Improveraent in Springs for Velicles This improvement consists first, in the substitution of taper longitudinal ribs, A, (see engraving) for the ribs and slots in common use, which prevent lateral slipping of the leaves of carriage springs, and second in the application of India-rubber bearings-one of which is represented at B--to the cast metal scat of the spring, C, whereby much of the jar and concussion, when vehicles are in motion, is prevented from transmission to the spring, and greater play and elasticity also sectured.
The ribs, A, are formed in the leaves by swaging, and are so made that the convex side of any leaf exactly fits the concave side of the leaf exterior to it, when the leaves are put together.
The cast metal seat, C, is fastencd by bolts, D, passing through the bar, E , and held firmly by the nuts, F . The seat is so constructed that the rubber bearing, B, zeparates the leaf next it slightly from the seat ao as to admit of compression and expansion, corre sponding to the motion of the spring. By this means considerable elasticity is gaincd over that att:ined by the ordinary method, and the fore of violent shocks much weakened.
Beside the gain in elasticity this method is claimed to possess the following advantages over the old method. The form of the ribs gives greater strength to the leaves. Their tapering form limits the amount of the depression when heavily loaded, in consequence of the linding or wedging of the convex surface of each rib in the concave surface of the one lying upon it.

The spring can be made as light and graceful in appearance as those of the old style, and the number of laves is entirely unes sential to the application of the improvement, which is adapted to all springs from those of the heaviest locomotive to springs for the lightest buggy.
This improvement has been made the subject of two pat ents-the first bearing date, May 26, 1863, and the second June 2, 1868-both of which were ovtained through the Sciertific American Patent Agency, by George Douglass, whom address for further information, Bridgeport, Conn.

UTILIZATION OT MONRS.

Not mach more than fiffy years ago olatones.werit to the refuse or dirt heap, being thrown away as a valueless sub stance, with the exception of a very sman amount of them which was empleyed in the manafacture of glue.
In our day, hwever, the trade in bones has acquired a vast importance. Erom them are manufactured soap, glue, phosphorus, bone black, and valuable manures.

Many ships sail to distant parts of the world in erde: to obtain cargoes of bone. The battle-fields of Europe havo even, in some instanses, been dug up, and their long pent treasures sent to the bone mills to be converted into "super phosphate," which, applied to the wheat and fodder crops, has hel prid in the shape of bread and meat to support the present generation.
Men have thus actually been made to feed upon the ro mains of their ancestors through the speculative genius of the manufacturer of artificial fertilizers!

Bones are collected along with old rags in every country in the worid, but the largest supplies are obtained from South America, where an immense number of cattle are annually slaugintered for the sake of their hides and fat.
'The city of Hull, in England, is the principal depot fo bone for the European market, and possesses many large and powerful crushing mills, where they are reduced int fragments of the desired sizo.
We shall limit ourselves to-day to the manufacture of soap and glue from bones ; reserving for a future article the sncth od of utilizing them in the production of phosphorus and of superphosphates.
Practical information being what is needed in this matter we shall sum up the whole subject as concisely as possible for he benefit of our readers

1. Place the bones in large baskets, or nets, in running ater so as to wash off the adherent dirt
2. Hang the baskets to dry and drip, or spread the bones on n incline so as to allow the water to run off from them.
3. Carry the bones to a crushing mill or to a stamp mill and reduce them to the size of a hickory nut. If this be done between revolving, horizontal cylinders, these must have sharp-ciged ridges about three-quanters of an inch broad on their outer surfaces.
4. Receive the crushed bones on a bottom formed of paralle rods which will allow fat and marrow to ooze through, with oat giving passage to the bone.
5. Place the crushed bones in wicker baskets in large vat or tanks, and cover them with water, the temperaturo of which must be from 120° to 1.10° Fal., and no more.
6. Skirn the fat as it forms from the top of the warm water and it is then ready, after mixing with alkalies to be boiled, into soap. If the bones luadeen boilce, the soap obtained would contain glue, be of inferior quality, dark-colored, and load scented
7. 'Iake the baskets and their contained bones from the grease vats, and let them drip, alter which suspend them in
wooden vessels, into which pour muriatic acia, diruted (spe water, until it marks 7 degrees of Baumés areometer (spec grav. 1.05.)
8. Leave the bones in this mixture until the upper ones a soft and pliable; this generally takes places is about six or seven days if the proportion of bone and acid has been well regulated.
9. Sink the baskets in a second set of wooden vessels, filled to half their hight with muriatic acid, diluted with water, till it marks 3° on Boumés areometer, and leavo them in this solution until they are transformed into a soft, malleable, semi-transparent substance, out of which all the lime has disappeared.
10. Wash the bones by running a stream of cold water over them for one-quarter of an hour.
11. Place the bones in a tank containing lime water to neutralize the acid, and after this, wash them again several successive times with cold water. The lime must be slaked tion of that of the railway ; but where parties can afford it we recommend the introduction of both. The game of croquet is heaithful, graceful, and social, and for young persons of both sexes we know of no open-air amusement that com. bines so many beneficial qualities with that of pleasure. The introduction of the game into schools is becoming quite com, mon
The manufacture of croquet implements has grown into an xtensive business at Springfield, Mass., and the firm of Milton Bradley \& Co., of that city, has become identified with the manufacture of the finest qualities of these goods.

Explosion of a gasometer.

The city of Cincinnati felt the ramble and roar of a great explosion on the 24th ult. The Commercial says: "A great mass of bleck smoze rose above the Gas Works, then came a concussion that shook the windows, and inmediately the smoke was crowned with a big, red fiame-burst that shot up an amazing hight. The shock was felt all over the city, ex. ept in the extreme limits, and probably not less than a third f the population realized im. mediately that something extra ordinary had occurred.
"The gasometer, or holder which burst, was a mass of boil-er-iron of a quarter of an inch thickness, 12% feet in diameter, and 35 feet in height. It was an immense, inverted, circular tank. that rose and fell slowly, according to the amount of gas confined between its top and the surface of the water. Sunkinto the ground, with a depth of 35 eet, is the tank proper, circular of course, of stone, brick, and mortar. There were 375,000 feet of gas in the holder when the explosion occurred. We find it

UGLASS' IMPROVED CARRIAGE AND CAR SPRING

 the water used, and 1 part of lime by weight employed to impossible to state the cause of the explosion, and difficult every 200 parts of water. The whole must be well stirred, overed, and allowed to rest for some hours.12. The bones, after these last washings are completed, are w in a suitable state for the manufacture of the best qual ity of glue.
13. The acid, at 3° Baumé, used for the second operation, is suitable for conversion into that of 6° Baumé for the next first maceration.
14. Boil the bonos in pans constructe as shown in the fol Jowing cut. The lottom plate which supperts the bones is perforated by small holes, and is surmounted by a pipe which reaches above their surface in the pan, so that when the water in A begins to boil it runs out through the top of the pipe, B, and flowsoverand through the mass of bones in a perpetually circulating stream. In large works the operation is performed in successive boilers, in each of which the degree of concentration is increased.
15. When boile! down to the proper consistency, run out the glue in lat, wooden molds, three feet long by one foot road, which must be washed and wetted before the introducon of the glue.
16. Take up the glue sheets from the molds with a knifc lipped under them, and cut it crosswise into six or seven engths by means of a "special" glue cutter
17. Dry your glue on twine netting, the strands of which must be $\frac{1}{12}$ inch in diameter. The netting is stretched on frames 6 tect long and $1 \frac{1}{2}$ feet broad. The temperature of the drying rooms must be maintained at from 59° to 77° Fah When the outcr air has this temperature, it is allowed to reely circulate among the layers of frames, through lattices ituated all rouad the building, and which can be closed or pened at will. When dry it is ready for market.
18. The muriatic acid solutions are separately treated, in manner we shall describe in a future article, in order to sav the valuable phosphoric acid they contain.

Hydropathic Treatment of Fiailioad stocks.

The Merchant's Magazine publishes the somewhat startlin act that twenty-eight of the leading railroads of the country have, within the short space of two years, incroased their com bined capital from 287 millions to 400 millions of dollars. showing an average inflation of 40 per cent. The editor ar gues, what is undoubtedly true, that it is impossible to adduce any really sound justification of the "watering" policy. It is, in most cases, simply a deceptive game played by specula tive directors, who, after the inflation has been consum mated, will be the first to forsale the bubble, and qui etly wait to profit from the ultimate violent revulsion in values; while the attempt to draw out of the consumers of the country high charges for freight, so as to pay dividendso he increased stock, is a direct check to our material progress.

The Game of Croquet.

A counterpart to the railway velocipede, illustrated on another page, for the amusement of young persons, is the gam of croquet, one of the out-of-door entertainments which ha become very popular within a few years. It has the advan tage over the railway velocipede in the matter of expensethe price of a set of croquet implements costing but a frac-
impossible to state the cause of the explosion, and difficult
to convey any idea of the appearance of it. It appeared as if to convey any idea of the appearance of it. It appeared as if
the roof of the holder was rent in twain from north to south, the roof of the holder was rent in twain from north to south,
that as it rose and fell back the overwhelming sound was that as it rose and fell back the overwhelming sound was
heard, and then the great bursts of flame and smeke arose. heard, and then the great bursts of flame and smeke arose.
For an instant, for a square around, the breath of a mighty For an instant, for a square around, the breath of a mighty
heat played. The woodwork of doors and windows was bligheat played. The woodwork of doors and windows was blis-
tered and blackened. Men a hundred feet away found their tered and blackened. Men a hundred feet away found their
faces, arms, and hands scorched to the flesh, and for many faces, arms, and hands scorched to the flesh, and for many
squares around, the close, stifling heat was felt, and then it was all over.
"The explesion is not accounted for by even the best informed gas manufacturers. When it occurred there was no fre near the holder, and no gas had been let into it for sit hours. One theory is that of great expansion of the gas by solar heat on the holder, the consequent bursting of the roof and flame communicated to the escaping contents from the stack of the Globe Rolling Mill. The idea has quite general ly prevailed that there is no danger of an explosion to a hold er. Several instances refute this. In October, 1865, a gas meter of the London Gaslight Company's works, at Nine Elms, Battersea road, exploded, killing ten men. It was twice the size of this. Not long since, we are informed, there was a sim ilar explosion at Chicago. Both thesa explosions, however, were accounted for, the fire communicating from the governor in the first instance. How this ever occurred no ono seems to know. The officers and employés of the works are puzzled and cannot solve the mystery. So far as we can learn the only sufferers as to property, by this affair, is the gas company whose loss is about $\$ 100,000$, on which there is no iusurance.'

Correspmatuce

The Editor's are no responsible for the Opinions axpressed by their Cor
respondents.

Lartse and small cart-Wheels.

Messrs. Editotes:-Your correspondent, " F. W. B.," in No. 22, current volume, page 342 , in his comments upon m communication in No. 20, of same volume, makes an amus ing misapplication of a well-known law of friction, to prov hat the friction betryeen the axle and the bubs of wheels, moving the same distance, in the same time, with a given load, will be the same, whether the wheels are large of mall
The law which he involses in support of this paradoxical proposition is laid down in the books in these words:
"The friction is entirely independent of the velocity of coninụous motion.'
All that this law establishes, in relation to the friction be ween the axle and hub of a cart wheel, is this: In moving he same cart, with the same load, a given distance, you wil have the same amount of friction to overcome, whether it moves at a greater or less velocit y; because there is the sam amount of rubloing between the asle and its "zircumscribing box or bearing," in the one case as in the other; and it makes no difference whether that amount of rubbing is performed in long or a short time
It is precisely this law that proves the correctuess of my proposition; viz., that "by doubling the size of the wheels you reduce the friction one-half."
To illustrate: Suppose the axle, on which the wheer turns is six inches in circumference. It is manifest, that at each evolution, every narticle of matter in the hub or box, which comes in contact with the asle, must move around the latte a distance of six inches, and with the firiction duo to the

