roads and streets, can form no idea of its loveliness a hundred years ago, when Johnny Macadam was a junior clerk.
Tive years after his arrival here, the revolutionary war broke out, and he was compelled to side for the king or the colonies. Being but nineteen years of age at the time, and of Scottish birth (there is a great deal of Tory blood in Scottish veins), he espoused the cause of George the Third, along with his uncle William, and a majority of the wealthier merchants of the city. In $1 \% \%$, when he was still but twenty years old, General Washington was compelled to abandon New York, which, for the next seven years was in the hands of the British. After a reat for the por of Now Yok, which gave him a perce agent for the port of Noh lork, which gave him a percentage upou the prizes brought in by British privatecers and men-of-
war. His percentage was probably pretty liberal, for he is reported to have gained a considerable fortunc from his office.
Far indeed was it from the thoughts of the New York loyalists that the time would ever come when it would be beyond the power of their king to protect his faithful subjects in Manhattan. And yet that time came. In 1783, John 3Jucudam, then twenty-seven years of age, with all the other Tories of note, was obliged to leave New York, and abandon so much of their property as they could not carry off.
On reaching his native Scotland, however, Macadam was xich enough to buy an estate in the county of Ayr, and that estate was large enough to make him an important man in of the public roals, and Depaty Lord Lieutenant-offices which are never bestowed in Great Britain excopt upon persons of wealth and social importance. It was while he held the office of Ayrshire road trustee that he began seriously to study the salject of road making. At that time roads ware universally bad, excopt whore Nature herself had made them good. tended by two men, and drawn by cight horses, in about six

Dr. Jrankin, writing in 1751, speaks of traveling sevent miles a day in England, by a post-chaise, as a most extraordinary achievement-killing to man and beast. Much of the soil of England and Scotland is a deep, rich clay, which makes is particularly well adapted to the system of Macadam.
What it was which suggested to him the simple expedien of covcring the soft miry roads with broken stones, averaging six ounces each in weight, has not been recorded. We only he held importan under the Crown which he held important appointments under the Crown, which made it his duty to superintend the transporiation of supplies
Ha then renswed the study of reads, and pursued it witl all the unflagging perseverance of a thorough Scotclman At his own expenze, he traveled thirty thousand miles for the observation of roads, which occupied him more than five years and cost him more than five thoufand pounds sterling. I pre sume his idea was entirely original; for we cannot find any trace of a macadamized road previous to his day. The only notion which existed, previous to his time, of making a perma nent road, was to pave the whole surface-with pebbles, blocks, or siabs of st
It was not until 1811, when he was fifty five years of age, that Macadam made his celebrated report to the House of Com mons, in which he deseribed the condition of the roads of Grea Britain, and gave an outline of his system for repairing them. In 1815, a district was assigned him for an experiment. Need I say that he met with nothing but opposition, not only from every one connected with the old road system, but even from the farmers through whose lands the first macadamized road
was to be made! Such was the prejudice against his plan that he could not get the old road-makers to execute his or ders, and he was obliged to get his three sons to come and as sist him in superintending the details.
But the tide soon turned. A good macadamized road is an irresistible argument; and there soon arose a wage for malsing such roads, as furious as the former prejudice against them Four years after he began operations, there wore seven hundred miles of macadamized road in Great Britain ; and, before the death of the inventor, out of the twenty-five thousand six handred miles of high roads in England, there were not more, it is said, than two hundred and fifty miles not macadamized.
John Macadam was a strangely disinterested man. He not only refused to receive any reward for his services, including an offered knighthood, but he would not take a contract to make or repair a road, and he declined some pressing and liberal ers to take charge of the foreign countries
He was twice married; first, during his residence in New York, to a Long Island lady ; and again, in his seventy-first year, to another American lady, Miss de Lancey, of New York, a member of the family which has given its name to one of our streets. He died in 1836, aged cighty years.
I have spoken above of the excellent roads in the Central Park of New York, as macadamized. I should, perhaps, have styled them Telfordized, for it was Thomas Telford, a famous English engincer, cotemporary with Macadam, who invented the particular plan upon which those reads are built. Macadam laid his broken stones upon the naked soil; but it was Thomas Telford whoimproved upon Macadam's idea by laying large, rough, flat stones upon the soil, placing upon them the broken stones of Macadam, and covering the surface with frag. ments of the size of a boy's marble.-New Fork Ledger.

The Fert Fiontgemery Explosion.

The New York Sun states that the recent terrible explosion in a mine near Fort Montgomery, on the Hudson river, was occasioned by nitro-glycerin in its new form of "dynamite." Some of it had been sent to the mine fortrial. Having a three inch hole, four feet deep, to fire, the forman pounded the com-
pound under a hammer to the consistency of fine powder, while the boss of the gang scraped it from the plank on which
it was pulverized, and put about seven pounds in his can it was pulverized, and put about seven pounds in his can
which had a thimble stopper, when the gang of three men left for the shaft. While on their way, the can was opened by the man who had it in charge.to exhibit the powdicr to others, and \boldsymbol{a} s there were lighted pipes in the company, a spark came in contact, when the explosion took place. It is quite evident that this terrible substance has been somewhattamed, but not yet sufficiently so as to justify the neglect of ordinary precau tion in handling it.

Manufacture of silk in California.

Since writing the article entitled "Why not Grow our own Silk ?" we find the following additional particulars in a Cali fornia exchange, yelative to the silk culture in that State "Mulberry trecs are here in great abundance, the 'Natural Wealth of California giving $4,000,600$ of trees for $186^{\prime 7}$, and Ne may say at least $5,000,000$ for next year's use. The pro iluction of eggs has kept pace with the means to supply foo for the worms, for it has been stimulated by a full demand from abroad. We raise two crops of cocoons in a season, as
the rule, but three crops are not unfrequent, though the third the rule, bat three crops are not unfrequent, the tree, by ove plucking of the leaves, and it should be discouraged. W can expect but one crop of eggs in a season. The socond is left to us for home use. The cocoon, which the miller cuts his way through, suffers a loss of value by the continuity of tho thread being broken. But it makes good silk for groods not requiring long staple. Of this spun silk, we are accumulat ing stock. Mr. Englander, who made so creditable a display of silk fringes at the Fair, says it can be worked up here by our present facilitics. Beside this stock, the sound cocoons leint for silk, this year, may be rated at one million, and so rapid is the reproduction, that this would make ten millions for 1869. To reel, weave, and complete the fabric would give stady employment to one thousand hands, beside the great umber that would find work gathering leaves, attending and feeding the woms. If hon we consider that in 1870 the rind increase of silkworms, all halthy, will give us five to ten times more cocoons than 1869, we are sensible there is no time to be lost in going. into the making of silks. In one season he simple unwinding of cocoons may be taught very expertiy to any number of girls. Making silk se wing tiread is as simple s making other thread. Dyeing silk, though it has seme peculiarities, can be done by workmen skilled in other fine col oring, and, at least, the artesian waters of our San Bruno ange have the requisite freedom from impurity. Can we veave silk? will not be questioned by any one who has scen he silk cloth actually and continuousiy made during four eeks at the Fair by Messrs. Jeseph and Isidor Nermonn hose perseverance is worthy of the hiohest reward; and we whose perseverance is worthy of the highest reward; and we ublic acknowledgment. Mr. Neumann bas a number of new ooms of the best construction ready for use, and he has in hat can was hat can be desired. Though silk eggs bring a price that empts us to export them just now, the establishment of man ufactories would show that it would pay us better to lose th surplus eggs and save the cocoons for thread and cloth. No withstanding the price of labor, we can make our own silk or 25 per cent less than the importer can put the foreign fab c on his shelves. Our land is cheaper, our trees are mor rolific of leaves, our worms are not infected with disease that kills half of them and injures the silk-making perfection of the rest ; our trees are now, and the quality of the leaves for food is untainted by the effects of Iong-continued plucking. Our climate alone gives advantages in the superior weight of ur cocoons, and in the perfection of the silk they yield, to ounterbalance the greater wages of labor, if we had not the ther advantages enumerated; and no branch of industry af fords so great a proportion of light and pleasant work for the employment of wowen and children."

Carbonic Acial in the Acmosiblave

The German chemist Pettenkofer, several years ago, in roduced a new and more accurate method for the quantita ive determination of the amount of carbonic aoid in the at mophere. By means of this method, Thorpe has obtained he following result: On the land the amount of carbonic cid in the atmosphere varies from $2 \frac{1}{2}$ to 8 volumes for 10,00 volumes of air ; the mean for Europe is 4 volumes in 10,000 of found 8.8 volumes du, South America, Levy had 4.6 during th ry season. On the the rariations are much less, and the mount of carbonic acid is also lers; the mean of all dete minations of sea air being only 2 , while land air gave 4 vol umes in 10,000 of air.
To show the difference between the free atmospheric air and he air in our school rooms and other crowded places, we collect the following from results, most of which were obtained by means of Pettenkofer's method; all the figures given as he amount of carbonic acid express the number of volumes carbonic acid in 10,000 volumes of the air analyzed:
Free atmospheric air, 4. Pettenkofer's study, 3,000 cubic feet hisacity-aftcr having been there for four hours, 5 23: after laboratory had been 4600 cubic for a little while, 9 . ervals during a lecture (about 3,000 persons present), in
P. m., 11 ; same lecture, 6 1-2 r. M., 23; same lecture
 ten years old ; temperature of room, 66 deg. Falh., at the clos of the instruction, $72-$ or aboat eighteen times as much as in
the free air! Sleeping rooms, for soldiers in Munich-one room, 10,147 culbic fect capacity, 19 soldiers-in the morning. ; another room-capacity 10,255 cubic feet, 10 soldiers-in feet above the stage, 23 ; 34 feet aloove the stage, 32 . A court
 or 100 times as mach as the amin inhaled. From all detminations yet made, it may be concluded that 10 volmmes of carbonic acid for 10,000 of air, are quite comforta ble; when this quantity is not exceeded, the ventilation is good, no unpleasant cdors are observed; but that rooms containing much more than 10 of carbonic acid in 10,000 of air (or one in a thousand) are not fit for a prolonged sojourn of people.-Prof. Gustavus Hinriche.

OPIWIORS OF THE PRESS.

We are indebted to our cotemporaries formany very fatterng notices, only a few of which we can copy. The Chitg Itwi, Wy Hit says:
readers are well aware of the value which we attach to the Scientific American, from the frequency with which we
quote its articles and refer to its conclusions. The excellence hus indorsed by us, in common with the entire farap licity and intelligibleness of its style. It covers the whol field of practical science, but without pretension, chaside and dreary pedantry. It is emphaticaily a journal of to-dayan "abstract and brief chronicle"-brief but comprehensive field in modern invention and industry. The last number et he XIXth volume comes to hand witl a finely engraved e resentative title page, an earnest of the realization of the $7 \boldsymbol{i}$ eral promises of the prospectus of volume XY.
the index of subjects discussed and illustrated in the :
just closing, it is hard to sce where improvements can be
but we take the word of the liberal and enlightened
ers, that noticcable improvements will be made and wait ris, that noticcable improvements will be made, and wait claThe Ambaszador, published in this city,
The Ambaszador, published in this city,
The Scientire American has a place
The Scienturic Americian has a place, at to iself, in the ecoud. It is a just compliment to American thought and en
 such a journal. !., specialties are practical information, art, science, meebanics, chemistry, and manufactures. Dery pat-
ent invention is recorded ; many of them described; many il ent invention is recorded; many of them described; many in
 Sclentific Amemcan. For
prepared papers o: all sorts of sience and art.
The Iowa Instrucior, \therefore oducational organ par exectlence of owa, thus speaks of the ve he of the information obtrinable rom the perusal of our colur?s to the proper qualification of cachers for their arduous and responsible lakers: The Scientupic Americate is mauestionably the journal the people of this country in that siv, when which at genses most prominently doveloped. If we were at all pili
cally inclined, we should, in giving a description Sam's cranium, pronounce kis bump of mechanical contrivan of a few numbers of the scientimic tonishing to notice that few persons outside of arts take an interest in these matters. Surely it is as impor ant to understand the peculiar :hans, and ingenious procosses, which, as articles which civilized society demand, as il in to be able such articles which civilized socicty demand, as in .s to be atio ing to nouns uilu wils, to indicato their mutal relations.
 indeed, we know that in other countries such knowledge is conidered essontial to education. If, therefore, any teacher has prodilection for such rawis, wo trast he will cultivate this aculty of his mind and give (buresult of his readinges, study, children honor labor and love those who have benefited man kind by their mechanical genius.

Trove Abomit the suer canal.

A captain ei an Englishmerchant vessel who has recently een making a trip through the Suez Canal, writes as follows the London Times:
The canal, as designed, is about a hundred miles long. Of thaif is sufficiently advanced for the sea water lwan bitty miles-that is, into the middele of the Isthmus. It is find to its fall brealth, which is a hundred yards, or the
width of a consider. ble river, but not to the intended depth of wenty-six feet. The romaining fifty miles not yet penetrated by the sea water, are in various states of progress: : parts are
excavated, parts are under water, parts will have to be laid under water, which is to be supplied from a great lake not yet der water, which is to be supplied from a great lake not yet
filled, while a good many miles have to wait for large blasting operations. To English ears it must sound promising that a good deal of clay has to be cut through ; for nothing can be
dcalt with so successfully in this country as that material. The dealt with so successfully in this country as that material. The
completion of the southern balf of the canal would look like a completion of the southern half of the canal would look like a
very long work but for the fact of the inmense gubsidiary very long work but for the fact of the inmense subsidiary
works being completod and a vast mass of cyituma the spot. The service canal from the Nile 1, i! mid pin: of the salt water canal, and branching thence to
is an immense work, not less than a huadred and fifty fitic: ong, and in fall use for the supply or fresth water tion and for otherwise assisting the work to be done. The port at the Mediterranean end is an immense work, atros avalasuch as engineers are familimer with. Torty enornous and cost y dredging machines are i!: work on difierent narts of the canal -chiefly, we whth whe northern half-discharging mountains of mud, sand wul clay over the banks or into barges.
The rate of ciceline is put at $£ 200,000$ and a half nibions a year. Our thimam calculates that a driving wind, after blowing a month me il ir will send into the canal, when finished, inve hundred tuns af sand a a single dredging machine would ins able to kecp down at a banks of the canal, exposed ass they will be to to wash of stcamers, and to a surface often agitated by the serious matter, but one which dons not enter into th
question. Upon the whole. it does seem a moral the at, least in two or thres years-for one year seems out the question-this great undertaking, worthy of a heroic age,
will be brought to what we may fairly call an actual complewion. In the course of the year 1871 , we may probably see the
sea water of one ocean flowing into the other.

Improved Automatic Horse Hay Rake
That the department of agriculture is highly estimated by inventors, at least as affording a field for the exercise of their tal- ents, is sufficiently proved by the frequently offered improvements in implements of husbandry, especially those designed to save labor and time. Among these none have received more frequent attention than those relating to the cut ting and gathering of the hay crop, and none have been of greater utility. To be sure, objections to their use and dificul ties in their management have been improvements are rapidly bringing this implement to perfection. The engraving presents a perspective view of a horse hay rake which offers some sents a perspective view of a horse hay rake mand on other machines.
The wheels, two in number, are rigidly secured to their respective axles, the outer bearings of whichare in a box secured to the under side of the main frame of the machine and the inner portion supported by similar boxes secured to cross bars of the frame. The inner ends of the two axles support a gear or pinion turning freely, the outer faces, or sides of which are formed into ratchets with which sliding ratchets on the respective axlesengage, these latter allowed to slide on the axles, but held to the ratchet sides
of the pinion by means of spiral of the pinion by means of spiral springs, and connected to the axles by pins traversing slots in
the axle, or by forming the axle the axle, or by forming the axle
ends and the holes in the clutches ends and the holes in the clutches square. This gives independent action to each wheel in backing and unites the two wheels, when the vehicle moves forward, so that the two axles act as one. A toothedrack bar, connecting at one end with a lever having a handle at the top, and at the other end with a foot lever in front of the driver's seat, serves to raise by means of. the pinion on the main shaft or combined axle, the teeth of the rake, which pass through slots in a hinged bar at through slots in a the rear of the machine. The separate teeth are attached to thimbles that turn freely an independently on the rake head shaft, so as to enable them to
reach depressions in the surface of the field. When driven reach depressions in the surface of the field. When driven
on the road the rake teeth are held from the ground by the on the road the rake teeth are held from the ground by the
lever at the right hand of the driver's seat. To Tischarge a rake-full of hay the driver presses upon the foot lever, bring ing the rack in contact with the pinion that raises the rake and altows it to fall soon as the rack section has passed the circumference of the pinion. The operation of the machine and its advantages may be comprehended by an examination of the engraving in connection with this description. It will be seen that the operation of the rake is at all times unde the control of the driver, and that except when he wishes to instantly elevate the rake teeth by means of the hand lever both hands will be free to guide the horse.
Patented June 16, 1868, through the Scientific American Patent Agency, by Jonathan Hunsberger, who may be ad dressed for the sale of the entire right, ôr for stateand count rights, at Skippackville, Montgomery Co., Pa.

Improved Engine and Signal Oils for Railroads
Throughout the country, says Pease's Oil Circular, there is a better demand for first-class oils. In many cases what is gained in price of "cheap oils is lost ten times over in the repair ac count. There is an enormous loss of power in our railroad by the use of cheap oils, and we include in this those oils easily affected by heat. The experiments of Metz and Morin in 1831, and others up to the present date establish the fact that the amount of friction is found to be dependent rathe upon the nature of the unguents than upon the surface of con tact, and the nature of the oils must be measured by the pres sure or weight tending to force the surfaces together.

There is no question but that there is a loss of 30 to 56 pe cent of power on most of the roads in this country by not look ing into and understanding the laws of friction, and the effect of heat and pressure upon the oils used. They must be based upon scientific principles, and adapted to the uses intended, otherwise they fail to accomplish any satisfatory results, and great loss of power and destruction of machinery is the result Friction, immediate or long continued has the same effect upon oils; in one case it is immediate, as in a steam cylinder in the other it is slow and long continued, as on the slides and smaller bearings. Oils must be made to form a perfect separation, otherwise the friction is increased and is dependent upon its greater or less viscosity, whose effect is proportional to the extent of the surface between which it interposed
Those roads that have looked into this important matter ranking the third or fourth in expenses, are now saving tens of thousands of dollars every year

There is no occas on for a hot journal on any road under or dinary circumstances and using proper oils. There is no occasion for cutting of journals and destruction of valve seats, if a
little thought would only be given to the subject of pressure little thought would only be given to the subject of pressure and friction. The wonderful chemical effect of some of the
poor cheap oils upon the iron surfaces and journals of some of
the roads is entirely overlooked. Hasit ever occurred to rail road men that the use of oils of strong acid reaction has a ten dency to weaken the strength of the boiler itself, as they have the power to cut and destroy the bolts of the steam chest and cylinder?

The inventor of the Velocipede.-The last number of tho Moniteur de la Photographie of Paris, (1st Nov., 1868) ha an interesting series of letters upon the invention of the velocipede, which, it appears, would be due to Niepce, for whom is claimed also the invention of photography. The letters in question are written from Claude Niepce to his brother Nice phore Niepce, and are dated from Hammersmith, near London Nov. and Dec., 1818, and August, 1819. We do not glea from them that the first idea of a velocipede originated with

HUNSBERGER'S PATENT SELF-DISCHARGING HORSE RAKE.

A Newly-Discovered Property of Gun-cotton. It has been found that the explosive force of gun-cotton may, like that of nitro-glycerin, be developed by the exposure of the substance to the sudden concussion produced by a detonation ; and that if exploded by that agency, the suddemness and consequent violence of its action greatly exceed that of its explosion by means of a highly heated body or flame. Thisis most important discovery, and one which invests gun-cotton with totally new and valuable characteristics; for it follows, as recent experiments havefully demonstrated, that gun-cotton, even when freely exposed to air, may be made to explode with destructive violence, apparently not inferior to that of ni tro-glycerin, simply by employing for its explosion a fuse to which is attached a small detonating charge. Some remaris ble results have been already obtained with this new mofe of exploding gun-cotton. Large blocks of granite and other very hard rock, and iron plates of some hickness, have been shattered by exploding small charges of guncotton, which simply rested upon their upper surfaces-an effect which will be sufficientlysurprising to those who have hitherto believed, as every one has beieved, that unconfined gun-cotton was scarcely to be considered as explosive at all, that it puffed harmlessly away into the air, not exerting sufficient force upon the body on which it mightu be rest ing to depress a nicely balanced pair of scales, supposing the harge to be fire upon one yat the scale. Furter, long charges or trains of gun-cotton, against stockades of grea strength, and wholly unconfined have been exploded by means of detonating fuzes placed in the centre or at one end of the train, and produced uniformly destruc tive effects throughout their en tire length, the resuits correspond ing to those produced by eigh or ten times the amount of gun most favorable conditions. Min ing and quarrying operations with ng and quarrying operations with Nicephore Niepce, but simply that he was occupied with some manner have furnished results quite equal to those obtained experiments concerning the improvement of this kind of locomotive. If no mention can be found of a velocipede prior to

KASSON'S CONCAVO-CONVEX AUGER AND BIT.
The front or working faces of this auger bit are concave and the rear faces are convex-giving great strength to the twis and removing the chips with out undue friction against the edges of the hole, thus pre venting clogging and gum ming. The cutting lip is merely a continuation of the twist, so that if the auge should be broken at any por tion of its length another screw and other cutting edges can be formed by cutting the twist at a plane nearly a right angles with the axis of the auger. The convexity of the cross section of the twist, increasing toward the center rib, making a very stiff tool This auger, or bit is adaptea to all kinds of wood hard soft, and is specially adapted for boring hubs pumps for boring hubs, pumps, etc., and to all descriptions of wood boring mâchinery. Having less friction than the ordina ry style of auger it is less liable to become heated, and
it relieves itself perfectly of the chips, without clogging and does not require to be withorawn for clearance.
Patented through the Sci entific American Patent Agency, January 15, 1867 (reissue dated April 9, 1867), by A. C. Kasson of Milwaukee, Wis. assignor to himself and N C. Gridley of St. Louis, Mo. Man ufactured and for sale by the Humphreysville Manufactur ing Company ; J. M. Wat-
kins, agent, who may be adkins, agen
ew York.

dressed at No. 5 Gold street, New York.

A Curious fact in connection with the practical working o the Atlantic Cable Telegraph is that messages sent from Lon don to-day arrive in New York yesterday.
with nitro-glycerin, and have proved conclusively, that if gun cotton is exploded by detonation, it is unnecessary to confine the charge in the blast hole by the process of hard tamping, as the explosion of the entire charge takes place too suddenly for its effects to be appreciably diminished by the line of escape presented by the blast hole.
Thus the most dangerous of all operations connected with mining may be dispensed with when gun-cotton fired by the new system is employed. It will readily be observed that this discovery, which we believe is due to Mr. Brown of the English War Office Chemical Establishment, is likely to be attended with the most important results. Not mere reater strength of gun-cotton exploded in this way simpl gnition, but it now operates under conditions which were suf ficient under the old system practically to deprive gun-cotton of its.power. It has been said, and said justly, that if you want gun-cotton to exert itself you must coax it into the belief hat it hasa great deal to do. You must give it bonds to break and physical obstacles to overcome, with no outlet or possibili ty of escape. But now gun-cotton will exert itself, and put orth more than what was believed to be its full strength whether to see any work to do or not. It will behave as less whether to see any work to do or not. It will behave as less
coy explosives have behaved before it-always with this dif erence, that it is half a dozen times as powerful as any of its ivals, with the exception of nitro-glycerin, to which in mer power even it is not inferior.' This discovery, therefore, can hardly fail to give a considerable impetus to gun-cotton, an o lead to its universal adoption fur mining purposes, as soon as its new properties become generally known. In connection with possible military applications the discovery is invaluable There can no longer be any doubt what agent should be em ployed for the breaching of stockades and the like; and the absence of all necessity for the use of strong confining envel opes will have an important bearing on the employment of un-cotton for torpedoes and all submarine explosive opera tions, beside greatly simplifying mining and breaching oper ations in the field. We have, in fact, discovered several new dvantages to add to those which already had sufficed to re commend gun-cotton as an explosive agent in preference to all thers. The conditions that are fulfilled by a detonating fuse in determining the violent explosion of gun-cotton, under cir umstances which hitherto have been altogether unfavorabl to such a result, have been made the subject of investigation by Mr. Abel, and we hope at some future time to notice the onclusions at which he has arrived, as they appear to have very important gencral bearing upon the conditions which reg ulate the development of explosive force, not merely from gun cotton and nitro-gly cerin, but from explosive compounds and mixtures generally.
A microscopic club has been organized in Chicago. Two well-known citizens express a willingness to give liberally to ward purchasing iustruments and scientific works upon th subject of microscopic instruments.

