Curergipomence.

The Ediators are

Propulsion or Wessels.

Messrs. Editors :-Although it is admitted by all engineers that there is yet room for improvement in our present system of paddle and screw, yet very few are aware of the really immense disparity between the amount of steam consumed in the engine and that actually utilized in propulsion. The fact being, that if it were possible to utilize all the steam
that passes into the engine in actually propelling a vessel, it that passes into the engine in actually propelling a vessel,
can be shown that a saving of fully two thirds or three fourths can be shown that a saving of fully two thirds or three fourths
would be effected-1:1:iss statement is based on the following woulch be effecter-11: is statement is based on the following
facts, viz. : Two horses can propel a loaded canal boat of two facts, viz. : Two horses can propel a loaded canal boat or hrs
hundred tuns, at'a rate of two miles per hour. Two-horse power of steam is equal to the power of two actual horses Hence, if two-horse power of steam were fully utilized, this, and an allowance of ten per cent additional for friction, would be sufficient to propel same boat the same speed as two hors would.
The resistance of water in a canal is one third greater than that of deep rivers or more open waters; and the resistance of a canal boat, having no lines favorable to speed, is greater than the resistance of a well built schooner of same tunnage therefore, it cannot be disputed, that if two-horse power steam, plus ten per cent, can propel a loaded canal boat of power applied to a two hundred tun schooner, having good power applied to and and a half miles per hour. Resistance increasing as the square of the velocity, it is easy to calculate power required to propel a two hundred tun boat, at any required speed. For example, to go ten miles per hour, or four times the velocity, evidently requires sixteen timos the power. Therefore, $2 \frac{1}{1} \times 16=33_{1}^{\frac{n}{0}}$ horse power, to drive two hundred tuns ten miles. Although the resistance does not increase in exact
proportion to increased tunnage, it will be safe to calculate the amount required to drive any larger vessel, by taking the two hundred tun boat as a basis, and multiply the horse power for any required speed, by oxact increase in tunnage. By this metho it will be found easy to calculate power required to steam were utilized, it would be possible to drive boats of the steam whe unne high pressure or low pressure, respectively, as follows

By comparing these figures with amount of actual horse power consumed in vessels at present, there will be great dis parity. To invent a system capable of utilizing all steam consumed, it is simply necessary to know the primary laws or conditions of propulsion.
From a series of actual experiments made on a one hundrat tun boat, the writer is enabled to construct the following hy pothesis, viz. : That propulsion is produced by repulsion, that the one cannot exist without the other; hence they are coexis tent, and the perfection of propulsion logically and practically is but another name for imperfect repulsion; that propulsion is simply a question of power and comparative resistances-a is simply a question of power and comparative resistances-a
greater and a less; and that perfect propulsion can only be greater and a less; and that perfect propulsion can only be
produced by so applying the power to the body to be moved produced by so applying the power to the body to be moved
as to overcome the resistance in line of propulsion, without overcoming resistance, in opposite direction, or that of repul sion.
The foregoing hypothesis applies alike to the propulsion of all animate and inanimate nature, and will stand the most admitted that the araa test asp section, represent the resistance of propulsion, and the area of two buckets of a paddle represents resistance of repulsion. Hence it follows, that to produce perfect propulsion, it is necessary so to apply the power as to overcome a greater resistance, without ove coming a less. To do this, and adapt the means of doing so construct a propelling apparatus capable of utilizing all th construct a propelling apparatus capable of utilizing all the ty-five per cont. With this end in view, the writer has in vented a propelling apparatus, that he trusts will accomplish the desired result, as follows
A horizontal engine is attached, by proper links, to a crain motion, at a point as near as possible to the center of an axis a pair of piston propellers are attached by proper links to the points of a pair of vertical dynamic levers, most distant from same axis, the axis is swung athwart the boat, and works in proper journals. The engine being set in motion, puts the piston propellers in motion the cylinders in which the piston propellers work being open at one end, two proper holes or pistons. These pistons impinge on the water on one sid only, and are so arraned as to work in a racuum on the other; so that they make propelling stroke by pressure of steam on the engine, and are brought back to original position by means of pressure of water alone. The resistance of tion by means of pressure of water alone. The resistance of the small area of water at the propellers being, by means of
proper use of dynamic lever, made virtually greater than that proper use of dynamic lever, made virtually greater than that
of the larger area of immersed cross-section, it is evident (from the fixed law, that power applied to overcome to unequal resistances of necessity overcomes the least) that the water forming resistance of boat's motion can give way without displacing water at propellers, and, consequently, that the boat can be propelled by this means without "slip;" and it is
also evident there can be no lift water, hence the economy also evident there can be no lift water, hence the economy
So that eqery pound of steam is actually utilized in propelling

vess

ent.
t will be found, the shorter the crank at which power is ap plied, and the longer the arms of the lever, to which propel lers are attached, the greater the economy-for this dynami leverage is the vital principle of my invention, the form o propellers used being that simply best mechanically adapted for impinging on the water, on one side only, and are, as is well known, worthless as economical propellers, of them selves, otherwise applied. The philosophy of this use of the dynamic lever is, simply, that by its means, powe is applied as near as possible to the axis, because the axis represents the actual point of impact, or the true point of resistance of motion in a boat, and as far away as possible from point of resistance of propellers, which is the actual fincrum; and by this means the water at propellers is much more difficult to displäce than the resistance of boats much more difficult to displace
In addition to its great economy in fuel, and cost and weight of machinery required, this system presents many other ad vantages over paddle and screw-namely, great simplicity of machinery-hence less wear and tear, and much better pro tection from the action of rough seas, or the obstruction of ice weeds, logs, etc., common to inland navigation, and its special I hope, at for shallow rivers and gunboats.
I hope, at an early date, to lay before your readers drawing nd more explicit details of my invention.
F. K. P. New York city

Quadrature of the Circle

Messrs. Editors :-I am surprised that the London Build ing News, from which you republished an article under the above heading (page 375 of your last volume), is not better posted in regard to English investigations and Loondon publi cations. The article states, that later researches brought the number expressing the ratio of the diameter of the circumfer ence to 127 decimals. Now this is exceedingly old news, as later researches went much further. M. de Lagny, in France found this in 1682, and published the 127 decimals in the Memoires de l'Academie," in the year 1719; after that, we find in the library of Radcliff, Oxford, 155 decimals; and we find, further, that Dr. Rutherford, of Woolwich, presented calculation of 200 figures to the Royal Society, London. However,it was,unfortunately, found out, that all his decimals,adde to the 155 of Oxford, were wrong. Perhaps he was confident that nobody would take the pains to persuade him of error; this was however, done by Dr.Clausen, of Dorpat, who found 250 decimals and Mr. Shanks,of Durham,315. This stirred Dr. Rutherford up and he, in his turn, tried to find errors, but he found the figure all correct; and he extended them to 350 decimals. Mr Shanks appears to have become jealous, and carried them to
527 decimals. Mr. Rutherford, wishing again to ascertain if 0.7 decimals. Mr. Rutherford, wishing again to ascertain i
they were correct, found them so to 411 decimals, and then they were correct, found them so to 411 decimals, and then
gave it up. Mr. Shants did not give it up, but went again to calculating, till he had obtained 607 decimals, and he pub lished the result of his calculations in the "Contributions to Mathematics," London, 1653

There we find the curious, famous; and, at the same time useless decimal fraction of 607 decimal places, representing he relation of the diameter and circumference of a circle so near to the truth, that the difference, with the absolute ratio, is smaller than the strongest imagination possibly can con ceive. We call it also useless, as, for the most delicate calcu lations, 10 or 12 decimal figures are amply sufficient.
Never has any continuous fraction been carried so far. Fo instance, no body ever had, till the present day, the patience to calculate $\sqrt{ } 2$ or $\sqrt{ } 3$, even to 100 decimal figures; we must herefore, conclude that the relation between the diameter and rcumference of a circle is numerically better known, at pre nt, than many other quantities which are daily use
We give here the beginning of this fraction for curiosity's
ake: Diameter $=1$; circumference is
$3 \cdot 14159$ 26535` $89793 \quad 23846 \quad 2643383279502884197169399$ $37510+\ldots$, etc., 507 more decimal figures. This decima raction is not and cannot be repeating or periodical, bu changes the order of its figures infinitely.
P. H. Vander Weyde, M.D.

New York, city.

Air Bubbles in Ice.

Messrs. Editors:-In the Scientific American of Nov 25 th , I see the theory of C. D. Sutton, on the specific gravity of ice, which is lessened, as he says, by the retention of air bubblesin its substance. For at least twenty years I mainained the same theory with considerable energy and then rom force of experiments, gave it up and sought other rea-
ons for the phenomenon. It is now a good season of the sons for the phenomenon. It is now a good season of the year for him or others to try that kind of experiments. Let 32° Fah. and then stir the mixture well, and if it or any part of it sink, it will strengthen his theory, and if it all should float he must look for other reasons. My experience has been that it all swims, and I gave up attributing the low specific gravity of ice to the air contained in it.
The Creator so in best wisdom ordered that the arrange ments of the particles of water under congelation, should so stand apart as to cause ice invariably to float, so that rivers night continue, during long freezes, to vent their waters, and not gorge up, overflow, and destroy all the property along their banks, which would ineritably be the case if ice sank to the bottom as formed. Ice in a muddy running stream, will in a few days of warm weather, sink to the bottom by reason of the earth attached to it. I have ridden scores of miles on Lake Erie, when the ice was eighteen inches thick. At the distance of
five or six miles apart, I found cracks in the ice running from the shore square off into the lake. These cracks, if I remem.
ber right, were about the width of one foot of shrinkage, for ber right, were about the width of one foot of shrinkage, for
each mile of unbroken distance! I know that I had to course along these cracks until I came to a bend, or crook that threw the crack up and down the lake, where I could get across This was proof to me that ice, like other solids, contracts after ongelation is finishe

Jomi S. Williams. Cincinnati, Ohio.

Steam on Canals.

Messrs. Editors :-What can you tell us about steam on anals, about boats constructed for cheap unloading of which ou have one running in New York harbor, etc.? How do the English canals afford to pay dividends arith 50 -tun boats towed by steam, etc.? Can the expense of a skilled engineer be saved by adopting Loper's or other caloric engines for canal barges? In short. won't you wake upon the sullject of mod ernizing canals and their motive power, by towage either by tug or locomotive, but not by submerged wires, which don answer?
Philadelphia, Pa.
[We have published a number of articles on this subject which may be found in previous numbers of the Scientific American. We have no confidence in the use of hot air en gines for towing purposes. The conditions of canal naviga tion in England and in this country are so different that no conclusion based on the facts of either would be applicable to the other.-EDs

Chrome Iron for Lapidaries, Wheels.

Messrs Editors :-I see the new alloy of iron and chrom ium mentioned in your admirable paper, and I would ask of some of your valued correspondents, who I hope will favor me with a speedy reply, whether a lapidary's slitting wheel for aspers, agates, and the like, could not be made from it? It cut glass as well as the diamond, and I think might possibly tak the place of the soft iron wheel fed with diamond dust, which is so extravagantly dear and so often shamefully adulterated I think a wheel of this kind would answer for all the softe tones and pebbles, and prove a great boon especially to am ateurs. Can auy one tell me what geruine diamond powde can be bought for in America

Medicus.

Ensworth, Hants, England.

MEdicus.

The Effect of Glaciers on the American Continent

Proffessor Agassiz said some interesting things concernin

 is pet glacial theory at the Amherst agricultural meeting, ecently. He declared that all the materials on which agr ultural processes depend are composed rocks, not so much ocks that underlie the soil, but those on the surface an rought from considerable distances and ground to powder by the rasp of the glacier. Ice, all over the continent, is the agen hat has ground out more soil than all other agencies together The penetration of water into rocks, frost, running water, and baking suns have done something, but the glacier more. In a former age the whole United States was covered with ice several thousand feet thick, and this ice, moving from north several thousand feet thick, and this ice, moying from northto south by the attraction of tropical warmth, or pressing to south by the attraction of tropical warmth, or pressing
weight of ice and snow behind, ground the rocks over which weight of ice and snow behind, ground the rocks over which
it passed into the paste we call the soil. These masses of ice it passed into the paste we call the soil. These masses of ice
can be tracked as surely as game is tracked by the hunter can be tracked as surely as game is tracked by the hunter
He had made a study of them in this country as far South as He had made a study of them in this country as far South as
Alabama, but had observed the same phencmenon particularly Alabama, but had observed the same phencmenon particularly in Italy, where, among the Alps, glaciers are now in progres The stones and rocks ground and polished by the glaciers can easily be distinguished from those scratched by running water The angular boulders found in meadows and the terraces on ur rivers not now reached by water, can be accounted for only in this way. He urged a new survey of the surface geology of the State, as a help to understanding its constituent elements, and paid a high tribute to the memory of the late President Hitchcock

Adulterated Liquors.

The New York World has been doing the country a service by some in vestigations into the quality of liquors sold at the different bars in this city. A large number of eamples of brandy sold at from thirty to fifty cents a glass, and of whisky sold at from twenty to thirty cents per glass, were examined and found to be genuine in only two instances. If such be the case with liquors sqld at the best places, what must be the character of the fluids retailed at the low grog shops where whisky can be obtained for from five to ten cents a glass. In this connection it may be remarked that some specimens of brandy pronounced by experts under oath in a recent revenue case to be genuine and worth twelve dollars a gallon in gold, were afterward found to have been manufactured in Brooklyn, and to contain not one particle of genuine liquor. How shall the sale of these poisons be stopped? By each and all refusing touch, taste, or handle the filthy compounds.
The practice of using ardent spirits is exerting a very malign influence upon all classesin this country, and although we not believe that mechanics as a class are more addicted to the practice than others, still a word of warning will not be out of place to them at this time. The waste of money, time, and worst of all, the ruin of mental and moral power which follows a career of dissipation, is sad enough and has been repeatedly and forcibly placed before every person in the civilwe once again appeal to restore what is lost in this way and we once again appeal to the noble army of mechanics in America to join in the suppression of the practice. Mechanics will you do it? Any one of you can commence the work in the establishment to which you belong, and we shall be most happy to announce in our columns the success you meet with in the good work if communicated to us.

