

 CTENTIFIC

 CTENTIFIC
 MERICEN

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CIEMISTRY, AND MANUFACTURES

NEW YORK JANUARY 16, 1869

Finproved Thachinery for Planine and Tholding Curved

 Formas.In No. 24, Vol. XIX, Scientific Americary we illuetrated and described two machines, manufactured by the Combination Molding and Planing Machine Company, designed to plane and cut moldings of straight or irregular forms with rapidity, exactness, and economy of material. In this number we present views of two other machines involving the same principles, and manufactured by the same concern, who claim to the proprietorship of no less than sixteen patents on wood working machinery. The one represented in Fig. 1 is called the Elliptical Molding Muchine and is intended to "stick" or cuit moldings of an elliptical, or oval circular, or sinuoius form. It parts are simple and direct in operation: it is adapted to al thicknesses of stock and every variety of pattern the cutter variety of pattern. The cutte shaft is horizontal, and the projecting end in front is adapted to receive a number of cutters of different forms, which may lie almost instantly adjusted to cut to any depth required. The work to be cut is held and guided firmly and accurately by means of feed and friction rollers in combination with vertical guides which keep the work down to the table by means of adjustable weights.

The engraving is so exact and clear in its details that a mere reference by letters to the prin cipal parts will be sufficient for a proper understanding of the principle and the operation of the machine. Thecutter shaft is driven from the pulley, A, on the horizontal shaft that receive power on the pulleys, B, one fast and the other loose. A belt from this shaft is received on a back ïntermediate shaft, C, from which a quarter turned belt is led on to an upright shaft, D, that in turn, by a similar belt, rotates a horizontal shaft under the working table. This shaft by means of a worm engaging with a gear on an upright shaft drives the feed roller which is set with spurs or tecth, that engage with a periorated metallic strap sethe picen to molded ast m This patten with ea. This pattern with its piece is held the feed roller by means of two friction rollers revolving on studs that are secured to a sliding piece in the table. They are held against the pattern by means of a weight, E, and can be disengaged instantly for the release of one piece ot work and the reception of anothor by means of the lever, F. The handle, or crank, is used to raise or lower the table and its appurtenances by means of a worm, gear, pinión, and rack The and wheel, H , turns a screw that moves the head with the cutter shaft forward or back. The weights, I, serve to hold the work to the table, laving on the lower end of their shaft horizontal guides for this pur pose, which may be adjusted by means of nuts eneadjusted by

chine. This latter cutter, can, however, be turned to an upright position and be made to perform the same work as the cutter head in the Variety Machine. The method of holding guiding, and feeding the stock, of elevating, depressing, or ad fose described for the other machines, with this difference that the working table corresponding to that of the Elliptical Machinc is supported on an independent pedestal, so that Machine is supported on an independent pedestal, so that
when not in use, and the room it occupies may be wanted for Tachine Company, who may
THE EVILS OF PAINTING, AND THEIR REMEDY.
It has been said, and with much truth, too, that "Housepainting might, with study, and acquirement of correct taste and more extensive information, resume its rank as a liberal rt." There is no reason why it should not. It is an art such, and will be when the painter shall have sufficient inits elevation. It is at a low ebb at present; for, while the variou other branches of the fine arts have their elaborate volumes of reference, and art journals of deep researchand investigation and latest discoveries and im provements, for the benefit of their artists, the house and sign painter and the grainer are left to their own resources, to catch what they may by individual experiment and the careful ob servation of their own mistakes, Though America may boast of many excellent painters, who mar not be excelled on the yet they are almost lost the vast multitude of and indifferent, and miserable ones The long apprenticeship and practice of the former seem al most thrown away, for they stand a very little better chance in the aggregate of success, than others who have spent little or no time in the study of the bus iness. A poor workman can an will work cheaper than a geod one; and, consequently, compe tition comes into service and the finished workmen are obliged to learn their trade more tho oughly, that is learn the art of slighting before they are abl to with the and obtain like them, an honest living. This spirit is caught up by the employer, and, in the rage to get everything cheap in this go-ahead age, the lowest bidder, without regard to quality, too often gets the job; so, many good and poor workmen naturally fall into that uncertain and unsubstantial manner of do ing work that characterizes all the sham, slop-shop worke of decorative art. It must be understood, however, that these remarks have only a limited reference, for there are both painters and employers who well understand these practices, and whose correct taste-and liberal rise to the purity of the art of decor ion. And in $\mathfrak{j u t}$ ar decoraferier And, in justice to the infer workmen, it may be reare that it is not so much a fault with them as it is a want facilities for learning. There are no published books of any atility; and then painters are ery chary of their knowledge, and do not like to impart it too freely.

ELLIPTICAL MOLDING MACKINE AND UNIVERSAL YOLDING MACHINE.

There should be a remedy for
There should be a remedy for this evil, and there can be

hafts.

 combination of the Variety Molding Machine illustrated in No 24, Vol. XIX, and the machine just described. It is intended to subserve the purposes of both these machines in establishments of limited capacity. The principles involved and the operations are the same as those of the other machines, except that it may be used with horizontal or vertical cutter shafts at will. The engraving shows one upright cutter head projectother purposes, it may we removed. This table can be elevated Painters should be more communicative, and not so tenacious with its superincumbent work and parts by means of the hand of whatever superior method they may have accuuired or dis wheel seen in front, a worm, gear, pinion, and rack. The sup- covered. It is quite a mistaken idea that one's business port of the main table is a single casting, very strong, and so would be injured by discovering the secret of a superio constructed as to allow plenty of room for the action of the method to his brother painter. If all this secret knowledge belts, and yet give a very firm foundation. Letters of reference was more. generally diffused among the crait, the benefi are deemed unnecessary in describing. this machinc.
These machines, together with the rosvenor saw Bench, but should be imparted tile, and all alike would b illustrated and described in No. 3, Vol XIX, form a set of tools benefited. A better style of work would be the result of such with which all linds of straight and curved zoldings may a reciprocity, and better prices would be realized (which is a be produced with a great saving of labor and time. They feature devoutly to be wished by a class of painters, who, as
a whole, are no more than half paid for their labor, in a voca-
tion so deleterious to health). It would require more time tion so deleterious to health). It would require more time would then be worth learning.
However, one is not to blame, if he has made any discovery which has cost him time and money, should he wish to keep it a secret, or patent it, until he can make his money out of it yet in all minor matters, it is not only neighbo
The art of painting, in all its various branches, is, perhaps, under present regulations, quite as injurious to health as almost any other branch of mechanical business, especially house and general shop-painting.
It is supposed that painters, in the aggregate, pay an inter est on their life of about twenty-four per cent.; that is, they shorten their lives about two months every year for the privilege of following the noxious business, and getting a taste of the colic every other moon. In fact, it is statistically true that
the average lives of painters not come up to the average the average lives of painters do not come up to the average standard of longevity.
It is well known that painting is an unhealthy business and to such an extent is this prejudice abroad, that it is with difficulty, in some places, that master workmen can procure an apprentice.
The house-painter is much more exposed, and liable to the poisonous effects of colors, than these who follow other oranches, on account of the large quantities of vapor exhaled from lead and the arsenious greens, especially that most brilliant but deadly color, emerald green. This poisonous color, as all arsenious preparations will, gives out exceedingly large quantities of vapor, the inhalation of which very suddenly show itself, and is quite often mistaken for some other disease, and frequently, by physicians, so treated. It causes inflam-
mation of the throat and lungs, and produces, in different parts of the body, small watery pustules, which are exceed ingly troublesume. Wc have known painters to be so afflict-
ed with this affection upon their breast, groins, and armpits, ed with this affection upon their breast, groins, and armpits,
that they were unable, for several days together, to move a that they were unable, for several days tog
limb without great inconvenience and pain.
In England, where much more of this green is used, it has been ascertained from actual observation, and the experience of physicians and other scientific men, that a series of diseases the most complicated have resulted from having the walls of houses washed, painted, or papered with arsenious greens poisoned by living within the walls of such houscs.
Copper, arsenic, and lead are exceedingly volatile, and those persons immured within the walls covered with them are so they are continually inhaling it, greatly to their detriment. they are continually inhaling it, greatly to their detriment. A very singular case (and a remarkable and unmistakable England a few years ago. A family, a short time after mov ing into a certain house, were taken suddenly and violently sick. A physician was sent for, who pronounced it a case of poisoning from arsenic. The patients were relieved, but lingered on for some time, and finding they did not recover
their health, left the building. Another family moved into their health, left the building. Another family moved into the tenement, and were attacked in like manner; still othe persons occupied the rooms, and the same results followed,
watil, at last, it was alleged that the house was haunted, and Madame Rumor set about making up the legends. But science eventually got hold of the matter, when, by investigation, the promises were known to have formerly been occupied by painters, who were accordingly called upon, when it was as certained that previous to leaving the house they had buried
a large quantity of refuse arsenic three feet deep, in the bota large quantity of refuse arsenic three feet deep, in the bot-
tom of the cellar. The deadly drug was removed, and people tom of the cellar. Che deadly drug was removed,
were no longer haunted with this arsenious ghost.

Almost every painter is familiar with the noxious effects of load, especially when cooped up in a close room, with drawn flattiag, and perhaps the keyholes stopped up. Few there are who can work three hours thus, who will not, on coming
to the fresh air, almost immediately fall, or stagger as thougit they had imbibed son thing of a different nature from turpen tine. This part of the business will soon produce the paint cr's colic, and eventually paralyze, unless much rare be taken to guarl against it.
In England, benefit has been experienced in cassis of painter's or lead colic, both by those who manufacture and those who use white lead, in the use of sulphuric acid in very smikil tuantij.s. One way of using it is to puit one dram of shate it ap woll, and allow it to stand a few hours. A tum-bler-full twice or throe times a day is usad. Another way, not so convenient, is to make the bear as follows: Take of molasses, 14 pounds; bruised ginger, $\frac{1}{2}$ pound; coriander seed, $\frac{1}{2}$ ounce; capsicum and cloves, $\frac{1}{4}$ ounce each; water, $12 \frac{1}{2}$ gellons; yeast, 1 pint. Put the yeast in last, and let it fer ment. When the fermentation has nearly ceased, add $1 \frac{1}{2}$
ounces of oil of vitriol mixed with 12 ounces of water, and $1 \frac{1}{2}$ ounces of oil of vitriol mixed with 12 ounces of water, and $1 \frac{1}{2}$
ounces bicarbonate of soia dissolved in water. Fit to drink ounces bicarbonate of
The painter is oiten asked what the painter's colic feels like. He could not, probably, describe it better than to say to those who de not wish to try the experiment, that if the strands of a rope, while being twistod together, should be dominal viscera be towels horizontally, and the what formed of the lead colic.--I Iney's Painters' Manual.

Another Sokar Engine.

The London Sientific Revievo announces that similar re searches to those made by Capt. Ericsson, announced some weeks since in the Scientific Amprican, have been made by Prof. Mouchot, at Tours in France. It faxther states that

Prof. Mouchot took out a patent in March 1861, for an appara tus of this description which he allowed to lapse. However,
in 1864 , he constructed a solar boiler on the same principle which worked at Mendon with satisfactory results. On the
2nd September, 1866, he brought a machine of this description to the palace of St. Cloud that it might be seen at work by the Emperor. It was a small steam engine worked by a solar boiler, but the bad state he the the Emperor experiment. A the machine was taken thither and the periment succeeded. Since that time M. Mouchot has contrived various kinds of apparatus on the same principle for cooking meat and vegetables, distilling spirits, baking and latterly steam and hot air engines. Prof. Mouchot also announces a work upon the subject in preparation and soon to be in press.
THE PRIMEVAL FLORAm-LECTURE BEFORE THE AMER
ICAN INSTITUTE, BY PROFESSOR DAWSON. Reported for the Scientific American.
The above topic formed the subject of a very interesting lec ure by President Dawson, of McGill College, Montreal, at Steinway Hall, in this city, on the evening of the 23d December. Notwithstanding the lecture embrace altogether too wide a field for anything like thorough treatment, the happy style and popular method adopted by the lecturer, made it very acceptable. After the usual introduction of the lecturer to the audience, President Dawson said : An eminent authority has
defined geologists to be a class of amiable and harmless enthudefined geologists to be a class of amiable and harmless enthu-
siasts, who are happy and grateful if you will only consent to give them an unlimited quantity of that which, to them, has perhaps, the most value of all things, namely, past time. confess to this definition of geologists, so far as my subject this evening is concerned, for I shall have to make a large demand upon your faith as to the extent of the past time, and shall have to ask you to give me all of it which you reasonably and conscientiously may. Geology, indeed, works strange revela tions in our view of things, new and old. The primitive forests, and even the gray rocks and hills themselves are thing not primitive and unchanging, not things, comparatively, of yesterday, the successions of olden forists and olden rocks that in dim and ghost-like procession recede from our view into the past of an antiquity, compared with which all human an tiquities are things of yesterday. The murmuring pines, and the hemlock, bearded with moss and in garments green, in-
distinct in the twilight, may stand like Druids of old with distinct in the twilight, may stand like Druids of old with voices sad and prophetic ; but they meval of the earth's younger days, though they may porn
backward to perished predecessors of truly old date, truly primitive and geological antiquity. It is to them that I must try to carry you back in imagination this evening, to awaken those slumbering ages and make them green again in your eyes and vocal in your ears. Transferring our thoughts to and the singular creatures that lived beneath their shade, we shall find ourselves in a new world different from that which we inhabit, and differently peopled. Could we marshal in one view four or five planets, each clothed with the peculiar flora, and inhabited by the peculiar fauna of a distinct geological period, we should truly have before us so many distinct gical period, we should truly have before us so many distinct
worlds with nothing to connect them with each other save only certain similarities of plan and conception. But when we view these several worlds as successive, and destined the one
to prepare the way for the other, we can perceive relations of the most remarkable and unexpected character, and have pre sented to us a long protracted scheme of creation too vast to be
contained on the surface of our planet at any one period, and representing with our present flora all the possibilities of ve getable existence, and all the uses, present and past, which plants can serve. I have selected as the subject of this lec ture one small department of the vast field of fossil plants, a department of peculiar interest as relating to the oldes known plants, and which, as a special and ravorite study of my own I must endeavor to make attractive to you. Eut I mus nry rest contented with this, but in justice to the subject must try also to present it iu an orderly and systematic manner. of that primeval fora which is the subject of this lecture; and in order to do this, I must first say a few words on the relations of their primeval flora to existing plants; 2d, I shull say something of their relation to the geologic time; ©d, I shall enter upon the subject proper by describing to you some of the more remarkable plants that flowished in that primeval age and, 4th, I shall conclude with noticing some of the uses o this primeval flora to us, the practical use it serves to our pres ent race; and I shall endeavor to give you, if possible, some
idea of the light which geology gives us as to the first appear plat, and how far back they can be traced in geologic time. First, then, I shall speak for the berefit of those who may not have pursued the study of bota ny, of the relations of existing planets, and the relation of the fossil flora to them. Taking the whole of the plants known to us, we shall find upon examination that they may all be diwe observe great series ; first, that series of plants in which we observe distinct flowers, and fruit containing seeds. These
constitute the phenogamous plants of the botanist. Then we have a great class of plants of a lower and humbler organiza tion, which are destitute of true flowers, and which instead of producing seeds, produce granules, performing the functions
of seeds, called spores. These are the cryptogamous plants of seeds, called spores. These are the cryptogamous plants of
the botanist. The whole vegetable kingdom is divided into these two great classes. Now, taking first the phenogams we shall find three classes of them. We have, first, that group of plants to which all our trees and shrubs and the
greater part of our cultivated plants and weeds belong-the greater part of our cultivated plănts and weed belong-
exogens, which have a distinct pith, and wood, and bark

Then we have a class in which these features are more or less mixed through the entire structure, and in which there is the distinction of wood and bark, and of which the palms of the tropics and the grasses of our own latitude are examnosperms, which have naked seeds, specimens of which are the well known pines and the sago of the tropics. Thus, to reca pitulate, we have three groups of the phenogams, to which the oak or maple, the palm, and the pine tree, are respectively epresentatives.
In the cryptogams we may also make a three-fold division respectively represented by the ferns and club mosses, the ch mon mosses, and lichens, fungi and seaweeds.
Next let us see what relation these primeval flora bears to that of modern times. Two relationsare possible: First, that the primeval flora may belong to a different classification altogether; and second, which is the true supposition, that the whole flora of the earth, from the earliest geologic times, comes under one classification. This shows that, from the beginning of geologic time, one plan has been followed out in the construction of the vegetable kingdom, and that the whole vegetable kingdom consists not of the plants now living upon the earth, but includes all the plants that have ever lived upon it Again, there is another possibility, that the primitive flora may include representatives of all our modern classes of plants, or only some of them. The fact is, that it includes mainly repreonly some ofthem. The fact is, that it includes mainly repre-
sentatives of some of them, and those of a medium grade, sentatives of some of them, and those of a medium grade,
neither the lowest nor the highest, so far as the land flora is neither the lowest nor the highest, so far as the land flora is
concerned. The fossil plants are not chiefly exogens or endoconcerned. The fossil plants are not chiefly exogens or endo-
gens, but gymnosperms. On the other hand the acrogens, or the highest group of the cryptogamous plants in our day were then the most abundant. The primeval flora, therefore, em braced the higher cryptogams and the lower phenogams. If we had known nothing of vegetation but that manifested by the primeval flora we should not have known the possibilitics of the vegetable kingdom, either in its highest ranks or its lowest ranks, but only in the midale of the scale. Next let us glance at the relations of the primeval flora to geologic time. The oldest rocks we know, the eozoic, have afforded no plunts, so far as we know, at all. The next stratum, the paleozoic, includes the oldest land plants we know. But in the mesozoic period we arrive at a different flora, and in the cainozoic, or modern period, we have two other floras. It is the paleozoic flora only of which I shall speak to-night. During the whole of the paleozoic period, the seaweeds have existed. In the arlier periods the classes of acrogens and gymnesperms fa fact at the present day. The warm and moist climate of porfact at the present day. The warm and moist climate of por-
tions of the southern hemisphere at the present day, now have tions of the southern hemisphere at the present day, now have - a flora more nearly resembling the early epochs than any
other portions of the earth. The uniformity of the flora of that other portions of the earth. The uniformity of the fora of that
early period indicates a temperature nearly uniform through out the earth. At present we have in our atmosphere but small quantity of carbonic acid gas. If we had more, it would tend to make the climate more uniform, by preventing the radiation of heat from the earth. The carbon locked up in our coal mines, and then existing in the atmosphere, may therefore have been at least one reason for the uniformity of cli mate on the earth in the paleozoic period, the flora of that day indicating a warm and moist climate. Next, looking to the flora of the plants, we will turn to the carboniferous period, when there was a vast amount of vegetation, afterward made fossil and becoming coal. In that moist, warm, but unwhole some atmosphere, we find the sigillaria, or seal-tree, one of those most abundant in the swamps of the carboniferous period. Here we have a large tall stalk, without branches, covere with large leaves; or perhaps divided into a few branches We have remains slowing the ribbed structure of the stalk and the sears of the leaves. There are no trees in our latitude resembling it in structure. We know of the fruit of the sigil-
laria only by the abundance of a certain nut that is found laria only by the abundance of a certain nut that is found around them. Arees of two and threc feet in diameter were not uncommon. The root of this tree is more remarkable even than its stem, having attracted the attention of geologists be fore the stem, and obtained the name of stigmaria. These roots are bifurcated and spread out in a remarkably regulex way, all the little rootlets spreading as regularly as lcaves These roots occur very often in the coal formation without the of the plant. The first process in the formation of a bed of coal was usually the growth of a forest of sigillaria.
The nest class are the ealamites. The lectarer here re ated an anecdote of an unlearned individual who having been shown some specimens of ferns and calamites, the former being called filices, reported to his friends that he had seen the sa vant's " felicities" and "calamities." In one sense the cala mites may be justly styled calamities, for they had been the subject of more dispute on the part of geologists perhaps than any other fossil plant. They seem to have grown on muddy flats long the margin of the sigiliarian woods, resembling equise ta or mare's tails; and they are still preserved in coal forma tions in large numbers. The calamites seem to have preserved the sigillarian forests from tho effects of inundation, by causing the mud to settle before the waters passed into the foresta The calamites thus contributed very much to the purity of cur ooal beds. The next plant is the lepidodendron, or scale-tree f a size equal to the sigillaria, resembling our ground pines r club-mosses. This tree was more plentiful in the earlie oal formations than in later periods. Many other diagrams nd petrifactions of fossil plants were here exhibited. Th plants of the carboniferous period would have presented to our yes a very monotonous appearance; for it was characteristic of the flora of that period that there was a large number of species, but few genera. There were also some plants more familiar to our eyes. The ferns are to be found in the coal beds preserved as beautifully as they could have been pre

