is raging in Massachasetts. A flourhing school exists in Middleboro, and another one is to e opened in Plymouth, where a building recently occupi

The Cincinnati Velocipede Club have been giving a series

 The Cincinnati Velocipede Club have been giving a series ofaces of which the following is a brief account from the Cininnati Commercicl: "The first race was one of a mile in hree heats, six runs around the hall leing counted one thir a mile. The contestants were Mr. Ceorge W. Gosling and r. aoorge C. Miller

Mr. osling lost the first heat by a fall. Mr. Miller made his first third of a mile in one minute and twenty seconds. Mr. Cosling maintained his equilibrium in his second heat and came home in $1: 16$. Mr. Miller beat this time in his sec ond heat, finishing his sixth round in $1: 15 \frac{1}{2}$. Mr. Cosling made his third heat in $1: 16 \frac{1}{2}$, and Mr. Miller accomplished his hird heat in $1: 16$, and was declared winner of the race, and he prize, a handsome silver goblet, worth $\$ 100$, given by Mr. William Wilson Mc rew.
" The second race was one of a third of a mile, the fastest ider to receive a silver wine service the contribution of IIen y R. Smith \& Co
" Mr. Cosling was the first in the field. He made the third of a mile in 1:29 2-5. Mr. Miller followed, and made the distance in $1: 16$ 3-5. Master Curtis, a vigorous little velocipedist, made a valorous struggle for the prize, but his brisk little pony was not equal to the task. He made the six rounds in $1: 85$. Mr. McKinney followed, but lost by a fall. He gave way to Mr. II. L. Perry, who lost by touching the floor with his foot in the second round. At this juncture St. Clair, the skater, plunged in with an impetuous steed, which made directly for a post, and threw him to the floor thus being the eans of losing the race for Mr. St. Clair. Mr. Wm. II. Davis put his animal on the track, but unfortunately gave him so much rein that he broke badly in the third round and lost the race. This ended the race, and Mr. Miller was declared the winner.
"The third prize, a silver goblet, contributed by Duhme Co, was the person who could ride the velocipede at the so. est gait. This slow riding on the velocipede is a delicate task, wad good requiresjudgment and a deal of fine management on the part of the man who attempts it. Mr. Gosling prolonged his three circles around the lall to $3: 153-5$, and the spectaors thought him very slow. But Mr. Milier, his only rival, was much slower, and crept around the hall like a tortoise, inishing the feat in $\tilde{5}: 10$. By this achievement he won the third prize, and the plaudits of the whole assembly. The sport wound up with an exhibition of the skill of all the veocipedists present. All the races were interesting, and those or the fastest time were very exciting indeed, rousing the pectators, and drawing from them cheer after cheer as the articular favorites gained advantages."
One of the Troy, N. Y., dailies having asked the question, "Who is the young man destined to be the first to introduce
the velocipede in Troy?" has received the following answer the velocipede in Troy

You ask in your Thursay's issue, 'Who is the young' man destined to be the first to introduce the velocipede in Troy?' That young man has long since 'gene to that bourne from whence no traveler returns.' The velocipede is no new thing in Troy-it may be new to the present generation, but it long since rattled over the streets of cur city at a rate of peed that would make the famous 'Dexter' sweat, or a second class locomotive puff and blow like a Third avenue clam horse. Forty-six years ago, or thereabouts, a then young man and one of the best that ever lived in this city, too), by the ame of Silas Davis, who resided on the south-wcist corner of Liberty and First streets, exactly opposite to where the holy temple of St John now stands, and who was an apprentice to one of the best machinists that ever lived in or carried on the business in Troy, by the name of Joln Rogers (father of our fellow-townsman Alexander Rogers), and whose business was then located on the south-west corner of Division and First streets, which shop is now a dwelling, and was lately occupied by Justice Neary ; and he, in connection with said John hogers, constructed three of these wonderful vehicles called the use and benefit of all who were disposed to pay the then considerable sum of twenty-five cents an hour for their uen The first if I rembertly, was brought out for hibition and trial on a magnificent moonlight night in the month of June. No public announcementheraldedits coming. It appeared, nevertheless, in front of the hotel of the late Wiliam Pierce, located on River street between Congress and Ferry streets, between 8 and 9 o'clock in the evening, and although the mansions of our city in those days were as far
apart, on the average, as village lamp posts, and our population could hardly be counted for the paucity of its numbers compared to what it can be now, a respectable crowd soon gathered, and a disposition to try the untamed and wonderfully curious steed was soon manifested by many of the young men who had there gathered. The first man to mount and give an exhibition of its operation was Davis himself. He
velocity from Congress street to Washington street and back. All were astonished and delighted. The velocipede was de clared to be one of the world's greatest wonders-bound to su persede horse flesh for traveling purposes. Livery men ke gan to look blue and almost mode up their minds that their occupation was in danger of simmering down to such small ends that they might as well abandon the business at once, and substitute, on dry and pleasant weather at least, velocipedes for saddle horses. The next person to mount the prodigy was Benjamin Bayeux. Ile was the fortunate possessor of 'quarter,' an' could use the thing for an hour. After one two capsizes he oot under full headway and made excel ent work of it driving the machine at a $2 \cdot 40$ grait down Piver to Division, up Division to Third, up Third to River, up River o Mount Olympus, and back to the hotel, in an incredible short space of time, when he sarrendered it to Moses V. Yernett, who was equally successful in its oporation, and the veocipede was pronounced a success. They were used after locipede was pronounced a success. They were used after
that about the embryo city for a year \bullet two by the young that about the embryo city for a year or two by the young
bloods of the town, and then finally disappeared, to re-appear bloods of the town, and then finally disappeared, to reappear
again at the expiration of almost a half century, to make a sensation and excite the greater admiration and astonishment of their beholders." This velocipede was probably one of the old style propelled by contact of the feet t ijl: the ground.
Captain Du Buisson, Commander of Prince Napoleon's yacht, the J_{3} rome Napoleon, has an invention whereby he proposee to run a velocipede upon the water with almost the same facility that Burnham and IIanlon run theirs upon the land. It is composed of two parallel tubes of cast iron, cigar-shaped, connected by iron cross-picces. In the center is a propelling wheel, covered by a house or dium, on the top of which the person using the vessel sits comfortably in a sort of saddle, with stirrups. By means of these stirrups and a hand cramb, upon each side, he gives the whcel iis motion, precisely 2.3
is given to a velocipede on shore. The novel craft is casil, is given to a velocipede on shore. The n
propelled at the rate of six miles an bour.
A correspondent of an English paper announcesthat he has invented, and will shortly exhibit, a one-wheeled velocipecie, and says that it is safer and in every way superior to the triowheeled machine. A steam velocipede has also been inventel in England, an engraving of which, with description, will be shortly given to our readers.
A gentleman residing in Twenty-second street, in this city, comes down to his business in Church street, on a velocipede, every morning, in twelve minutes.
A lady residing in Rrooklyn, writes to us that, for her part, she objects to the double side-saddle plan, suggested by cur fair correspondent îrom eorgia, noticed last week. She sees no objection to ladies donning a proper dress and using the velocipede pure and simple. She argues that the exercise would be much more thorough and healthful, than it could be on any such mongrel machine as the one suggested by our eorgia correspondent, while one of the principal charms of velocipedesport, its delightful independence, would be entirely ost in such a machine. She is willing to grant that the em: pany of an agreeable gentieman would go far to reconcile her tothe disadvantages of such a machine, but if two ladies were o be paired thus she thinks it would be simply intelerable One thing is certain, the ladies can not be left out in the conideration of this subject by manufacturers.
Speaking of manufacturers, we understand that estabishents devoted to velocipede making, have their hands more than full to meet the present demand.

The "兂enosha" steam Frigate

We have received the following account of a splendid ship ust finished at the Brooklyn yard, built under the superis. ion of B. F. ©clano, constructor at this station: "The U. S. \& Kenosha, built at the navy yard, Brooklyn, N. Y., is of the same class as the Alaska, built at Boston, the Algoma, at Porismouth, N. H., and the Omaba, building at Philadelphia. They are all from one design by John Lenthall, Chief of Bureau of Construction and Repeir. The machinery was de signed by B. F. Isherwood, Chief of Bureau, Steam Ingineering.

The first frame of this ship was raised on the 2% th o June, $1866^{\prime \prime}$, and she was launched on the 8th of fugust, 1868 Her principal dimensions are: Length, extreme, 268 feet 9 inches; length on load line, 250 feet 6 inches; extreme breadth, 38 feet; depth of hold, 19 feet 7 inches; tunnage (new), $1119 \cdot 68$ tuns. She has two decks becide the poop and forecastle, with 6 feet head room in clear of beams. The ward room is arranged with ten comfortable state-rooms, fiveon each side, and a good sized "country" betwecn. In the after end is a large ward room pantry and two store rooms. Forwardo the wardroom is the steerage, which contains three good staterooms, beside a room for assistant engineers, 12 feetlong, and the midshipmen's room, 18 fect long. The necessary store and mess rooms are forward of the stecrage. Relew decks are the magazincs, shell rooms, stcre rooms, ete. forward and abait the machinery. The rig of the vessel is barque. The armament is one 11 -inch pivot, six 8 -inch guns on ircn car riages, one 60 pounder on ferestie deck and two 24 -pound ers on poop, keside two 12-pounder boat howitzers.
Her engines are double piston rod, back acting, having iwo cylinders, 50 inches diameter by 42 -inch stroke, Sewell's con denser ; 4 main boilers, 5 furnaces in each, superheater in up take; grate surface 390 square feet; total heating surfac 7,260 square feet ; two smoke pipes 64 feet above grates, '? inches diareeter; two bladed, hoisting screw, 16 feet 4 inches ameter
The ship will soon be in commistion, the wonk on her being nearly completed. The machinery was all built at the BrookWashington yard.

