SALT-CARE in Dyeing.

Written for the Scientiac American by pr. m. reimann.
In England, as well as in Germany, salt-cake, or sulphate of soda, has been employed for some considerable time already an expedient in dyeing wool.
The practical dyer, when asked concerning the advantages of this substance, which seems to possess so little importance, for the dyeing process, can state no reasonable ground for its the bath dyes more equally when sulphate of soda is added to it. Even the chemist, on regarding the matter somewhat superficially, does not observe what purpose the sulphate of soda serves in the dyer's bath. He considers it one of the number of utterly useless substances employed by the dyers n accordance with the prescriptions of some hand-book.
Nevertheless, if we regard the matter carefully in the fol lowing discussion, we shall see that sulphate of soda can be of the very greatest value in dyeing processes, and that its employment is based on the most interesting chemical and physical principles. At the same time we shall be obliged to advance into the comparatively unknown region of the dyeing theory, the practical use of which we shall soon recognize.
The sulphate of soda, which is scarcely ever treated of in oooks on dyeing, because of its chemical indifference for colspecific weight, and thus also the boiling point of the solution. This property already, when taken into consideration, renders This property already, when taken into constant for many dyeing processes. It is possible, for instance, to change the shade of aniline violet into blue or red according as the temperature of the solution is more or less elevated.
When the dyeing is performed in an acid bath (the dyers very frequently gdd sulphuric acid to their baths), the sulphate of soda combines with the free sulphuric acid in the bath, and forms with it bisulphate of soda, a crystallizable solid salt. In this manner the bath retains its acid reaction without the presence of free sulphuric acid in the bath. Hence, when half-woolen cloths are dyed, the cotton in them, extremely sensitive to the action of the mineral acids, will be very well preserved.
Dissolved in water in great quantities, the sulphate of soda diminishes the capacity of the bath to dissolve the added coloring matters in as great a degree as though there were no such salt present ; this, too, is highly important for many dyeing processes.
Several practical examples will demonstrate the advantages of sulphate of soda more conclusively than a whole series of theoretical obsorvations. The red coloring matters as the cudbear, and more especially the magenta, and the reddyeing
woods, possess, as is well known, the property of combining only with the greatest difficulty with the fiber when dyed in an acid bath. Therefore, wherever the substances are employed in the acid bath-and often this is necessary-the greatest part of the coloring matter is wasted and lost if the common process is employed. The same applies also to the yellow wood.
If, however, the said coloring matters be dyed in an acid bath according to this new method, a twofold result will be attained. By adding sulphuric acid, the dyeing power of the said pigments can be put into activity, and by varying the quantity of sulphate of soda which is employed, it is possible to control the combination of the pigment with the texible fiber. Therefore, by means of the sulphate of soda various shades can be produced
This fact is of great importance in many sorts of dyeing. There are some kinds of yarn, especially the long slubbing
wool, which have the property of felting when exposed too frequently to a change of temperature; they can then no longer be worked into weft yarn. Nevertheless, the wool must be exposed to such a change of temperature, for, in preparing the shades, it is taken out of the bath at times, so that new coloring matter may be added to the part already in the bath.
In all these cases it would be unnecessary to take out the and shades could be produced by gradually adding sulp acid soda to the bath. By this process a great deal of manual labor may be spared, and the dyer enabled to work with far labor may be spared, and the dyer enabled to work with far
more security and comfort. Should at any time too much more security and comfort. Should at any time too much coloring matter have gone upon the fiber, the
be corrected by the addition of a little acid.

The truth of the above assertions is most easily perceptible in dyeing Magenta. Λ s another example, let us regard the dying ef skades, for which the wool must first be boiled in a solution of a chrome salt, in the most cases in bichromate of
potash. This is often done for re , brown, and gray, which are produced by means of logwood, red and yellow wood. When the wood is boiled in a bath of bichromate of potash, and especially when to this, as is commonly the practice, sulphutic acid is added, the colors of the logwood and red wood attack the fiber very quickly, and therefore often spread unequally Hence, dyers must begin to dye at low temperatures, and must increass the heat very slowly. If to such a dye ing bath but a smallquantity of acid is added, the effect of the ble to dye with the boiling bath without fear of an unequal spreading of the coloring matters. It is only necessary to add, while the coloring matter is fixing on the fiber, sulphate of soda in small quantities, the coloring matter will combine with the fiber, while the sulphate of soda absorbs the free
acid. It is therefore possible to produce shades without reacid. It is therefore possible to produce shades without re-
moving the goods from the bath, if we take care that the quantity of coloring matter which is at first added to the bath is not too small.
A similar effect can be produced by adding the sulphate of
soda at the beginning of the dyeing process. For sulphate of soda we may, in this case, employ even common salt. In this case the salts employed will, when dissolved in the fluid precipitate the dissolved coloring matter, which is then contained in the bath, in a very fine state of division, or the salts will prevent the coloring matters from dissolving, according as these latter or the salts were first introduced into th bath.
For the process this is quite indifferent. The pigments fix on the fiber in the same measure as they are dissolved Fresh coloring matter will only then be dissolved, when the portion already in dissolution is already consumed. The dyeing is more equal, if the coloring matters are not dissolved in the bath, but are centained in it in a state of minute division, as every dyer knows who has over employed aniline blue, soluble in water. This pigment, because of its ready solubility in acids, often fixes too quickly if the dyejng is carried on in an acid bath, and therefore dyes at times unequally. It is therefore best to dye from a neutral or weak alkaline fluid pigment soluble only in alcohol is precipitated as soon as its solution is added t, the bath, and thereforedyed more equally, though more slowly still. In many cases àlso it is advantageous to employ sulphate of soda where'small quantities of indigoc carmine are used to g:v'somewhat more of blue to a shade. The affinity of this coloring matter for wool being very great, small quantities of it may often dye the woolen goods very unequally ; to prevent this, and give uniformity to the color, it is necessary to continue the boiling operation for some time. The indigo carmine will dye more slowly and
equally in the case of the free acid is carried off by sulphate equally in the case of the free acid is carried off by sulphate of soda.
The question now remains whether only the sulphate of soda, the importance of which I have endeavored to prove in the preceding remarks, is able to produce these results, o
whether any other agent, can replace it in these processes. In the preceding I already mentioned common salt as a sub stitute ; and it can be advantageously employed, if either a higher specific weight can be produced, or the dissolved coloring matter be precipitated
When common salt is employed in an acid bath, the devel opment of hydrochloric acid is highly disagreeable. Cotton is violently attacked by it. Common salt can in turn be replaced for these processes by sulphate of magnesia and other salts which exercis no effect on the chemical constituents of the coloring matters, as, for instance, the compounds of alumina, iron, and tin.
Similar to the effect producèd by the sulphate of soda, is that of the corresponding combination with potash, viz. : the sulphate of potash: This salt, however, is more expensive than the soda-salt. The bisulphate of potash is now already frequently employed in dyeing. The bisulphate of soda, which is a residiumin some chemicalmanufacturing processes, vantagêzusly employed for sulphate of soda and free acid.
To compare the expense of the employment of these substances, we must therefore observe that the sulphate of potash crystallizes without water, while the sulphate of soda contains 55.9 per cent, and the sulphate of magnesia $51 \cdot 22$ per cent of water, which is of course devoid of any value
Finally, we must state that 100 parts of crystallized sulphat of soda are able to fix $30 \frac{1}{3}$ parts of sulphuric acid (of 668 B s. w), and thus to form bisulphate of soda ; or, in other words for every pound of sulphuric acid added to the bath, three
pounds of crystals of sulphate of soda must be employed.
MANGANESE---ITS USEFUL APPLICATIONS IN THE ARTS

by dr. l. fevchtwanger.

This mineral substance was known in ancient times under the name of " glassmaker's soap " and was considered a species of iron ore. In the year 1740 it was ascertained to be an oxide of a separate metal, and in 1774, Gahn obtained the pure metal from the native carbonate, exposing the same to intens heat for several hours, or by subjecting chloride of manganese to electrolysis. Boerhaave does not appear to have known the following words: "Take the frit and set it in melting pots in a working furnace, adding in each pot a proper quan tity of a blackish stone not unlike loadstone, and called manganese, which serves to purge off that greenish cast natural to all glass and to make it clear." Scheele, Bergman, Chev reul, Berthier, and Berzelius, have in modern times investi-
gated the physical and chemical characters of manganese. The ore is widely distributed over our globe; it accompanie many iron ores, particularly the hematites, also the franklinite of New Jersey. It has been detected as a constituent of meteoric iron in the ashes of most vegetable and many animal dirtic fes, is the coloring principle of many fossils in a den stons," and in the same form on sand pebbles of which I found plenty in Stanislaus River in California. It also occurs comined with sulphur, carbonic acid, silica, water, and with many atomic proportions of oxygen, such as protoxide, wesquioxide binoxide, manganic acid, and permanganic acid becoming thereby sometimes a base and sometimes an acid. The prin cipal varieties of manganese found in nature are of the follow ing descriptions :

1st. Hausmannite has the form of a four-sided pyramidal
ystal, with hardness 5, and a specific aravity $4 \cdot 7$ rystal, with hardness 5 , and a specific gravity $4 \cdot 7$.
2d. Braunite is an anhydrous
2d. Braunite is an anhydrous sesquioxide, crystallizes in an octabedron, is much harder than the last, and has a higher specific gravity.
3d. Pgilomelanc, generally called the compact gray oxide 4th in botryoidal and stalactitic shapes.
4th. Manganite is a hydrous sesquioxide; erystallizesin right

5th. Pyrolusite, the most useful and abundant ore of manga nese, derives its name from two Greek words signifying "fire" brown to wash ", in als of it crystallizes in small rectan gular prisms, or is fibrous, radiated, and divergent of iron black color and prayish streak has a specific gravity of 4.94 and is composed of 37 per 63 per 10 ganese. This ore is generally called binoxide, deutoxide, or ganese. This ore is generally called binoxide, deutoxide, or
peroxide, is a good conductor of electricity, and strongly elecperoxide, is a good conductor of electricity, and strongly elec-
tro-negative in the voltaic circuit. When heated to redness tro-negative in the voltaic circuit. When heat pives off one third of it. When heated with sulphuric acid one half of its oxygen escapes. Owing to this property it is more employed in the arts than any other oxide; it is called in trade the black oxide of manganese." Its commercial value is depen dant upon the proportion of oxygen which it contains in exces of that which is necessary to its existence as sesquioxide. A convenient method of estimating this excess of oxygen is founded upon the circumstance, that the black oxide of manganese is decomposed in the presence of oxalic acid, and from sulphuric acid proto-sulphate of manganese is formed, and all the excess of oxygen reacts upon the oxalic acid and converts it into carbonic acid which passes off with effervescence. If the mixture be weighed before the decomposition has been effected, and again after it has been completed, the loss will indicate the amount of carbonic acid; each equivalent of per oxide of manganese gives two equivalents or its own weight of carbonic acid
Manganic acid is known under the name of chameleon mineral, is obtained artificially by fusing the peroxide of manga nese with equal weights of caustic potash, which when dis solved in a small quantity of water has a green color, but when largely diluted becomes purple and ultimately claret color ; for this property it has been employed for many years in the arts.
Permanganic acid is artificially obtained by mixing intimately four parts of finely powdered peroxide of manganese with three and one half parts of chlorate of potash, while five parts of hydrate of potash are dissolved in a small quantity of water and added to the above mixture, the whole is evaporated and reduced to powder, then heated to dull redness for an hour in an earthen crucible and when cold the mass is treated with water and filtered through a funnel plugged with asbes tos; the solution after being neutralized with sulphuric acid yields on evaporation beautiful red acicular crystals of per manganate of potash. This preparation of later years has be come an important vehicle for disinfection. Among the other native oxides of manganese may be mentioned the mineral wad which is also very abundant but not valuable enough to produce gas. It is amorphous, soft, black, or brown and pur ple; when mixed with linseed oil it produces spontaneous combustion. It is supposed to be the coloring ingredient of the dendritic delineations upon many substances, such a steatite and others mentioned elsewhere. The localities of manganese are very prolific; pyrolusite has been mined very extensively in Europe ; psilomelan in England, France, Belgium, and the United States ; manganite in Bohemia, Saxony, and England. Much of the latter is consumed in the bleacheries of those countries. The United States and the Provinces have inexhaustible deposits of the oxides of manganese. From Vermont, the eastern limit, to Georgia, the southern limit large supplies were formeriy furnished, but in late years West Virginia, North Carolina, and California have supplied us to a large extent but not of a high grade of oxidation. While
the binoxide of manganese suitable for the manufactures the binoxide of manganese suitable for the manufactures
ought to yield from 80 to 90 per cent of oxygen gas, the pro ought to yield from 80 to 90 per cent of oxygen gas, the pro duct of the last mentioned States has not exceeded 50 to 70 per cent oxygen. The provinces of New Brunswick and Nov oxides of manconced within a few years very superio net excel in richness and beauty those from Ilmuran in Thuringen and Ihlefeld in the Hartz mountains of days gone by The manufacturers of bleaching powders in England have for the last twenty years been supplied by the little principality of Nassau to the amount of fifty thousand tuns per annum while the United States with all its inexhaustible resource has not exported any, and it is hoped that betore long the export of manganese may prove lucrative. The quality of the Nova Scotia manganess is, according to Howe, of high per cen tage, some from $82 \cdot 4$ to 89.8 of sesquioxide, and that from Tennycape as high as 97.04 . The international manganese mine of New Brunswick contains from 80 to 85 per cent
of sesquioxide. We find manganese in the State of Missouri of sesquioxide. We find manganese in the State of Missour containing much cobalt, while the Vermont manganese is as sociated with much iron. We also find in California, in the red hill of the bay facing the city of San Francisco, containing millions of tuns of psilomelane or compact manganese yielding from 40 to 50 per cent sesquioxide. We also know manganese to be abundant in Canada. A vein of 50 to 60 feet wide is said to exist at Bachawanning Bay on Lake Superior
The geological position of manganese is not quite accur te y known. In Germany it traverses porphyry and is associa ted with calcspar and baryta. In Vermont, in the United States, it is found among crystalline rocks; in Canada it is accompa nied by dolomite, and in Nova Scotia it exists in a gray lime stone, quartzite, and conglomerite, and it unquestionably be longs to the new red sandstone formation. My manganese mines at Pembroke are situated close to the gypsum deposit which would range them with the upper silurian system.
I will now enumerate the many u eful applications in the
1st. Manganese is employed for producing oxygen gas in the chemical laboratory, the material of the compound blow pipe and drummond light, for the production of alkaline man tion with coal gas

2d. Marganese is most extensively used in the manufacture: of chlorine so as to prepare a bleaching liquid or powder, the consumption of which by the paper and cotton manufacturers is unlimited.
3d. Next in importance is the manganese largely employed in the green flint glass works in precipitating the iron, and when added in excess to produce an amythyst color in flint
glass.
4th. Steel manufacturers requiremanganese for producing a hard and tough prodnct; a half pound to fifty of iron will have the effect.
5th. Linseed oil is rendered more siccative by the addition of manganese, and is called a patent dryer for paints and varnishes.
6th. A permanent black on earthenware and pottery is obtained by exposure to heat.
7th. A black enamel used in ornaments by jewelers is likewise produced with manganese.
8th. The manufacture of permanganates, a powerful, disinfectant, and the main material in the new oxygen light is obtained from the same.
9 th. The quality of spirits, with or without distillation, is obtained by the use of maganese.
10th. The chameleon mineral used in sugar refining is prepared with manganese.
The consumption of manganese for the manufacture of the new gas light about to be introduced in this country, forms a new epoch in this direction. It is to be converted first into the alkaline manganate, which acting as a sponge alternately absorbing the oxygen of the air and again releasing it, must require if successful, not less than one hundred thoussand tuns of manganese in order to produce a million of cubic feet of oxygen gas, and I gather the following pariculars from the programme issued by the inventors, Messrs. Tessie de Motay a temperature of 600 deg. Fah., by the action of a jet of ordia temperature of 600 deg . Fah., by the action of a jet of ordinary steam which liberates the oxygen and leaves a residuum
composed of sesquioxide of manganese and the alkaline base contained in the combination. The manganate is regenerated by submitting the above mentioned solid residue to the action of a current of air at the same temperature as used in the decomposition, and all these operations are conducted in a series of retorts placed in a furnace where the manganates, after be-
ing raised to a temperature of 600 deg. Fah., are alternately ing raised to a temperature of 600 deg . Fah., are alternately
submitted to the action of a jet of steam and current of air which restores to the mass the oxygen has lost. The oxygen is disengaged by the steam from retorts; this steam is liquified by pressing into a condenser, and the pure oxide is collected into a gasometer. When applied for the production of light, oxygen in combination with common coal gas permits a reduction in the consumption of the latter, but at the same time giving an equal quantity of light in the proportion of 16 to 1 .
The permanganate of potash or Condy's disinfectantis recommended as a powerful agent in obtaining pure drinking water and in epidemic diseases. But by far the largest amount of manganese is consumed by the manufacturer of bleaching powders. England alone consumes 80,000 tuns for that purpose per annum, and as soon as the United States becomes inde-
pendent of the English imported chloride of lime for bleachpendent of the English imported chloride of lime for bleach-
ing the cottons and the papers, not less than one half million tuns will be consumed for the desired oiject, for on examining the report of the director of the bureau of statistics, I find that 12,682 tuns of bleaching powder have been imported the first five months of the year at the value of $\$ 324,066$.

NOTES ON THE VELOCIPEDE.

Our exchanges teem with items of all sorts concerning the velocipede. We are also in receipt of many letters of inquiry and suggestion with reference to the construction of the machine, some of them unpractical, others containing useful hints. One correspondent suggests the making of a vulcan ized rubber rim to velocipede wheels, so that they could be run over Belgian pavements without shock to the rider, and the propeller wheel could also gain superior tractive power. Some very ingenious and peculiar devices are now on their way through the Patent Office, and will, if sumsf, make not in our predictions.
A lady, writing from Georgia, wishes manufacturers to take into special consideration the wants of ladies. She says that the awkward position they are now forced to assumeastride the front wheel, is a serious objection. She suggests a veloci-
pede for two persons. It might have seats something like a pede for two persons. It might have seats something like
side-saddle facing in opposite directions and be propelled by side-saddle facing in opposite directions and be propelled by
the combined power of the two riders, each on her own side of the wheel. This suggestion is worthy consideration, but, for our own part, we don't think it would work well with two female riders. There can be no doubt, however, that good sport could be had by a gentlemen and lady on a ma chine of such construction.
As is the case with almost every new invention, there are those who wish to make out that it is a discarded experiment of the past ; but we do not believe the velocipede of the past could compare either in principle or
with the two-wheeled machine of the present.
We have in our office a colored engraving of the velocipede
f 1819, described in an English journal as follows:
This machine was of the most simple kind supported by two ing on a pivot which, by means of a short lever, gave the di rection in turning to one side or the other, the hind wheel seated himself in a saddle conveniently fixed on the back of the horse (if allowed to be called so), and placed in the middle that in the first stepto give the machinemotion the heel should
ther foot alternately, as if walking on the heals, observing
always to begin the movement very gently. In the front before the rider was placed a cushion to rest the arms on while as also to balance it if inclining to either side when the opposite arm was pressed on the cushion.
It will be seen at once that the " little differenco" in the manner of propelling this machine and the modern one, completely changes the character of the vehicle. The ridicule which assailed this machine was not without foundation; the motion in propelling it was not graceful, and it was said to give rise to numerous cases of rupture.
Not so with the velocipede of the present, which glides along as though it were alive, and with a smooth grace alike exhilarating and beautiful to behold.
An English paper gives a description of a velocipede calculate to convey from six to a dozen people. It has four wheels acts upon a and propulsion, and a fifth guide wheel, which cisely as the fore wheels of carriages are notw cramped in turning. Each pair of carrying wheels is-provided with double cranks which are connected with each other by longitudinal rankswars so that all can id in propelling the ongitudinal This velocipede is provided with cross seats having backs like one of our Yankee market-wagons. It has not been tried yet, one of our Yankee market-wagons. It has not been tried yet,
but it is stated that a club is being organized to manipulate it.
Berformances with them are coming into fashion at the heaters. In the Parisian theatrical world considerable sensaion has been caused by velocipede performances, and even A nome curious acrobatic exercises are gone through with them. han twelve velis journals recently stated that not more the stage. Chicago has followed suit, and the habitues of Crosby's Opera House have been treated to velocipede exhibitions between the other portions of the entertainment.
There also was a velocipede race at Rike's Music Hall in Cincinnati recently. A silver cup worth $\$ 100$ was given to thefastest rider, and another, also worth $\$ 100$ to the slowest rider An exchange says, thet a day or two since, a certain gentleman in Chicago, who has been practicing for some time on he side walks, at vespertinal hours, came out upon Indiana street car driver to race with him to Thirty-first street, the terminus of the track. The challenge was gallantly accepted by the car driver, although the latter had several lady passengers on board. The race began auspiciously, the horses being
driven at a furious pace. The velocipede soon gained upon its driven at a furious pace. The velocipede soon gained upon its in the sidewalk received the fore wheel, leaving the other in bedience to the law of its momentum, to turn a somersault hrowing the rider into the gutter. The car won the race on "foul."
Rural districts are catching the mania. A velocipede school has, we learn, been established + in Bridgeport, Ct., but it is said that the nearest approach to a velocipede that has been een in Danbury was a bit of orange peel, on whick a citizen went across a sidewalk and down a
onds-the quickest time on record.
Winslow Homer's last drawing for Harper's Weekly is very original in conception. He makes the New Year come in on velocipede!
Mr. Dana, of the Sun, has become, it is said, one of the most expert velocipedists in the city. It is also asserted that headvocates a project to build an elevated railway from Harlem to the Battery, to be used only by the riders of velocipedes. By this means it would be possible to go from one end of Manhattan Island to the other in about an hour, making allowance for delays from stoppage and accidents. A good rider, with a clear track, would easily accomplish the distance in half an hour ; but, with a well-filled road, progress would necessarily be slower. The proposed roadway ought to be at least thirty feet wide, upon an iron framework; with a flooring of hard pine. By all means let us have the "elevated roadway," and let the sidewalks be kept clear for pedestrians, who are otherwise likely to be enda
We velocipedists.
We regret to record that the Park Commissioners have pro hibited velocipedes in the Park. The reason assigned is that he drives are narrow and horses are likely to become frigh ened. Then, why, Messrs. Commissioners, do you not widen the
drives without delay? The Park was made for the public not the public for the Park. The drives are too narrow, any way, especially on the east side of the Reservoir, and as we believe it is intended to widen them, we do not see good cause for postponing the work. Asto frightening horses the follow-
ing, from a correspondent of the Herald, is practical and suggestive
The Herald is right. Velocipedes ourgit to be admitted to me Park. And why not? In theyear 1855 I spent nearly fou
nonths in Paris, and occasionally saw velocipedes passing rap idly through the Champs Elysees and along the boulevard without exciting much attention either from man or beast The horses did not appear to notice them at all. I was in Paris again last spring and found the velocipede mania raging with
considerable force, and these vehicles were commonly to be seen upon the most frequented streets and public places of the city. The horses were not afraid of them. Yet, if you will allow me
to say so, I am not quite sure that this state of things would hold good in our parks. It is noticed by all travelers that a runaway is a rare occurrence in Paris. Indeed, this remarts holds good respecting all other cities in Europe. I have spen
nearly two years of my life in Europe, and in all that time hever saw a horse run away. On my first visit to the Park af never saw return, in June last, I saw the fragments of no lessthan three light geared, heavy top buggies scattered along the roadujurend persons brought in on a single day to St. Luke's Hospi, victims of smash-ups in the Park.
There is something radically wrong either in our driving of And here, I suggest, is a subject for a searching inquiry.

The New York Werld has been applying its editorial nose o the tea chests and coffee bags, as well as the whisky barrels of New York, and finds much to offend. It says:
We heard, not long ago of one of the great tea houses buying in a cargo of damaged tea from a vessel which sunk in the harbor. It was properly doctored and fixed up, and put teas is exhausted tea leaves. A few years ago there were eight manufactories for the purpose of re-drying exhausted tea
leaves in London, and several others in various parts of tho leaves in London, and several others in various parts of tho
country. The practice pursued was as follows: Persons were country. The practice pursued was as follows : Persons were employed to buy up the exhausted leaves at hotels, coffee
houses and other places at 21-2d. to 3d. per pound. These were taken to the factories, mixed with a solution of gum, and reried. After this the dried leaves, if for black tea, were mixed with rose pink and blacklead, to "face" them, as it is termed
by the trade. The same practice is pursued in this country by the trade. The same practice is pursued in this country. Perhaps the most general mode of adulterating the better
grades of coffee in New York is by the admixture of inferior grades of coffee in New York is by the admixture of inferior
coffee. The Java is, of course, rich and comparatively expen-
sive. The common South American coff is cheap has sive. The common South American coffee is cheap, has a flat
aroma, and a bitter taste. When the berry is burnt it cannot aroma, and a bitter taste. When the berry is burnt it cannot
be readily distinguished from the Java berry, and, of course, identification is lost after grinding takes place. We are informed that a new adulterant has been discovered in sweet po-
tatoes, and that it is becoming quite popular with the sellers tatoes, and that it is becoming quite popular with the sellers
of ground coffe. It has the right color and taste, and it is not easily detected without the microscope. The common'adul terant for coffee, however, is chicory. The use of chicory is
openly acknowledged in some places, and even defended by openly acknowledged in some places, and
grocers on the score of health and economy.
We have medical testimony that chicory is extremely inju-
rious to health. Dr. Hassall says that taten rious to health. Dr. Hassall says that taken constantly, prostomach, loss of appetite, acidity in the mouth, constipation with intermittent diarrhea, weakness in the limbs, trembling, sleeplessness, a drunken cloudiness of the senses, etc, Again, it is the opinion of an eminent oculist in Vienna, Professor Beer, that the continual use of chicory seriously affects the
nervous system, and gives rise to blindness from amaurosis. Its use ought, therefore, to be discouraged, and grocers who sell it for coffee ought doubly to be put under the ban.

An Earthquake Convention.

A convention called by joint committee, on the Investigation of Earthquakes, has heen held in San Francisco, with a riew to the adoption of an improved system of building and ther precautions against future disaster from earthquakes. The following report of its proceedings is from the Bulletin: Mr. Gordon explained that the laboring oar in the investiga-
tion must fall on the two secretaries, and gentlemen had been tion must fall on the two secretaries, and gentlemen had been selected having peculiarqualificationsfor the position, and who
could give their entire time to the business in hand. Professor Rowlandson would bring the experience and critical knowlsor Rowlandson would bring the experience and critical znow-
edge of a man of science, and Mr. Bridge, a practical architect and builder, a vast fund of information in relation to investigawith General Gilmore, United States army
The President called for reports from the sub-committee No.
on bricks, stone, and timber 1, on bricks, stone, and timber.
General Alexander, chairma
General Alexander, chairman, reported that the committee brick, and had put on foot inquiries as to the propert esof brict made mostly from sand, which had been highly spoken of in the Eastern States. He had n• hesitation in saying that, as a
rule, the brick used in the city were not good. Better brick rule, the brick used in the city were not good. Better brick can be made with the same material by using proper proporexperience a case in point, where a large kiln of brick had experience a case in point, where a large kiln of brick had
been condemned as defective, and from the same material, under his supervision, a very superior article had been made; the difference being in proportions and in burning.
Sub-committee No. 2. on Limes, Cements, Mortars, etc.,
Colonel Mendel, chairman, reported that they had the matter in progress, but were not pr
Sub-committee No. 3, on Structural Designs, General Alexander, chairman, reported progress from the committee, whwere granted further time.
The President raade some incidental remarks on the advisability of recommending some plan by which structures already erected can be strengthened by iron bracing, to resist any subsequent shocks, instancing the plan he was adopting in bracing
the sugar refinery, etc. The matter was discussed by General Alexander, Colonel von Schmidt, Dr. Blake, and Judge Rix. On motion of Mr. Wix the matter was referred to the Committee on Structural Designs.
Sub-committee No. 4, on Scientific Inquiry, etc., Dr. James Blake, chairman, reported that the committee had met, and the investigations had been commenced. In this connection a let-
ter was read by General Alexander from R. C. Hopkins, Custodian of the Spanish Archives in the Surveyor-General's office, stating that the archives were at the disposition of the committee in any investigation they might wish to make, and to the same committee.
A discussion followed on the value of these old records on the subject under consideration. From remayks made by Prof. pretty well searched by Dr. Trask, Dr. Tuthill, and others. Mr. Tittell, of the Alta, stated that he had personally inspected then very meager and unsatisfactory. On motion of Major
Elliot, Colonel Williamson, United States Engineer, was placed Elliot, Colonel Williamson, United State
on the Committee on Scientific Inquiry.
on the Committee on Scientific Inquiry.
A letter was received from W. Frank Stewart of San Jose, accepting the invitation to serve on this committee. Qn motion, the gathering of facts connected with the earthqua
vicinity of S_{an} Jose, was intrusted to Mr. Stewart.

Food Required te Sustain Life.-Judging from the mintmum quantities of food upon which an ordinary individual is capable of existing without suffering in health, it would seem that about 4,100 grains of carbon and 190 grains of nitrogen are required in his daily diet. These proportions have been etermined from a large number of observations,
as by those of Dr. Lyon Playfair, in his inquiries into the dias by those of Dr. Lyon Playfair, in his inquiries into the di-
etaries of hospitals, prisons, and workhouses, and by those of Dr. Edward Smith, in his examination of the amounts of food upon which the Jancashire operatives were capable of living durtng the cotton famine, and also by his inguiries into the dietaries of indoor laborers.

