sand. The water passes in through a pipe from the upper step. By the action of the water the fish are hatched. It sometimes takes one hundred and sixty days to hatch them. Sal-
mon in their first form are ungainly, having depending from mon in their first form are ungainly, having depending from
them a little bag. This after six weeks passes away, being them a little bag. This after six weeks passes away, being
used by the fish as its nutriment. Having grown quite lively they are removed to ponds, care being taken not to allow fish of different ages to live together, for they are cannibals and devour thoss younger than themselves. After a time they are allowe to go down to the sea, and it is noticeable that sal ing allowance, of course for those that are destroyed. He had made an estimate of the value of artificial cultivation of trout and salmon, from observations made at tanks on the Tay and in Vermont. Ova sold $\$ 8$ per 1,000. In pend No. 1 there wer 10,000 fish fed thaily by three quarts of curds. In pond No. 2 there were 8,000 fish of the second year fed upon six quarts o curds daily. In the third there are 7,000 fish fed upon twelve quarts of curds. The total return which these fish produced, was $\$ 4,350$, and the net profit $\$ 3,644$. From this he inferre that the cultivation of fish was well worthy of adoption
Mr. Waterhouse Hawkins, in a response to a request from Professor Joy, added some particulars to what Captain Gilmor had stated. He wished that thet gentleman had said somo thing about the cultivation of the delicious fish called char. It was conducted in the same manner as that of trout aird sal mon. Some two years ago, while acting as the honorary sec retary of the Acclimatization Society, in the absence of Mr Buckland, he undertook to propagate some char. He received the ova from Windermere. They were in-some $30,000-\mathrm{ad}$ mirable condition. He treated them as Mr. Gilmore had ou ready described, but the gravel was boiled to remove all it pregitants previous to being used in the troughs. The im pregnated ova were removed to the ponds just before the pel detailed his cfforts to send some ova to the Duke of Argyll, detailed his cfrorts to sond some ova to the Duke of Argyl, and stronglyimpressed on the lyceum the value of pisciculture by means of the blackboard and one of his inimitable free hand sketchis, the difference between the salmon, trout, and char.

Mr Gilmore at the suggestion of Mr. Hawkins, detailed the circumstances which led to his discovery of the char in this country. He had caught some magnifecnt fish in this country of striking appearance and luscious taste.

No other matter matter coming before the lyceum it ad journed.

Mr . Carter, alderman and coal merchant, is the liberal col league of Mr. Baines in Lreds. The European Mail says he is a remarkable man and perhaps may astonish the House. He began life as a worker in a colliery, and by his own unaid ed ability has risen to be a merchant, alderman, and member of parliament. He has had but little school education, but from assiduously reading bluebooks he has got to be fairly in structed in politics. He is a fluent speaker, and is never at a loss for a word. He speaks with the real Yorkshire burr ; has not an H in his vocabulary ; and if any preceding speaker say anything with which he (Mr. Carter) cannot agree, he says " am of the contrairy opinion." His manner is energetic, even forcible; and takes with the Leeds clothweavers. He is in
politics a radical of the radicals-bold, defiant; denouncing the politics a radical of the radicals-bold, defiant; denouncing the
church, denouncing the state, the army, the navy-denouncing, indced, everything. He is president of the Leeds branch of indced, everything. He is president of the Leeds branch of
the Reform League, and is said to be the only member of that the Reform League, and is said to be the only
illustrious association returned to parliament.
Minitary Cart.
This is a cart which was designed by Mr. W. J. Addis, exec ative engineer to the Local Fund Works at Bombay, to meet the exigencies of the Abyssinian War,omprising many essential points, and differs from any existing construction. The wheels with wooden fellies, and tired in the usual manner. By this arrangement the shrinkage is reduced to a minimum, so that the wheels are better adapted for hot climates. Among other advantages, it is calculated to more durable than the ordinary wooden wheel, and runs much easier. The nave is flusl with the spoke and tire, thereby lessening the risk of collisions The axles are two in number, nine inches in length, and work
in two plummer blocks fixed in the frames of the cart, and and are easily arranged in case of damage. Another palpable advantage is that the pole is so arranged as to admit of the cart being drawn back without the necessity of turning, while it can also be wholly withdrawn and passed through the cen ter of the box in the body of the cart, which contains a tent, and it can also be used as a tent pole.

HIOt to Preserve Sonium Uutarnished. Many teachers, particularly in our high schools, have sodi um preserved in the usual way, under naphtha.. But the beau-
tiful metallic luster is not seen under these circumstances; and if the metal is taken out and a fresh cut made, this only shows the luster for an instant. By the following artifice the metalic appearance of sodium may bo permanently exibibited
Take two test tubes, one a Iitle smaller than the ether, so a Take two test tubes, one a iittle smaller than the cther, so as to slip in to the laiter without leaving much space between the two glass walls, put some carefully cleaned sodium in the given a thin coating of beeswax to the upper part of this latter then gently heating the whole on a sand bath. The sodium will fuse, and by a gentle pressure, the inner tube was pressed down, so as to force the fused metal over a large surface be tween the two tubes, while the air is totally excluded by the
beeswax. I have kept sodium for more than six months in beeswax. I have kept sodium for more than six months in
this way, and it is now as bright and brilliant, as when first this way, and it is now as bright
put up.-Prof. Gustaous Hinrichs.

A correspondent from Syracuse, N. Y., sends us an account of an invention perfected in that city for mixing mortar, which is simply this: The lime is first slacked in a vat with water enough to make it to a paste, and allowed to retain its heat or about twenty-four hours-it is next run off into a second cylinder that has a large quantity of spikes on the inside. A it flows from the cylinder, it passes through a sieve of ten meshes to the inch, and every particle that is used has to go through these very fine holes no larger than a pins' head. From this machine it falls into a large vat, from which it is mixing machine, into which it flows in a continuous stream, and sand, previorsly sifted, is added at the rate of about eighty and sand, previo'sly sifted, is added at the rate of about eighty
bushels per hour. The mortar made in this way is said to be of a very superior quality

INFLUENCE OF THE OXIDES OF CHROMIUM AND TITANIM ON THE COMPOSITION OF PIG IRON

Within the last four years we have been frequently em ployed in chemical investigations of the altered characters of ome pig irons, which resulted apparently under the usual cir umstances in the reduction of uniform ore
In these cases the amount of carbon united with the iro had been diminished, without the introduction of other mat ter, in quantity sufficient to influence a change in this connec tion, and generally no variation in the composition of the or was known or suspected. We had analyzed the ores in some of the beds in former years and regarded them as well adapted o the production of pig iron of good quality ; but in pursuing the research we were convinced that the change in quality of ron could be traced to altered composition in the ore of parto the beds used for supplying the furnaces.
'The correctness of this view was confirmed by our analyses of many iron ores, in some of which we found the oxides of chromium or titanium, existing where they were not indicated and connected with the ore in beds which have been consid red as pure iron ores
Both the oxide of chromium and oxide of titanium, seem to act in the furnace or the crucible in a way to withdraw a por tion of the carbon, or prevent that true union of carbon with portion of the iron, which constitutes gray pig iron, without the metals of these oxides really alloying with the iron an thus indicating the cause of change. We have analyzed sam ples of pig iron where the alloys of chromium or titanium ex and in the pigs, and where the oxides accompanie the ores in the beds, but we were not prepared to find an influence exerted on the quality of the pig metal woithout the refractory metal omang a part of the composition.
The occurrence of oxide of manganese with iron ore is com mon, and titanium compounds are often found in both magnetic and brown iron ores, as insoluble substances, in small propor ons, and these compounds combine with and are removed by he fluxes without injury to the pig metal. These compound cinder, produced under varying conditions of glassy or stony character, and must be carefully distinguished from those w gard as more detrimental in their influence on the metal
In a number of analyses of iron ores we had found both oxid f chromium and oxide of titanium in a state rendering them in the in diluted acids, and in a condition to escape detection iron ores have been found to contain either oxide of chromium, or oxide of titanium in this soluble state. Among the sample rom contrguous beds, this diversity in composition made by he presence of some oxide of chromium or oxide of titanium xisted; and while the bulk of a bed of ore was pure, continua tions of the bed, or associated ore, yielded notable weights of xide of chromium or oxide of titanium in the differen samples.
The suggestion we would make to the iron master in view of these facts is, the possibility of the quality of the pig met als in anomalous cases being greatly influenced by the admix ture of some ore, containing the oxides of chromium or titan y the main bed cross by veins of by the ore is used. In other cases, where the iron master can gain ore is used. In other cases, where the iron master can gain
the great advantage arising from mixing ores, one of the kind the great advantage arising from mixing ores, one of the kind
We subjoin some results of analysesshowing the proportion of oxide of chromium to the metallic iron contained in the
orcs:

1st. Magnetic ore-iron, 49 ; oxide of chromium, $1 \cdot 40$. 2α Hematite ore-iron, $42 \cdot 47$; oxid e of chrominem, $1 \cdot 60$. ©d. Brown Massive ore-iron, $54 \cdot 32$; oxide of chromium, $1 \cdot 30$. 4 th. Same -iron, $46 \cdot 70$; oxide of chromium, $1 \cdot 04$.
More traces have been discovered in some cases, while in other instances a largel proportion of chromium formed an alloy with the iron produced from the ore
"ARE PAINTED LIGITTNING RODS ANY PROTECTION?" by joun h. patyerson.

We not believe that paint or rust totally destroys the conductiag power of a lightning rod ; only in proportion to the amount of impurities with which it is coated. There is, doubt less, a point beyond which a conductor will cease to be one pessess no more facilities fon it may be so great that it will than the building itself. It would all depend upon the ex tent of the charge, and whether there was any tin or zins tent of the charge, and whether there was any tin or zing
spouting in connection with it. The very best scientific authority says that iron has 12° of conducting power, tin 14°,
zinc $2 \epsilon^{\circ}$, and corper 92°. All admit that electricity will "oll low the best conductors only. If such is a fact it cannot bo reasonably supposed that if such spouting was in contact with a perfect iron rod, that a charge of electricity would follow the main conductor to the earth. Would it not rather leave the iron rod and pass over the spouting? It certainly would if the theory alluded to is correct. Whether or not the lightning rod was painted, it is natural to suppose that combustion would ensue. The explosion might not be very great, and no serious damage might be done, and no lives lest, yet that does not refute the principle. Every few days we read of the freaks of lightning, and upon buildings, too, protected by iron rods Why is this? Professor Douglass, of the University of Mich igan, in an elaborate paper upon this subject says, that the design of a lightning rod is to prevent a stroke of lightning by silently relieving the positive atmosphere of its overcharge. This idea looks very reasonable, for Dr. Franklin said that ex plosions only occurred when conductors could not discharge it as fast as they received it. Now if a conductor cannot dis charge the fluid there must be a cause for it. Either it is not charge the fluid there must be a cause for it. Either it is not large enough, is not perfectly applied, or it is coated with im-
purities. We know that an ordinary iron rod will conduct off purities. We know that an ordinary iron rod will conduct off
an ordinary stroke of lightning, for it has been seen; but an ordinary stroke of lightning, for it has been seen; but
when an explosion occurs it cannot be stated which of the when an explosion occurs it cannot be stated which of the
other two causes is the particular one unless the conductor is in direct contact with spouting of a superior conducting met al. Then the case is very clear. If it is in contact with such spouting, the idea that electricity follows the best conductor is correct. If the rod is insulated from both building and pouting, then the cause must be the impurities on the rod, be they paint or rust.
Lightning rods of a proper metal, copper, applied in a proper manner, are certainly a means of protection.
A recent writer quotes Professor Henry to prove that con ductors should be brought in contact with the spouting on a building. This principle is certainly true respecting copper but for the reasons given above, we hardly think it correct t xpect electricity to leave a good conductor (the zinc spouting) or a poor one (an ron lightning rod), and we do not believe that Professor Henry desires to be so understood.
There can be no doubt but what the conducting power of a ightning rod is affected in proportion as it is coated with im purities of any character. If electricity, in its passage to the arth, passed into the conductor, there might he some reaso o suppose that paint would not interfere with it ; but when it has been demonstrated by scientific investigation that it re ides only upon its exterior surface, we are not at a loss to un derstand why the surface of a lightning rod must be free rom such impurities. That electricity does not enter into onductor, we will refer to "Silliman's Natural Philosophy," page 540; "Olmsted's Philosophy," by Snell, page 327; and Nichol's Cyclopedia of Physical Science," article-Electri ity. In " Parker's Philosophy," page 280, we read : and paint destroys the conducting power of a lightning rod." We are aware that our ideas are at variance with one of the most distinguished scholars in the world-Professor Henrynd, of course, we not think of setting aside his authority but we have given them, and let them go for what they ar worth. In this connection we refer to a letter from Professo Henry, of the Smithsonian institute, in which he says
The paint with which lightning rods are usually covere onsists principally of carbon, and as this is, in itself, a goo conductor, it could hardly interfere with the conducting powe the rod. Beside this, though the electricity tends to pass at as a wire which fully conclucts a discharge from a battery, may be coated with non-eruducting varnish or sealing wax.
The office of a lightning rod is to protect a b ilding from discharge from the heavens. Asa general thing its effect upon distant cloud must be too small to silently discharge its ro that it may so reduce the intensity of the cloud as to prevent a discharge, when, without such reduction, a discharge would discharge,
take place.
JOHN MACADAM--INVENTOR OF MACADAMIZED ROAD by james parton.

Few persons are aware who ride over the excellent macad mized roads of the Central Park, that Mr. Macadam, the in entor of the roads which bear his name, was once a resident f New York, and probably often walked or rode over the fields and farms which then occupied the site of the park. Yet such was the fact. Though born and buried in Scotland, he lived for some years in New York ; and, possibly, the horrid condition of American roads before the revolutionary war, may have first impressed upon his mind the urgent necessity there was for better road system
John Loudon Macadam was born in 1706, in Ayr county Scotland, not far from the birthplace of Robert Burns. Fis family was ancient and highly respectable. When he was little more than an infant, one of his uncles, William Macadam, accompanied the British forces which came to America under Lord Loudoun, during the old French war, for the conquest of Canada. This William Macadam, it appears, had something o do with supplying the Britisı army with provisions; an when the war was over, instead of returning to Europe, he set tled in the city of New York, where he became a thriving merchant. When John Macadam was fourteen years of age, his father died, and the boy was sent to America to become a member of the family of his uncle William, who procured him place in the counting-house of a friend
This was in $17 \% 0$, when New York was a quaint old place half English, half Dutch, situated at the end of Manhattan Island ; the residue of which was verdant with woods and farms, and adorned with the villas and mansions ef the wealthier cit izens. People who are only acquainted with Manhattan Island now, when its beautiful groves are gone, its commanding bluffs dug away, its surface excavated and excoriated for rail
roads and streets, can form no idea of its loveliness a hundred years ago, when Johnny Macadam was a junior clerk.
Five years after his arrival here, the revolutionary war broke out, and he was compelled to side for the king or the colonies. Being but nineteen years of age at the time, and of Scottish birth (there is a great deal of Tory blood in Scottish veins), he espoused the cause of George the Third, along with his uncle William, and a majority of the wealthier merchants of the city. In $1 \% \%$, when he was still but twenty years old, General
Washington was compellod to abandon New York, which, for the next seven years was in the hands of the British. After a ront for the port of Now Yok, which gave him a percentage agent for the port of Noh fork, which gave him a percentage upon the prizes brought in by British privatecers and men-of
war. His percentage was probably pretty liberal, for he is re ported to have gained a considerable fortunc from his office
Far indeed was it from the thoughts of the New York loyalist that the time would ever come when it would be beyond the power of their king to protect his faithful subjects in Manhattan. And yet that time came. In 1783, John 3Jucudam, then twenty-seven years of age, with all the other Tories of note, was obliged to leave New York, and abandon so much of their property as they could not carry off.
On reaching his native Scotland, however, Macadam was xich enough to buy an estate in the county of Ayr, and that ostate was large enough to make him an important man in
the county. We find him soon a county magistrate, a trustee of the public roals, and Depaty Lord Lieutenant-offices which are never bestowed in Great Britain excopt upon persons of wealth and social importance. It was while he held the office of Ayrshire road trustee that he began seriously to study the salject of road making. At that time roads ware universally bad, excopt whore Nature herself had made them good. tended by two men, and drawn by cight horses, in about six

Dr. Jranklin, writing in 1751, speaks of traveling seventy miles a day in England, by a post-chaise, as a most extraordinary achievement-killing to man and beast. Much of the soil of England and Scotland is a deep, rich clay, which makes is particularly well adapted to the system of Macadam.
What it was which suggested to him the simple expedien of covcring the soft miry roads with broken stones, averaging six ounces each in weight, has not been recorded. We only he held import appintments under the Crown which he held important appointments under the Crown, which made it his duty to superintend the transporiation of supplies
Ha then renswed the study of reads, and pursued it witl all the unflagging perseverance of a thorough Scotclman At his own expenze, he traveled thirty thousand miles for the observation of roads, which occupied him more than five years and cost him more than five thousand pounds sterling. I presume his idea was entirely original; for we cannot find any trace of a macadamized road previous to his day. The only notion which existed, previous to his time, of making a perma nent road, was to pave the whole surface-with pebbles, blocks, or slabs of st
come general
It was not until 1811, when he was fifty-five years of age, that Macadam made his celebrated report to the House of Com mons, in which he deseribed the condition of the roads of Grea Britain, and gave an outline of his system for repairing them. In 1815, a district was assigned him for an experiment. Need I say that he met with nothing but opposition, not only from every one connected with the old road system, but even from the farmers through whose lands the first macadamized road
was to be made! Such was the prejudice against his plan that he could not get the old road-makers to execute his or ders, and he was obliged to get his three sons to come and as sist him in superintending the details.
But the tide soon turned. A good macadamized road is an irresistible argument; and there soon arose a wage for malsing such roads, as furious as the former prejudice against them Four years after he began operations, there wore seven hundred miles of macadamized road in Great Britain ; and, before the death of the inventor, out of the twenty-five thousand six handred miles of high roads in England, there were not more it is said, than two hundred and fifty miles not macadamized.
John Macadam was a strangely disinterested man. He not only refused to receive any reward for his services, including an offered knighthood, but he would not take a contract to make or repair a road, and he declined some pressing and liberal er the the roads in foreign countries
He was twice married; first, during his residence in New York, to a Long Island lady ; and again, in his seventy-first year, to another American lady, Miss de Lancey, of New York, a member of the family which has given its name to one of our streets. He died in 1836, aged cighty years.
I have spoken above of the excellent roads in the Central Park of New York, as macadamized. I should, perhaps, have styled them Telfordized, for it was Thomas Telford, a famous English engincer, cotemporary with Macadam, who invented the particular plan upon which those reads are built. Macadam laid his broken stones upon the naked soil; but it was Thomas Telford whoimproved upon Macadam's idea by laying large, rough, flat stones upon the soil, placing upon them the broken stones of Macadam, and covering the surface with fra

The Fort Fiontgemery Explosion.

The New York Sun states that the recent terrible explosion in a mine near Fort Montgomery, on the Hudson river, was occasioned by nitro-glycerin in its new form of "dynamite." Some of it had been sent to the mine fortrial. Having a three
pound under a hammer to the consistency of fine powder, while the boss of the gang scraped it from the plank on which
it was pulverized, and put about seven pounds in his can it was pulverized, and put about seven pounds in his can
which had a thimble stopper, when the gang of three men left for the shaft. While on their way, the can was opened by the man who had it in charge.to exhibit the powder to others and ${ }^{\text {a }}$ there were lighted pipes in the company, a spark came in contact, when the explosion took place. It is quite evident that this terrible substance has been somewhattamed, but not
yet sufficiently so as to justify the neglect of ordinary precara tion in handling it.

Manufacture of silk in Califormia

Since writing the article entitled "Why not Grow our own Silk ?" we find the following additional particulars in a Caliornia exchange, relative to the silk culture in that State "Mulberry trees are here in great abundance, the 'Natural Wealth of California giving $4,000,600$ of trees for 186^{17}, and Ne may say at least $5,000,000$ for next year's use. The pro iluction of eggs has kept pace with the means to supply foo for the worms, for it has been stimulated by a full demand from abroad. We raise two crops of cocoons in a season, as
the rule, but three crops are not unfrequent, though the third the rule, bat three crops are not unfrequent, the tree, by ove plucking of the leaves, and it should be discouraged. W can expect but one crop of eggs in a season. The socond is left to us for home use. The cocoon, which the miller cuts his way through, suffers a loss of value by the continuity of tho thread being broken. But it makes good silk for groods not requiring long staple. Of this spun silk, we are accumulat ing stock. Mr. Englander, who made so creditable a display of silk fringes at the Fair, says it can be worked up here by our present facilitics. Beside this stock, the sound cocoons leint for silk, this year, may be rated at one million, and so rapid is the reproduction, that this would make ten millions for 1869. To reel, weave, and complete the fabric would give stady employment to one thousand hands, beside the great number that would find work gathering leaves, attending and feeding the worns. Whon we consider, that in 1870 the mitirl increase of silkworms, all halthy, will give us five to ten times more cocoons than 1869, we are sensible there is no time to be lost in going. into the making of silks. In one season he simple unwinding of cocoons may be taught very expertiy to any number of girls. Making silk se wing tiread is as simple s making other thread. Dyeing silk, though it has seme peculiarities, can be done by workmen skilled in other fine col oring, and, at least, the artesian waters of our San Bruno ange have the requisite freedom from impurity. Can we veave silk? will not be questioned by any one who has scen he silk cloth actually and continuousiy made during four ecks at the Fair by Messrs. Joseph and Isidor Vermonn hose per everance is worthy of the hiohest reward; and we whose perseverance is worthy of the highest reward; and we ublic acknowledgment. Mr. Neumann bas a number of new omins of the best construction ready for use, and he has in ented a ree, which was in use at the rair, and which is all hat can be desired. Though silk eggs bring a price that empts us to export them just now, the establishment of man ufactories would show that it would pay us better to lose th surplus eggs and save the cocoons for thread and cloth. No ithstanding the price of labor, we can make our own silk or 25 per cent less than the importer can put the foreign fab c on his shelves. Our land is cheaper, our trees are mor rolific of leaves, our worms are not infected with disease that kills half of them and injures the silk-making perfection of the rest ; our trees are now, and the quality of the leaves for food is untainted by the effects of Iong-continued plucking. Our climate alone gives advantages in the superior weight of ur cocoons, and in the perfection of the silk they yield, to ounterbalance the greater wages of labor, if we had not the ther advantages enumerated ; and no branch of industry af fords so great a proportion of light and pleasant work for the employment of wowen and children."

Carbonic Acid in the Acmosiblato

The German chemist Pettenkofer, several years ago, in roduced a new and more accurate method for the quantita ive determination of the amount of carbonic aoid in the at mophere. By means of this method, Thorpe has obtained he following result: On the land the amount of carbonic cid in the atmosphere varies from $2 \frac{1}{2}$ to 8 volumes for 10,00 volumes of air ; the mean for Europe is 4 volumes in 10,000 of found 8.8 volumes du, South America, Levy had 4.6 during th ry monason. On the sea the variations are much less, and in minations of sea air being only $?$, while land air gave 4 vo umes in 10,000 of air.
To show the difference between the free atmospheric air and he air in our school rooms and other crowded places, we collect the following from results, most of which were obtained by means of Pettenkofur's method; all the figures given as he amount of carbonic acid express the number of volumes carbonic acid in 10,000 volumes of the air anal yzed:
Free atmospheric air, 4. Pettenkofer's study, 3,000 culbic feet apacity-aftcr having been there for four hours, 5 2-3: after laboratory-canacity 46,000 cubic for a little while, 9 . ervals during a lecture (about 3,000 persons present), in P. M., 11 ; same lecture, $61-2$ P. M., 23 ; same lecture, 7 r. . M, oom-10,400 cubic feet capacity- 70 girls bctween nine and ten years old ; temperature of room, 66 deg. Fah., at the close of the instruction, re-or aboat eighteen times as much as in
the free air! Slepping rooms, for soldiers in Manich—one room, 10,147 culbic fect capacity, 19 soldiers-in the morning,
46 ; another room-capacity 10,255 cubic feet, 10 soldiersthe morning, 34 . A theater, very crowded, Roscoe found, 4
feet above the stage, $23 ; 34$ feet above the stage, 32 . A court
 or 100 times as mach as the amin inhaled.
From all detmminations yet made, it may be concluded that 10 volmmes of carbonic acid for 10,000 of air, are quite comforta ble; when this quantity is not exceeded, the ventilation is good, no unpleasant colors are observed; but that rooms containing much more than 10 of carbonic acid in 10,000 of air (or one in a thousand) are not fit for a prolonged sojourn of people.-Prof. Gustavus Hinriche.

OPIWIORS OF THE PRESS.

We are indebted to our cotemporaries formany very fatterng notices, only a few of which we can copy. The Cherg Itwi, Wy Heir says:
readers are well aware of the value which we attach to the SCIENTIFIC American, from the frequency with which we
quote its articles and refer to its conclusions. The excellence hus indersed by us, in common with the entire fmiak licity and intelligibleness of its style. It covers the whol field of practical science, but without pretension, chasid. and dreary pedantry. It is emphatically a journal of to-dayan "abstract and brief chronicle"-brief but comprehensive field in modern invention and industry. The last number ot he XIXth volume comes to hand witl a finely engraved e eesentative title page, an earnest of the realization of the fit eral promises of the prospectus of volume XX.
the inder of subjects discussed and illustrated in the :
just closing, it is hard to sce where improvements can be
but we take the word of the liberal and enlightened
ers, that noticcable imporements will be made and wait ris, that noticcable improvements will be made, and wait claThe Ambaszador, published in this city,
The Sciennure American has a place, ai to isself, in the orond. It is a just compliment to Amcrican thought and en
 such a journal. !i., specialties are practical information, art, science, mechanics, chemistry, and manufactures. Dvery pat-
ent invention is recorded ; many of them described; many il ent invention is recorded; many of them described; many in
 prepared papers o:a ail sorts of cience and art.
The Iowa Instrucior, \therefore oducational organ par exectlence of owa, thus speaks of the whe of the information obtrinable rom the perusal of our colur?s to the proper qualification of cachers for their arduous and responsible lakers: The Scievtipic Americady is mauestionably the jourmal the people of this country in that siv, when which at genses most prominently doveloped. If we were at all piti
cally inclined, we should, in giving a description Sam's cranium, pronounce kis bump of mechanical contrivan of a few numbers of the scievtrictc and onishinc to notice that few persons outside of arts take an interest in these matters. Surely it is as impor ant to understand the peculiar wintwand ingenious procosses, which, as by magic, inaliol the natural i. aiture int such articles which civilized socicty demand, as in .s to be abie ng to nouns uilu wils, to indicato their mutal relations.
 indeed, we know that in other countries such knowledge is conidered essontial to education. If, therefore, any teacher has prodilection for such rawis, wo trast he will cultivate this aculey of his mind and give (heresult of his readinges, study, children honor labor and love those who have benefited man kind by their mechanical genius.

A captain ei an Englishmerchant vessel who has recently been making a trip through the Suez Canal, writes as follows o the London Times
The canal, as designed, is about a hundred miles long. Of ans lon is into the midele of the water is nimpl to its frull breadth, which is a hno odred yards, or the wenty-sis fcet. The romaining fifty miles not yet penetrated by the sea water, are in various states of progress: : parts are der water, which is to be suppplied from a great lake not yet operations. To English ears it must sound promising that a good deal of clay las to be cut through ; for nothing can be dealt with so successfully in this country as that material. The completion of the southern lialf of the canal would look like a very long work bat for the fact of the inamense subsidiary works being completed and a vast mass of atman
the spot. The service canal from the Nile $1: 1$ the salt water canal, and branching thence o coners revints, ong, and in fall use for the supply or fresth water tion and for otherwise assisting the work to be done. The pori at the Mediteranean end is an immense work, alros 5 availa ble. The sea channel at the sucz end has dificulties, i, wit only y dredging machines are i!: work on difierent narts of the canal -chiefly, we wethen, the northern half--discharging mountains of mud, sand wul clay over the banks or into barges. and a half nibions a year. Our thimam calculates that a driving wind, after blowing a month mge il:r, will send into
the canal, when finished, inv hundred tuns and a the canal, when finished, ive hundred tuns of sand a a single dredging machine would $1:=$ abie to kecp down at a
certain moderate cost in coal. The dinculty ot then ap the banks of the canal, exposed ass they will be to fo wash of stcamers, and to a surface of ten agitated by the serious matter, but one which does not enter into that, at least in two or thres years-for one year seems out the question-this great undertaking, wortly of a heroic age,
will be brought to what we may fairly call an actual complesea water of one ocean flowing into the other.

