SLIDE VALVES.
 lap and lead.

A correspondent states that he has derived such great bene fit from the use of the following diagrams published in the English Mechanic, in 1866, that he aske their reproduction in the pages of the Scientific Amertcan.
As most of the remarks seem to us to be sound, we repro duce them in our columns, and, as the matter is an importan ne, we have appended to the notice an addition which will prove serviceable, in a practical point of view, to a large num ber of mechanics. These remarks of ours on the slide valve will make the subject comprehensible to those who seem to regard its study as too abstrust for ordinary comprehensions while in reality nothing can be more simple than the working of this most indispensable portion of the modern steam engine:

First, as to the terms 'lap' and 'lead.' On looking at Fi 1, it will be seen that the valve overlaps the ports at each end Now, from the outside edge of the ports to the end of th valve, is the outside lap. By the lead of a valve is meant that the port is opened a little in advance of the piston, or the port is open for one stroke before the piston has quite finished the preceding one. This valve, Fig. 1, has neither inside lap nor clearance, and if the inside space was shortened up to the lotted lines, B B, it would have inside lap because it would lap on the bars, D D, and on the other hand if the dark parts were cut away, it would have inside clearance.

"This valve has a lap equal to the port. Therefore if it is set without lead at the beginning of the stroke, the exhaus port will be full open as it ought to be, or very nearly so, more especially when the ports are small. It does not seem to be generally known among drivers, that in a common valve, worked by an ordinary eccentric motion, it is impossible to cut off equal at both ends of the cylinder. This is caused by the angularity of the connecting rod, more or less, as the rod is longer or shorter in proportion to the crank. When the piston is at its half stroke, the crank is short of the vertical line, as shown by the dotted line D in Fig. 3.

" The piston is always before its middle position for the front stroke and behind it for the back stroke; consequently there i always the most steam for the front stroke, which will make the engine 'exhaust fullest at its out center,' as remarke lately by a correspondent. (The front stroke is that made to wardsthe crank.) Some engineers attempt to find a remedy for this by giving the valve more lead for the front stroke which will allow the valve to reach the end of its trave sooner, thereby shortening the frot admission of steam. But this is a very poor remedy; in fact, it is the worst evil of the two, although it may not betold by the beating of the engine we better way is to have unequal laps or an intermelia he letw in ever reversed in action, as show this and fixing it in its p
missions for both strokes.

"Fig 4 is a good shape for a valve. The end is beveled about a tinch in a length of 6 inches. This would give the crank a chance to pass the center before the full pressure is applied Ithink an eccentric of varying travel would be a good thing or an engine where the loads are more some days than others, so that the steam may be cut off earlier by giving the valve , It misht be like Fis. sions that I come to on the subject are these:
" 1 . The valve should have a lap equal to the width of port at least.
" 2 . No lead is required at speeds of less than 400 feet of pis ton per minute. The back pressure caused by compression is an ample 'cushion' for the piston, and the piston ought to get the pressure gradually after the crank has passed the cen tor by beveling the edge of the valve or other means.
" 3 . The connecting rod should be as long as possible, never less than five times the length of crank, but seven or eight times the length would better.

"4. The valve should be a lead for exhaust, in some cases

 fully open port."In Fig. 1, A A are the outside laps ; F F, the ports ; E, the ex haust port ; D D, the bars. Fig. 2, A, the eccentric ; B, a lever with arms of equal length; C is the valve rod. Fig. $3, A$, is the center line of cylinder ; C is a line at right angles to it ; D is the point where the crank pin reaches to when the piston is in the middle of the cylinder. Fig. 4, the dark shaded part V , shows the end of the valve to be bevelled ; P is the steam port. Fig. 5, A, is a boss keyed to the centric has a slot cut across it, as seen at B, which allows it to B, which allows it to
slide on the boss, and is fixed for its proper throw by the screw, C."

We shall limit our selves, in the following supplementary dissertation, to the description of the
 most generally acceptea 10 rm or shlue vaive, such as ho huw in daily use in the great majority of our best constructed engines, reserving for some other occasion an account of the many modifications and varieties of such valves, or cut-oiff s, as have at different times been recommended. by various enas have
gineers.

Fig. 6 is a section through such a slide valve, in which C is the slide, A A, the outside laps ; F F, the steam ports ; E the exhaust port, and D D, the bars.
The slide is best made with an inside lap of $\frac{1}{12}$ of an inch n either side.
The exhaust port must be from 2 to $2 \frac{1}{2}$ times as high as the steam ports.
The section of the steam ports must be from ${ }_{-1}^{1}$ to $\frac{1}{2}$ of the area of the piston head forhigh speed engines, such as loco motives, rolling-mill engines, etc., and from $\frac{1}{2} \frac{1}{6}$ to $\frac{1}{30}$ of the rea of the piston for slow speed engines.
The ratio between the width of the steam ports and their hight, ought to be approximately as follows :
4 to 1 for small engines
5 to 1 for medium sized engines.
6 to 1 for large engines.
7 to 1 for still larger engines.
From what we have just said, it will be seen that the proportions, in inches, of all the parts of a slide valve can be computed when its hight has been determined relatively to the area of the piston, as we have shown above. For this purpose proceed as follows:

1. To find the hight of the cxhaust port, multiply the hight of the steam port by $2 \frac{1}{2}$.
2. To find the thicleness of metal in the bars, add $\frac{T_{1}{ }^{2} \text {, of an }}{}$ inch to the hight of the steam ports.
3. To find the clearance of the inner edge of the steam ports, multiply the hight of the steam ports by $4 \frac{1}{2}$ and add $\frac{4}{18}$ of multiply
4. To find the clearance of the inner laps, multiply the hight of the steam ports by $4 \frac{1}{2}$ and add $\frac{2}{12}$ of an inch.
5. To find the extreme clearance of the outside laps, multi ply the hight of the steam ports by $6 \frac{1}{2}$ and add $\frac{6}{12}$ of an inch 6. To find the length of valve stroke, for a full open port multiply the hight of the steam port by 2 and add $\frac{4}{12}$ of an inch.
Supposing, as an example, a valvewith steam ports 9 inches high, as shown in the diagram, Fig. 7, what would be the relative dimensions of the other elements of this valve? 'They would be:
Steam ports $9^{\prime \prime}$ high.
Thickness of bars $9^{\prime \prime} 2^{\prime \prime}$
Clearance of inner edge of steam ports $40 \frac{1}{2}^{\prime \prime} 4^{\prime \prime \prime}$
Clearance of inner laps $40 \underline{2}^{\prime \prime} 2^{\prime \prime \prime}$.
Clearance of outer laps $60 \frac{1_{2}^{\prime \prime}}{} 6^{\prime \prime \prime}$.
Stroke for full open valve $18^{\prime \prime} 4^{\prime \prime \prime}$
The following diagram exhibits this relation of parts.

English builders give an average inside lap of $\frac{1}{10}$ of an inch on either side. For low-pressure engines, working with from $2 \frac{1}{2}$ to 3 lbs. over pressure, $\frac{5}{8}$ of an inch is given, while for marine engines, working with from $4 \frac{1}{2}$ to 5 lbs. over-pressure, the lap is from 1 to $1 \frac{3}{4}$ inches.
The rule given for lead (relative advance of the slide) is as ollows :
Multiply the square of the area of the piston inches by
0.002 , and divide the product by the length of the valve orifice in inches. The quotient gives the width of the open steam ports when the piston has reached either end of its streke,i.e., is full up or full down. In a 3 -inch cylinder, for instance, with 12 inch length of valve orifice, it would be 0.15 inch. The eccentric for communicating motion to the slide must always work at an acute angle to the direction of the slide, and this lead angle must be greatest the greater the degree of expansion used.
Figs. 8 and 9 , will make this matter clearer by showing the relative working of slides and piston in an engine where the lap is made to bring on expansion, and which cuts off at $\frac{8}{\frac{3}{4}}$ lap is m
stroke.

Fig. 8 shows the relative directions and positions of the piston and slide during the whole down stroke of the piston. Starting from the moment the piston has reached its fall extent of upward course, we have successivcly:

1. Piston up in full. Valve $\frac{3}{4}$ dowr.
2. Piston it down. Valve quite down
3. Piston $\frac{8}{4}$ down. Valve $\frac{1}{4}$ up.
4. Piston $\frac{15}{1} \frac{5}{6}$ down. Valve $\frac{1}{3}$?

Fig. 9, exhibits the relative directions and positions during he whole $u p$ stroke of the piston.

1. Piston, down in full. Valve, 星 up.
2. Piston, $\frac{3}{4}$ up. Valve, quite up.
3. Piston $\frac{8}{6}$ up. Valve, $\frac{1}{4}$ down.
4. Piston, $\frac{1}{1} \frac{5}{6}$ up. Valve, $\frac{1}{2}$ down.

In order to obtain this motion the eccentric must in thi case have an "advance" of 30 degrees. As the reader wil notice, the exhaust steam is cut off at $\frac{1}{1} \frac{5}{6}$ of the piston stroke But this is of little moment, as the back pressure of this smal quantity of exhaust steam, as proved by the indicator, is in jgnificant, beside which, it is again utilized to a certain xtent on the next following stroke

The lead at any period of time is obtained

1. For the entrance steam port, by dividing the hight o the aperture at the entrance port (D, Fig. 10) by the total hight of the port (A C, Fig. 10.)
2. For the exit steam port, by dividing the hight of the aperture at the exit port (D^{\prime} Fig. 10) by the total hight of the port ($\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ Fig. 10).

Hack Walnut Polish.

Take asphaltum, pulverize it, place it in a jar or bottle, pour over it about twice its bulk of turpentine or benzole, put it in a warm place, and shake it from time to time. Whea dissolved, strain it, and apply it to the wood with a cloth or stiff brush. If it should make too dark a stain, thin it with turpentine or benzole. This will dry in a few hours.
If it is desired to bring out the grain still more, apply a mixture of boiled oil and turpentine; this is better than oil alone. Put no oil with the asphaltum mixture, as it will dry very slowly. When the oil is dry, the wood can be polished with the following: Shellac varnish, of the usual consistency two parts; boiled oil, one part. Shake it well before using. Apply it to the wood by putting a tew drops on a cloth and rubbing briskly on the wood for a few moments. This polisld works well on old varnished furniture-Chem. Neu*

Improveraent in Springs for Vehicles This improvement consists first, in the substitution of taper ongitudinal ribs, A , (see engraving) for the ribs and slots in common use, which prevent lateral slipping of the leaves of carriage springs, and second in the application of India-rubber bearings-one of which is represented at B--to the cast metal scat of the spring, C, whereby much of the jar and concussion, when vehicles are in motion, is prevented from transmission to the spring, and greater play and elasticity also sectured.
The ribs, A, are formed in the leaves by swaging, and are so made that the convex side of any leaf exactly fits the concave side of the leaf exterior to it, when the leaves are put together.
The cast metal seat, C , is fastencd by bolts, D , passing through the bar, E , and held firmly by the nuts, F. The seat is so constructed that the rubber bearing, B, zeparates the leaf next it slightly from the seat, 80 as to admit of compression and expansion, corre sponding to the motion of the spring. By this means considerable elasticity is gaincd over that att:ined by the ordinary method, and the fore of violent shocks much weakened.
Beside the gain in elasticity this method is claimed to possess the following advantages over the old method. The form of the ribs gives greater strength to the leaves. Their tapering form limits the amount of the depression when heavily loaded, in consequence of the linding or wedging of the convex surface of each rib in the con cave surface of the one lying upon it.

The spring can be made as lighit and graceful in appearance as those of the old style, and the number of laves is entirely unes sential to the application of the improvement, which is adapted to all springs from those of the heaviest locomotive to springs for the lightest buggy.
This improvement has been made the subject of two pat ents-the first bearing date, May 26, 1863, and the second June 2, 1868-both of which were ovtained through the Sciertific American Patent Agency, by George Douglass, whom address for further information, Bridgeport, Conn.

UTILIZATION OT RONRS.

Not mach more than fiffy years ago old"boncs, werit to the refuse or dirt heap, being thrown away as a valueless sub stance, with the exception of a very sman amount of them which was employed in the manafacture of glue.
In our day, hwever, the trade in bones has acquired a vast importance. Erom them are manufactured soap, glue, phosphores, bone black, and valuable manures.
Many ships sail to distant parts of the world in erder to obtain cargoes of bone. The battle-fields of Europe have even, in some instanses, been dug up, and their long pent treasures sent to the bone mills to be converted into "super phosphate," which, applied to the wheat and fodder crops, has hel prid in the shape of bread and meat to support the present generation.
Men have thus actually been made to feed upon the ro mains of their ancestors through the speculative genius of the manufacturer of artificial fertilizers!
Bones are collected along with old rags in every country in the worid, but the largest supplies are obtaincd from South America, where an immense number of cattle are annually slaugintered for the sake of their hides and fat.
'The city of Hull, in England, is the principal depot for bone for the European market, and possesses many larg and powerful crushing mills, where they are reduced into tragments of the desired sizo.
We shall limit ourselves to-day to the manufacture of soap and glue from bones ; reserving for a future article the sncth od of utilizing them in the production of phosphorus and of superphosphates.
Practical information being what is needed in this matter we shall sum up the whole subject as concisely as possible for he benefit of our readers.

1. Place the bones in large baskets, or nets, in running ater so as to wash off the adherent dirt
2. Hang the baskets to dry and drip, or spread the bones on an incline so as to allow the water to run off from them.
3. Carry the bones to a crushing mill or to a stamp mill and reduce them to the size of a hickory nut. If this be done between revolving, horizontal cylinders, these must have sharp-ciged ridges about three-quanters of an inch broad on their outer surfaces.
4. Receive the crushed bones on a bottom formed of parallel rods which will allow fat and marrow to ooze through, with oat giving passage to the bone.
5. Place the crushed bones in wicker baskets in large vat or tanks, and cover them with water, the temperaturo of which must be from 120° to 1.10° Fal., and no more.
6. Skirn the fat as it forms from the top of the warm water and it is then ready, after mixing with alkalies to be boiled, into soap. If the bones lutideentroilce, the soap obtained would contain glue, be of inferior quality, dark-colored, and had cented
7. Jake the baskets and their contained bones from the grease vats, and let them drip, alter which suspend them in
wooden vessels, into which pour muriatic acia, diruted (spe water, until it marks 7 degrees of Baumés areometer (spec grav. 1.05.)
8. Leave the bones in this mixture until the upper ones a soft and pliable ; this generally takes places is about six or seven days if the proportion of bone and acid has been well egulated.
9. Sink the baskets in a second set of wooden vessels, filled to half their hight with muriatic acid, diluted with water till it marks 3° on Baumés areometer, and leavo them in this solution until they are transformed into a soft, malleable, semi-transparent substance, out of which all the lime has disappeared.
10. Wash the bones by running a stream of cold water over them for one-quarter of an hour.
11. Place the bones in a tank containing lime water to successive the acid, and after this, wash them again several tion of that of the railway ; but where parties can afford it we recommend the introduction of both. The game of croquet is heaithful, graceful, and social, and for young persons of both sexes we know of no open-air amusement that com. bines so many beneficial qualities with that of pleasure. The introduction of the game into schools is becoming quite common
The manufacture of croquet implements has grown into an xtensive business at Springfield, Mass., and the firm of Milton Bradley \& Co., of that city, has become identified with the manufacture of the finest qualities of these goods.

Explosion of a gasometer

The city of Cincinnati felt the ramble and roar of a great explosion on the 24th ult. The Commercial says: "A great mass of ble.ck smoke rose above the Gas Works, then came a concussion that shook the windows, and inmediately the smoke was crowned with a big, red fiame-burst that shot up an amazing hight. The shock was felt all over the city, ex. cept in the extreme limits, and probably not less than a third of the population realized im. mediately that something extra ordinary had occurred.
"The gasometer, or holder which burst, was a mass of boil-r-iron of a quarter of an inch thickness, 12% feet in diameter, and 35 feet in height. It was an immense, inverted, circular tank. that rose and fell slowly, according to the amount of gas confined between its top and the surface of the water. Sunkinto the ground, with a depth of 35 eet, is the tank proper circular of course, of stone, brick, and mortar. There were 375,000 feet of gas in the holder when the explosion occurred. We find it

UGLASS' IMPROVED CARRIAGE AND CAR SPRING

 in the water used, and 1 part of lime by weight employed to impossible to state the cause of the explosion, and difficult every 200 parts of water. The whole must be well stirred, covered, and allowed to rest for some hours.12. The bones, after these last washings are completed, are ow in a suitable state for the manufacture of the best qual ty of glue.
13. The acid, at 3° Baumé, used for the second operation, is suitable for conversion into that of 6° Baumé for the next first maceration.
14. Boil the bones in pans constructe as shown in the fol Jowing cut. The bottom plate which supperts the bones is perforated by small holes, and is surmounted by a pipe which reaches above their surface in the pan, so that when the water in A begins to boil it runs out through the top of the pipe, B, and flowsoverand through the mass of bones in a perpetually circulating stream. In large works the operation is performed in successive boilers, in each of which the degree of concentration is increased.
15. When boiled down to the proper consistency, run out the glue in lat, wooden molds, three feet long by one foot broad, which must be washed and wetted before the introducon of the glue.
16. Take up the glue sheets from the molds with a knifo lipped under them, and cut it crosswise into six or seven engths by means of a "special" glue cutter
17. Dry your glue on twine netting, the strands of which must be $\frac{1}{12}$ inch in diameter. The netting is stretched on frames 6 tect long and $1 \frac{1}{2}$ feet broad. The temperature of the drying rooms must be maintained at from 59° to 77° Fah When the outer air has this temperature, it is allowed to reely circulate among the layers of frames, through lattice ituated all rouad the building, and which can be closed or pened at will. When dry it is ready for market.
18. The muriatic acid solutions are separately treated, in manner we shall describe in a future article, in order to sav the valuable phosphoric acid they contain.

Hydropathic Treatment of riailroad stocks.

The Merchant's Magazine publishes the somewhat startlin act that twenty-eight of the leading railroads of the country have, within the short space of two years, incroased their combined capital from 287 millions to 400 millions of dollars. howing an average inflation of 40 per cent. The editor ar gues, what is undoubtedly true, that it is impossible to adduce any really sound justification of the "watering" policy. It is, in most cases, simply a deceptive game played by speculative directors, who, after the inflation has been consum mated, will be the first to forsale the bubble, and qui etly wait to profit from the ultimate violent revulsion in values; while the attempt to draw out of the consumers of the country high charges for freight, so as to pay dividendso the increased stock, is a direct check to our material progress

The Game of Croquet.

A counterpart to the railway velocipede, illustrated on another page, for the amusement of young persons, is the gam of croquet, one of the out-of-door entertainments which ha become very popular within a few years. It has the advan age over the railway velocipede in the mattcr of expensethe price of a set of croquet implements costing but a frac-
impossible to state the cause of the explosion, and difficult
to convey any idea of the appearance of it. It appeared as if to convey any idea of the appearance of it. It appeared as if
the roof of the holder was rent in twain from north to south, the roof of the holder was rent in twain from north to south,
that as it rose and fell back the overwhelming sound was that as it rose and fell back the overwhelming sound was
heard, and then the great bursts of flame and smeke arose. heard, and then the great bursts of flame and smeke arose.
For an instant, for a square around, the breath of a mighty For an instant, for a square around, the breath of a mighty heat played. The woodwork of doors and windows was blis-
tered and blackened. Men a hundred feet away found their tered and blackened. Men a hundred feet away found their
faces, arms, and hands scorched to the flesh, and for many squares around, the close, stifling heet was felt, and then it was all over.
"The explesion is not accounted for by even the best informed gas manufacturers. When it occurred there was no fire near the holder, and no gas had been let into it for sit hours. One theory is that of great expansion of the gas by solar heat on the holder, the consequent bursting of the roof and flame communicated to the escaping contents from the stack of the Globe Rolling Mill. The idea has quite general ly prevailed that there is no danger of an explosion to a hold er. Several instances refute this. In October, 1865, a gase meter of the London Gaslight Company's works, at Nine Elms, Battersea road, exploded, killing ten men. It was twice the size of this. Not long since, we are informed, there was a sim ilar explosion at Chicago. Both thesa explosions, however, were accounted for, the fire communicating from the governor in the first instance. How this ever occurred no ono seems to know. The officers and employés of the works are puzzled, and cannot solve the mystery. So far as we can learn the only sufferers as to property, by this affair, is the gas company whose loss is about $\$ 100,000$, on which there is no iusurance.'

Correspmatuce

The Editor's are no responsible for the Opinions axpressed by their Cor
respondents.

Larise and small cart-Wheels.

Messrs. Editetes:-Your correspondent, "F. W. B.," in No. 22, current volume, page 342 , in his comments upon my communication in No. 20, of same volume, makes an amus ing misapplication of a well-known law ef friction, to prov that the friction between the axle and the hubs of cart wheels, moving the same distanco, in the same time, with a given load, will be the same, whether the wheels are large of mall
The law which he invokes in support of this paradoxical proposition is laid down in the books in these words:
"The friction is entirely independent of the velocity of coninụous motion."
All that this law establishes, in relation to the friction be ween the axle and hub of a cart wheel, is this: In moving he same cart, with the same load, a given distance, you wil have the same amount of friction to overcome, whether moves at a greater or less velocity ; because there is the sam amount of rubloing between the asle and its "zircumscribing box or bearing," in the one case as in the other; and it makes no difference whether that amount of rubbing is performed in long or a short time
It is precisely this law that proves the correctuess of my proposition ;viz., that "by doubling the size of tho wheels, you reduce the friction one-half."
To illustrate: Suppose the axle, on which the wheot turns is six inches in circumference. It is manifest, that at each revolution, every particle of matter in the hub or box, which comes in contact with the axle, munst move around the latte a distance of six inches, and with the firiction duo to the

