for their own benefit. Other senators, who pretended to know something about the Union Pacific Company, had said that the company was liable to become insolvent any day, and if that should come to pass, the result would be that the first mortgage bonds would be foreclosed, and the Government lien would be cut off, and this Congress would be held respon sible for it.
The importance of Senator Stewart's foreshadowing is made apparent by the fact that the Government has already issued $\$ 56,852,320$ in bonds to the Pacific Railroad, upon which the company assumes to pay the interest ; but if the first mort gage is suffered to be foreclosed, of course the people must be axed to pay the interest on the whole of the above issue of bonds.

SpRings, their power and dses.

The peculiar property possessed by variousmaterials, which has received the general name of elasticity, exhibits itself in thany ways. Some substances manifest it, when compressed, in a high degree, while bars of the same material may be bent without developing elastic power to any great extent. Others on the contrary, exhibit great elastic power when bent, and comparatively little upon compression. Others, again, may e stretched without manifesting much elasticity, while upon bending they show it in a high degree.
Springs may be classed as follows: Flat, straight, or bar springs, coiled springs, spiral springs, and block springs, intended to resistcompression, usually made of rubber, and in common use on railroad cars, etc., convex disks, concave disk or a union of the two latter in a corrugated spring.
In metallic springs it is found that the elastic power resides in great measure near the surface. A well-tempered bar spring will lose much of its elastic strength by filing off a very thin scale from its surface. This fact has never yet been explained satisfactorily.
Power may be applied to springs in four ways. They may be stretched, compressed, bent, or twisted. The elasticities developed in the same material by these different methods of application, are not demonstrated to possess any ratio to each other. In fact, the mathematical data relating to springs are extremely meager, and it is greatly to be desired that some accurate experimenter would give to the world some tabulated results that could be relied upon with certainty as a guide in construction. At the present time there is nothing of this kind, so far as we know, that can be referred to.
It is evident from the fact above stated-namely, that the elastic power of springs lies, in a great part, near or upon their surfaces-that theform of the metal which presents the greatest surface will give the maximum power, within certain undetermined limits. The doubling of the thickness, the width remaining constant, will not give double power, while doubling the width will nearly double the elastic power if the hickness be the same
But while the elastic force is found to be in some way de pendent upon the surface, it is also evident that there must be some ratio which the thickness should possess in regard to the other proportions, in order that the maximum effects should be maintained. It is easy to see that were the leaves of an ordinary elliptical carriage spring much reduced in thickness their strength would be impaired.
At present the determination of the strength of springs is left almost wholly to experiment. It is plain also, that what ever data may be determined for springs having proportional dimensions, and considered as being formed of homogeneous material, and of the same temper, nothing but experiment could determine their strength with accuracy, for, although dimensions may be accurately determined, the quality of the metal and exactness of temper can never be relied upon as constant. Approximate results, however, might be obtained of great use in the construction of this important element of machinery.
The uses of springs seem constantly multiplying. A large umber of most important machines, such as printing presses, and the like, employ them in almost all their forms. In many clocks, and all watches, they are the prime movers, while their
employment for all sorts of vehicles need not be more than employmen
A class of rather visionary inventors have vainly (as yet) endeavored to use them as the propelling power for vehicles, and we receive many communications requesting our view upon the feasibility of so doing. While there is theoretically no impossibility, in the idea of such propulsion, we think w can see so many practical difficulties in the way of its accom plishment as to render its success extremely doubtful. These practical difficulties are so well known that they need not here be specified. Mechanical skill may possibly eventually overcome them, but let not the mistake be made that a spring possesses any more power than is delegated to it. It is only a magazine of power, and can give only what it has previous ly received. We should have considered this last remark un necessary had it not been that the tone of some communica tions lately received indicates that their authors have not fully purged themselves of the old illusion of the per petual motion.

\rightarrow PROTOPLASM.

Protoplasm is the scientific name for a substance whic modern science has demonstrated to be common to all livin things from the luwest plant to the highest animal organization. Prof. Huxley demonstrates that it may in itself exhibit all the phenomena of life. It contains oxygen, hydrogen aitrogen, and carbon. Before these elements can form living protoplasm, they must unite to form the binary compounds of pre-existing living protoplasm these compounds form a com-
plex living substance, new protoplasm, which, Prof. Huxley so aptly terms the " physical basis of life." He says: " To this complex combination, the nature of which has never been determined with exactness, the name of protein has been applied. And if we use this term with such caution as may properly arise out of our comparative ignorance of the things for which it stands, it may be truly said that all protoplasm is proteinaceous, or, as the white or albumen of an egg is one of the commonest examples of a nearly pure proteine matser, we may say that all living matter is more or less albuminoid."
The living protoplasm of animals, a good example of which is seen in the white corpuscles of the blood, has not the power to influence the combination of the above-named compounds into new protoplasm. This power belongs only,so far as is at present known, to vegetable protoplasm, which, however, is not on that account to be considered as distinct from animal protoplasm. The latter has the power of converting dead animal or vegetable protoplasm into living animal protoplasm.

In this view protoplasm is the primary " matter of life," the first step from the inorganic in to the organic world.

SKINNING AND STUFFING BIRDS.

The preservation of the skins of animals and stuffing them so as to preserve their natural appearance, is an art requiring considerable skill and taste. It is also of great utility in the study of natural history, as well as a very pleasing pursuit for amateur collectors.
We are requested by several correspondents to give some information upon the skinning and stuffing of birds. While no amount of verbal instruction can give practical skill and artistic taste in the preparation and mounting of specimens, what we may say will perhaps be useful as a guide to those who have just begun to exercise this instructive and amusing art.

It is more difficult to properly prepare and mount bird skins than those of other animals, as the preservation of the plumage in an unruffled and unsoiled state, is the point to be aimed at, and feathers, if broken, are very hard to re-adjust properly.
In killing birds with shot the feathers are very apt to be more or less damaged and soiled with blood, which, if it be permitted to dry on the plumage, will be difficult to remove without some permanent disorder in its arrangement. These evils may be in a great measure avoided if the sportsman will attend to the following directions: He should take the field provided with a small box of cotton wool, a bottle of water and a small shallow dish of some kind to hold a small portion of water at need. He should also be equipped with some small sable brushes, such as are used in water color painting, and a short piece of stiff wire with the end rounded. As soon as he has shot a bird he should aim to get it in hand as soon as possible, and plug the shot holes with cotton to prevent further bleeding. In doing this he will find the wire above alluded to a very useful instrument. When the bleeding is stopped, he should next cleanse the feathers from the blood which has already flown, by using the water which he carries for the purpose and the brushes. If the blood is thus removed before it dries, it can be so completely washed off as to leave no stain even on the whitest feathers, and at the same time their texture may be preserved from damage. Should any of the feathers become so much bent as to be difficult to straight-
en, they may be restored measurably by soaking in hot water.
Before skinning, the principal dimensions of the bird should be taken and noted down for reference in mounting. The first incision should be made longitudinally backward from the lower point of the breastbone. From the beginning of the operation to the conclusion, all fluids should be constantly absorbed by cotton wool, the greatest care being taken that they do not flow out and soil the feathers. As fast as the skin is separated from the body a thin layer of cotton should be inserted to prevent its adhering to the flesh and for purposes of absorption. Through the incision made as directed the entire process of skinning must in general be performed. When the skin is stripped down from the muscular portions of the legs, they must be cut off on the inside of the skin with scissors or a knife so as to leave the feet attached to the skin. The tail is likewise cut off on the inside at its attachment to the back. The body can then be suspended from a hook and the skinning proceed toward the head by turning the skin inside out. When the wings are reached the skin should, if possible, be removed as far as the joint constituting the elbow, but if it is ound difficult to do this without tearing the skin, the bone may be severed as low down as practicable, by use of cutting pliers or strong scissors. Great care will be needed to avoid breaking the delicate membrane which constitutes the external ear upon the heads of birds which are nearly or quite bald. Care is also required in manipulating the eyes, the external membrane of which ought, if possible, to remain unbroken The brain is removed from the skull through incisions made well back through the roof of the mouth. All loose flesh and fat about the neck, tail, and legs, should be removed from the skin. For this purpose the skin on the wings may be cut through on the inside, when it covers those parts from which the bone and flesh could not be removed. The parts liable to rsenic, or arsenical soap, which will effectually preven decay.
The skin is now ready to be stuffed, which although it seems simple in description, requires considerable skill. I glass is not used for the eyes their orbitsshould first be stuffed through the mouth with cotton. Next the upper parts of the throat should be filled with the same material. A roll of cot
ton should now be inserted through the first incision, and
pushed up through the neck to the base of the skall. Then he body should be filled, during which process the wires for supporting the bird when mounted should be inserted into the legs, neck, and wings. This completes the process so far as it can be described in words, with the exception of sewing up the opening through which the stuffing has been performed. This requires no special skill to be performed neatly.
Some slight variations in the method are requisite, according to the character of the bird. For instance, a very large bird may require to have the neck cut off when the skull is reached, and the skinning of the head to be performed by an ncision from the outside down the back of the skull.
In mounting birds there is room for considerable display of taste in the adjuncts. A branch of the tree which the bird most affects, with artificial leaves, may be used with good ef fect as a support for the feet. The natural beauty of the plumage may be enhanced by suitable contrasts of color in the lining of the case where they are kept. An aquatic bird may be shown holding a fish in its mouth, such as it commonly obtains for its food, and many other fancies will suggest themselves to those who wish to excel in the art.

The directions we have given will, if observed, enable any ngenious person after a little practice to skin, stuff, and mount a bird creditably.

WHY DON'T BOYS LEARN TRADES? ?--MECHANICAL LABOR

Our recent agitation of this question and subject has brought us a number of communications. We do not propose to iterate and reiterate our statements or suggestions. We have already stated the facts, and pointed out the possible and practicable remedy. It is perfectly simple, and entirely feasble. But we give the gist of a few of the communication we have already received, in order to show the general feel ing on the subject, and in the hope that those in whose hands the remedy lies may be induced to apply it. A young man, signing himself " Eugene Dunbar, of Holliston, Mass.," says : "There are many boys, myself included, who would be very glad to learn some good trade. For several years I have been very desirous to learn the trade of a locomotive machin ist, but, although not too proud to take an apprentice's posi tion, I have not met with success in my endeavors to obtain a chance to learn the business."
Another writing from Georgetown, D. C., referring to our rticle published on page 169, current volume, under the heading, "Why is Mechanical Labor Objectionable?" says " Education is everything. But just so long as we train our young people in literature and the classics, we must necessar ily breed a race of men and women lazy in the qualities de manded by mechanical labor. Our school system needs a thorough remodeling. Our farmers' sons, after passing through a course of literary training lose all taste for the noble art of cultivating the soil. We should have a more healthy state of society, if, at school or college, our children were thoroughly instructed in a practical knowledge of mechanics and agriculture. The cultivation of the soil demands for its intelligent management a knowledge of chemistry, botany geology, of fruits, trees, rearing of cattle, of the properties and uses of manures, etc., all of which afford pleasure, and give healthy mental and physical occupation. He who is once initiated into this science of sciences, and its application, will not quit the cultivation of the soil for any meaner profession. Literary training, instead of being the principal object of school education, should be considered a recreation, and the practical should take precedence."
E. W. Dean, of Norwich Town, Conn., also writes that he has passed through the ordeal, having been a clerk three years, where his hands were kept soft and white, and then became a machinist's apprentice. This was hard on his hands, and insured his receiving the cold shoulder from his acquaintances, who before welcomed him. He, however (very wisely, in our opinion), prefers his position of independence as the master of a useful art than as a mere caterer to the tastes of purchasers of finery.
The following from the Philadelphia Morning Post is allied to the general subject, and we therefore copy it: "The late report of the directors of Girard College shows not only the great changes that have in late years taken place in our social and business systems, but a very unpleasant result in regard to the college. There are now forty boys in the institution who are ready to go out, but who are obliged to remain because there is no one willing to receive them under indentures, as provided by the will of Gir ard. The system of indentured apprenticeship having fallen into discredit and disuse, these boys are unable to find masters, and must, therefore, remain in the college, occupying the places of many who are ready to enter, thus interfering very much with the usefulness of the institution. There is, it appears, no legal way of disposing of these pupils, who have gone throughi the prescribed course, and have drawn from the college all the benefits to which they are entitled.
" According to the will by which the institution was founded and governed, these boys must be bound out to learn a suitable trade. That patiently waiting for persons willing to take them under these conditions will be of any avail we doubt. Every month, every year will find fewer and fewer business men adhering to the old system of apprenticeship. Every year the number of boys who have graduated but cannot leave the college, will increase, until in time the whole establishment will be filled with its alumni, to the total exclusion of new scholars, and this body of graduates must, we suppose, stay there until they are old men, and every time an octogenarian drops off, a boy may be admitted.
the legislature is empowered to pass such a law as may en-
able the Board of Directors to place the boys at suitable able the Board of Directors to place the boys at suitable
trades and callings without the necessary accompaniment of an indenture, it should immediately be done."

VELOCIPEDE NOTES.

One of the most brilliant exhibitions of skill in velocipedes trianism that has ever taken place in this city or elsewhere took place at Apollo Hall, corner of Twenty-eighth street and Broadway, a few evenings since, under the direction of the Pearsall Brothers. Dodworth's band was present, and the evolutions of the skillful riders present on the occasion wer rendered more pleasing by the accompaniment of splendid music, for which this celebrated band is distinguished. The tournament opened by the entrance upon the floor of twenty five of the most expert riders in the country, whose advent called forth immense applause, renewed as the graceful evol-
utions of the performers excited and delighted the admiring utions of the performers excited and delighted the admiring large and fashionable concourse of ladies and gentleman.
Nearly all the bicycles in popular favor were represented but the most attractive feature of the evening was the performance of a sister of Messrs. Pearsall, on a beautiful littl ladies' velocipede, which has been appropriately called the "Peprless." This machine has low wheels, and is propelled by treadles connected with the cranks, so that a special dress
is not required by the fair rider. It is altogether a most at is not required by the fair rider. It is altogether a most at tractive design, and will, we think, speedily become a favor ite with the fair sex.
A two hundreddollar Pickering velocipede is offered by the Pearsalls, to be competed for the fastest time in a half mile at the Gymnacyclidium, on Thursday, the 15th inst. The machine is mounted with silver plate and ivory fittings, and is a gem.

A challenge has been put forth by Mr. Frederick Hanlon who offers to race any velocipedist of the United States for thousand dollars a side and the championship. The race to take place in this city or Brooklyn, half mile heats, best tw out of three. The time between the heats to be ten minutes.
The party accepting the challenge to choose his own velocipede, the fore wheel of which shall not exceed 37 in ., excep it be a Demarest, in which case the fore-wheel shall not ex ceed 41 inches.

The Herald says: "It is probable that a Brooklyn expert will accept Mr. Hanlon's $\$ 1,000$ challenge, and that the rac will be arranged to come off at the Empire City Rink.'
Mr. Stephen W. Smith has commenced a suit against Mr Calvin Witty for alleged infringement upon patents original lý granted to Philip W. McKenzie, of Jersey City, and subse quently assigned to Mr. Smith. The McKenzie invention wa illustrated in these columns a few weeks ago
Much diversity in opinion, as to the proper dimensions of the velocipede wheels and cranks, has existed, but the favorite size seems to be from 30 to 36 inches for diameter of driving wheel, and 6 inches for length of cranks. We have seen larger ones, but we doubt that they will be much used so long the bicycular form of velocipede is considered the best.
Since writing the paragraph in regard to rubber tires for velocipedes, we have had submitted to us a number of plans for fastening them. To fasten them firmly has been the difficulty heretofore. Some of the plans proposed seem well adapted to meet the requirements of the case, but actual trial can alone demonstrate their value.
We saw recently a bicycle propelled up the heavy grade from the Wall Street Ferry to the top of the Brooklyn Hights. We were too far away to ascertain the maker of the maching, or the name of the rider. When we add that this grade is certainly not less than one foot in ten, our readers will appreciate the significance of this statement, with reference to the possibility of overcoming steep grades. The rider ascended the entire grade, certainly not much less than three hundred yards in length, using the flagged sidewalk as a way.
The Brooklyn Union says, the fastest time yet made on a velocipede in this couutry, was that made by Messrs. Burroughs and Demaist, on the nig 41 -inch driving whe on Dem arest machines, with $45-\mathrm{inch}$ and 41 -inch driving wheels. The
trials took place on the mammoth rink in Third avenue, and trials took place on the mammoth rink in Third avenue, and
the machines which were ridden were the Demarest, Wood, Pickering, Mercer, and Monod, and the Union Hardware Company. Previous to the race the Tilton Brothers and the two Tildens did some bicycle gymnastics, and the display was much admired. We heard a suggestion made that the exhibition would be preferable if the two parties went in couples rather than in a quartette, After the fancy riding came the races. The course was half a mile, three times the circuit of the hall, the center of the hall being marked off by rows of seats for exercise riding. Mr. Burroughs led off on a $45-\mathrm{inch}$ Demarest, and he went round at a startling pace, making his first circuit in eighteen seconds, great time for the sixth of a mile. He, however, started too fast to keep up his pace, and he occupied $72 \frac{1}{2}$ seconds in doing the entire distance. Dar ling was the next, and he made the half mile in $71 \frac{1}{2}$ seconds on a 41-inch Demarest. Young Hamburgh now tried in on a a 33 -inch Union Company machine, and he made excellent time, coming-in in $85 \frac{1}{2}$ seconds. Mr. ${ }^{\circ}$ C. D. Demarest now got on a 41 -inch Demarest machine, and he flew round the hall at a rapid pace, coming-in in $68 \frac{8}{4}$ seconds !-the fastest half-mile time on record. A Mr. Weed then tried a 38 -inch Pickering, but it took him 90 seconds to go the half mile. G. Pilden then tried his skill on a 45 -inch Wood machine, and ke did his half mile in $76 \frac{1}{2}$ seconds, his brother doing it in ke did his half mile in $76 \frac{1}{2}$ seconds, his brother doing it in
$83 \frac{1}{2}$. A rider named Capeless was the last, and he went $83 \frac{1}{2}$. A rider named Capeless was the last, and he went
round on a 35 -inch Monod in 84 seconds, and thus ended the trials.

Ceditoriat \$umatry.

The State Engineer of New York has transmitted to the Legislature his report for the year ending September 30, 1868. This document furnishes the aggregate statistics of 157 companies, as follows : Total cost and equipment of steam roads, $\$ 208,185,783$; horse roads, $\$ 21,133,522$. Passengers carried by steam roads, $18,434,300$; tuns of freight carried, $11,961,632$. Number of passengers carried in city cars, $146,326,486$. Cost umber of passengers carried in city cars, $146,326,486$. Cont
of maintaining steam roadway, $\$ 13,074,595$. Cost of operating of maintaining steam roadway, $\$ 13,074,595$. Cost of operating
roads, $\$ 15,250,716$. Earnings, steam roads, $\$ 49,377,790$; horse roads, $\$ 15,250,716$. Earnings, steam roads, $\$ 49,377,790$; horse
roads, $\$ 8,262,291$. Persons killed on steam roads, 302 ; injured, 358. On horse roads, killed, 13 ; injured, 90 . During the year ending September 30, 1868, under both the general railoads law and special acts, thirty-six companies, with a total capital stock of $\$ 23,125,000$ and a total length of 750 miles, have organized and filed their articles of association in the Secretary of the State's office. During the same year, 169 miles of railroad, under twelve companies, have been opened.

Business of the World's Railways.-Van Nostrand's Engineering Magazine, says that according to the calculations made by the Government Statistical Office at Berlin, the number of passengers conveyed daily by the railways of the orld amounts to three millions, and the quantity of goods to twenty-seven millions of ceutners, or a million and a half f tuns. Also 58,000 telegrams are forwarded, and four milions of letters delivered every day. The daily gross receipts of the railways are $8,000,000$ florins ; they possess 40,000 locomotives, $1,200,000$ carriages and vans, and give regular employment to a million persons. The aggregate length of the elegraph wires would, if united, reach to the moon and back again.
THE great Polish salt mine, recently noticed as in danger of being destroyed by the inundation of water, is pronounced safe by the committee of seven of the orincipal engineers sent to institute an inquiry on the subject. These function of water is not of a nature to destroy the mines or prevent their working ; and that the forcing pumps for emptying the pit are now nearly all set up.

Coal Oil Burners.-We are receiving inquiries in regard to the report of the committee appointed by the American Institute to test coal oil burners, sent to them for that purpose, in pursuance of a notice published sometime since in the SCientific American. The report will undoubtedly be made in due season, when
efit of the results obtained

Never Heard of It.-A rustic gentlemen called at a wholesale store the other day, and after purchasing a bill of goods, was asked by the junior proprietor if he had "ever seen a velocipede," "Is that the machine that adds up three columns of figures at once?" said rustic. The reply was in he negative, and he was piloted round to a velocipede school and introduced to the mysteries.

A Cotemporary says that two gentlemen in Meriden, Conn., have completed the invention of a needle manufacturing machine. This machine takes in the wire and turns out completely finished needle-except pointing, hardening, and empering!
Solubility of Indigo.-M. Camille Kœehlin has discov ered the curious fact of the solubility of indigo in alkaloid, salts, and particularly in the acetates and chlorides of aniline, morphine, etc.

velocipede patents.

he McKenzie patent, under which Smith claims, is illusrated on page 181, and the patent of Lallement, owned

NEW PUBLICATIONS

Geology of New Jersex, 899 pages large octavo, illustrated by 108 Photolithographic Engravings and Woodcuts, and six Mine Maps; and accompanied by a portfolio containing Maps in sheets of

1. Azoic and Paleozoic Formations, including the Iron ore and Limestone
istricts; colored. Scale, 2 miles to an inch. 2. Triassic Formation, includ. ing the Red Sandstose and Trap-rocksjor Central New Jersey ; colored. 3 retaceous Formation, including the Greensand Marl Beds; colored. Scale, miles to an inch. 4. Tertiary and Recent Formations of Southern New
ersey; colored. Scale, 2 miles to en inch. 5. Map of a Group of Mines in Morris Connty ; printed in two colors. Scale, 3 inches to 1 mile. Map of the Ring wood Iron Mines; printed in two colors. Scale, 8 inches $1 \begin{aligned} & 1 \text { mile. 7. Map of the Oxford Furnace Iron-ore veins ; colored. Scale, }\end{aligned}$ 8 inches to 1 mile. 8. Map of the Zinc Mines, Sussex County; colored.
Scale, 8 inches to 1 mile. Price of the book and portfolio of maps, 8500 . Same, without portfolio of maps, but containing a folded and colored map of the State, on a scale of 5 miles to 1 inch, 8400 . Single copies of etther merely cover the cost of paper, printing, and binding; the expenses of the survey and preparing book and engravings being pald by the State. These publications can be had from Prof. George H. Cook, State Geologist, New valuable book, from which we can promise our readers some interesting
oxtracts, as soon as spaee will permit their appearance.

Force and Nature, Attraction and Repulsion; the Relations to Physical and morphoological Thein opments. By Charles Frederick Winslow, M. D. Phila delphia: J. B. Lippincott \& Co.
We have endeavored, before expressing our views in regard to this book it hard to maintainthat spirit to the end. Its style is at times forcible, and its author has evidently caught more than a mere glimpse of certain funda mental truths; but while saying this much, we are compelled to add that it one of the most illogical books we ever attempted to peruse. It is ful
of fantastic speculations, and contains not a few errors in its statements of facts. It is wearisome, from its interminable repetitions, and its diffuse method of discussion will harally fail to draw upon it the severe criticism of hinking readers. In short, itis to philosophy what punch is to the palate full of incongruities; and, although too much diluted by redundant form of expression, still quite palatable, but not very nutritious. Claiming a
the outset to assume nothing, it ends by assuming everything. Written to enunciate what is evidently a pet theory of the author, namely, that repul sion is equal in quantity to attraction, and that the two are coexistent, and the foundation of all material existence, it will convince few, while its spec ulations will, if we criticism.
The American Year book and National Register for 1869. Edited by David N. Camp. Härtford: Published
by O. D. Case \& Co. by O. D. Case \& Co
This work is, as its preface informs us, the initial volume of a proposed respecting the affairs of the General and State Governments, public institu tions, finances, resources, and trade of this country; the political, finan cial, and social conditions of other oountries; and various other subjects relating to social and political economy. The work is a thick 8vo, printed
and bound in excellent style ; and, so far as we can judge from a hasty review of the large mass of statistical information it contains, seems a valu able work of reference.
We have received from the publishers in Berlin, Messrs. A. Effert and Lindtner, a copy of the "Verhandhungen des Vereins zur Beförderung des
Gewerbfleisses in Preussen (Transactions of the Society for the Advance ment of UsefulArts in Prussia), for1867; being the sixty-fourth year of the existence of the society. The members of this society include not only the King of Prussia, and otherroyal personages, but also the most scientific men of the kingdom. It also comprises a large number of scientific and and interest of its contents. The facts a are sufficient warrant for the value and interest of its contents. The present number for January, February list of members, minates of meetings, list of premiums offered for valuable inventions, followed by articlesillustrated with profuse and finely-execated engravings, upon the following subjects: "On the Production of a
Green Coating on Bronze;" "On Stamping Presses "" "On Kapselräder," in which category are included rotary pumps, wheels, etc., "On the Resisting Power and Elasticity of Wrought Iron Double T-Beams;" "On Boiler Explosions in Prussiaduring the Year 1867." It also gives a list of new patents granted in Prussia during 1887; and a table of prices of wool in all the m ar ket towns of the kingdom during the year.
"The Little peat Cotters; or the Song of Love," is the attractive
title of a new volume of the Sundayschoolseriesof choice religious works title of a ne w volume of the Sundayschoolseriesof choice religious works
published by Henry Hoyt, Boston. "‘ Kate and Her Brother," also published by the same frm, will prove an interesting story for the little ones. For sale in New York by N. Tiballs \& Co., 37 Park Row.
We have received parts 13 and 14 of "Locomotive Engineering," edited by Zerah Colburn, and for sale by John Wiley, 535 Broadway, New York. They fully maintain the character of the previous numbers received, and
are unsurpassed in beauty of illustration' and typographical execution. Part VI. of "Packard's Guide to the Study of Insects" is also at hand, " Van Nostrand's Eclectic Engineering Magazine" makes its appearance "Van Nostrand's Eclectic Engineering Magazine" makes its appearance for April, wit
and items.

Auswers to Correspondents.

All reference to back numbers should be by volume and vage.

G. J., of Me., says, " a combined steel and iron rail of excellent quality is manufactured in Portland, Me." This in commenting on an ar ticle in the Scientific Americas pablished on page 213 current volume
copied from the London Engineer. We do not hold ourselves responsible for statements made by other journals and copied into our columns. C. M. B., of Conn.-We propose in our series of articles on "Shafting Pulleys and Belts," now in course of publication, to give some directions in relation to pulleys and belts, relative diameters, etc., which P. J. P., of Mass.-To turn a true taper on the lathe, the cut ting point of the tool should be exactly at the center of the piece which is to be turn
the center.
the center.
J. H. W., of Pa.-The reason why your cold chisels break is to be found in your hammering them when nearly cold, to " smooth finish" them, as you say. It is certain that this extrafnish produced by hammer.
ing refines the steel-compacts its fibers-and thus changes its texture, and consequently its before ascertained quality. It will not stand so high a temper. All the hammering required is that necessary to bring the chisel into shape while hot, changing the texture of the metal as little as may be.
H. O. B. of Mich.-You are mistaken in supposing that a very great distance is necessary between shafts connected by a quarter turned
belt. We have seen them run atoonly three diameters apart; that is, two belt. We have seen them run at,only three diameters apart; that is, two six-inch pulleys only six inches between their perimeters, the centers of
the shafts only twelve inches apart. Width of belt is an obstacle in the way of extending the principles ofrunn ing turned ortwist belts. In out way of extending the principles ofrunn ing turned or twist belts. In ou
answer to "W. H. of Pa.", on page 251, the " 15 feet "should have been 30 feet. This matter of belts will recelve further attention in a subse quent article, one of a series on "sharts McD. of N. Y, will s
McD. of N. Y., will see his critical note embodied in an ar ticle on the same subject to appear soon.
subject and will receive due attention.
J. I. G., of Pa.-You can brown your gun barrel by coating it withoil(sweetoil) and heating it over a fire. We prefer, however, the ase of acid as giving a darker and more even color. If, the surface is
properly cleaned before applying the acid there will be no difficulty in getting an even shade.
B. R., of Iowa says, in relation to prevention of limy incrus tations in boilers, mentioned on page 219 current volume, Scientipie
American, that the use of oak saplings therein mentioned is really ad
vantageous, as he has used it successfully for twelve years and neve vantageous, as he has used it successfully for twelve years and neve
knewit to fall. Or put half a bushelof common (Irish) potatoes in the boiler and no more trouble will be experienoed. As to patent powders he has never tried them.
E. H., of Mass. \rightarrow In Shaffher's Telegraph Manual, page 605 and those succeeding, you will see sections of just such cab.
containing more than one insulated conduching wire.

