THE MANUFACTURE OF ILON-THE RADCLIFFE PRO CESS

Attempts have been repzatedly made to economize in time, fuel, labor, and material, in the manufacture of iron, by wolding several puddled balls into a homogeneous mass under the steam hammer; but never with good results. The difficulty lay apparently in securing a good weld between the surfaces, exposed as they were to the oxidation of the atmosphere. But, if we can credit The Engineer, Mr. Radcliffe, of the Consett Iron Works near Durham, England, has, for a year, been manufacturing, by this process, direct from the puddled ball, into bar, rail, or sheet.
In the usual process a charge of about four or five cwt. is used, and each puddled ball, when made, is taken separately to the hammer or squeezer to expel the cinder, and the rough bloom is then passed through rolls producing puddled bars. These are allowed to cool down antil wanted for the next process. This consists in cutting a given weight of puddled bars into lengths offrom 18 to 36 inches, and making them into a pile, which is placedin a heating furnace and raised to the proper heat, when it is rolled into a bar. This process is re-peated-sometimes twice-to produce a superior article.
Now, each of these processes absorb fuel, labor, and time, and necessitate waste-waste in oxidation in the heating, as well as waste in the clippings of rough ends. The loss by oxidation cannot be less than five or six per cent, and the other waste as much, and probably more, at each re-heating. To the cost of the amount of the coal used in converting the pig iron-which is about four times the weight of the iron
itself-must be added, at each re-heating, ten cwt. to each tun itself-must be added, at each re-heating, ten cwt. to each tun
of iron. These costs do not comprise the extra labor, time, and wear and tear of machinery. If all these are saved by the Radcliffe process, it certainly deserves attention from iron manufacturers, as it does away with all cutting, piling, and re-heating. We copy from The Bngineer the description of the process

The details of the process, as carried out at Consett, may thus be described: Six, eight, or any required number of puddling furnaces are each charged with four cwt. of pig iron. The fet-
tling consists partly of pulverized hematite ore from Ulver tling consists partly of pulverized hematite ore from Ulver-
stone, partly of a very rich cinder obtained from the first pile heating furnaces in the rail mill, or from two furnaces specially employed in making cinder from small scrap. The iron is brought to nature as soon as possible, and the blooms are taken out while the iron is yet very young-as soon, iudeed, as the balls will hold together.
The moment the iron is ready in a sufficient number of furnaces, the process of manufacture begins. A puddler takes a
ball weighing about 80 lbs. to an eight-tun double-acting steam hammer. It is placed on the anvil and struck, first lightly and then, as the mass becomes consolidated, with more force. The cinder is expelled with considerable violence, and we have, at the end of twenty seconds, a flat calke of iron on the anvil perfectly quiescent. At this moment a second puddled ball is placed on the first. This receives, first a light, and then a
couple of heavy blows. The hammer is raised for a few seconds, and then a curious action takes place. The first and mass, seemingly, tolerably solid, lies quietly on the anvil but in a moment its surface rises like a cake of dough in a baker's oven. The surface seems to boil; little jets of flame sometimes start from the mass, and cinder pours in a torrent from every
pore, flowing over the lump of iron, and running down all pore, fowing over the lump of iron, and running down all
round. To what this peculiar action is due we cannot say. That this, in a sense, spontaneous evolution of cinder is a fact from the steam hammer again consolidate the heaving mass Another ball is placed on it ; a few blows; a short pause. The rising of the mass and the flow of torrents of cinder follow as quickly as thought-and so the process is continued till eight balls are united. Then steam is brought to bear on the upper side of the hammer piston. The mass of iron is turned and
re-turned, while the whole shop resounds with re-turned, while the whole shop resounds with the sound of
the hammer delivering blows with the speed the hammer delivering blows with the speed of lightning on
every portion of the red-hot mass, which finally assumes the form of a homogeneous slab some 3 feet long, 13 or 14 inches wide, and 8 or 9 inches thick. This slab is then taken up by
a little steam crane at the side of the hammer, and, while hang. ing in the air, weighed. It is then run off to a heating fu naca, preparatory to being rolled into a finished plate. heating furnace is of the ordinary kind, and is only used to
restore the heat lost by the outer surface of the restore the heat lost by the outer surface of the mass. From
the furnace it is taken to the roll mill, passed through the breaking-down grain rolls, and subsequently between a pair of the shop, a plate with whose appearance the most hypercritithe shop, a plate wit
cal can find no fault.
Mr. Radcliffe courts inquiry, and we were afforded the fullest poss:ble opportunities for examining into the process known
by lis name. We witnessed the formation of many plates, and the following particulars of the manufacture of one, selected almost lap-Hazard from our note-book, will show nearly at a glance of what the process is capable: At half-past three P.M.
the first of eight puddled balls was brought from the furnace and placed on the anvil. In four minutes and a half this and At twenty-six minutes to four o'clock this pile was placed in the heating furnace; at nineteen minutes to four o'clock it was taken out and brought to the rolls; at fourteen minutes four o'clock it lay on the floor of the mill ready for shear-
ing. Thus, precisely, sixteen minutes were occupied in proing. Thus, precisely, sixteen minutes were occupied in prothe plate before shearing was 674 lbs . It was then sheared
to the finished size, 20 feet by 3 feet; thickness, $3-16$ th of
an inch, nearly. weight sheared 448 Is an inch, nearly; weight sheared, 448 llos. Is it necessary to
point out here how much is gained in time, coal, iron, labor, and, finally, in money, by the Radcliffe process, as compared with old systems of manufacture? We think that they will be apparent at a glance to every ironmaster. What we have
said in the beginning of this article should suffice to make them clear to others.
The question that here obtrudes itself is, what is the quality factory, the Radcliffe process-ingenious, cheap, and rapid as it is-is comparatively valueless. At Consett we examined some scores of specimens of sheets tested in every possible way.
Plates 7-8inch thick, bent cold to an angle of 90 deg. Thinner plates, bent upon themselves, coiled into a helix, split and bent tortured in every imaginable fashion, punched close to the and
-as close as holes would go-yet no symptom of crack or flaw. We have no hesitation in classing the specimens we examined
with the very best ship-plates in the market; and yet these with the very best ship-plates in the market; and yet these
plates are produced at a price which has enabled Mr. Radcliffe to take very heavy orders from Dutch shipbuilders, beati
Belgium out of the market, and yet leaving a fair profit. celgium out of the market, and yet leaving a fair p

MANUFACTURE OF PRESSED AND CUT GLASS WARE,

Having described, in former articles, the composition and modes of manufacturing bottles and window glass,our readers will understand the methods employed for pressed glass ware
by a very brief description. The pressed glassware is made by a very brief description. The pressed glassware is mades
by pressing glass into molds of iron, and the articles thus formed aproximate in beauty and regularity of form to those of cut glass, described further on. The operation requires less skill in manipulation than glass-blowing, but is, nevertheless, interesting.
It will be best understood by describing the manufacture of some special article-say a fruit dish, the あówl of which is saucer-shaped, and its foot formed like the bell of a trumpet. Such an article would be made in two parts, the bowl and the foot being pressed in separate molds, and afterward joined totogether. A boy takes upon the end of an iron rod or " punty," a quantity of glass from the melting pot,and holds it over the open mold. The weight of the molten glass causes it to depend in the form of a large pear-shaped drop. The principal workman, who has charge of the mold, cuts off this drop with a pair of shears,as soon as,in his judgment,enough has depended to exactly fill the mold. As soon as the glass has fallen into the mold, it is closed with a lever which forces the glass into every part of the matrix. The molds are made in two parts corresponding to the convex and concave sides of the piece. So accurate is the judgment of the skilled operators in this process that they rarely fail to properly apportion the glass to the capacity of the closed mold. The glass is removed from the mold as soon as it cools enough to become rigid, and is carried by an assistant to the annealing oven, if complete ; or, if, as in the particular case of the fruit dish, it requires to be joined to another portion, it is cemented to its fellow by a small portion of plastic glass, and then placed in the anneal ing oven. Varieties of form and pattern may be attained by this method which are impossible in the blowing process, and the larger portion of goblets, salt-cellars, and other glass table ware, in common use, is made in this manner.
The finer and most costly articles of glass ware are finished by a process called cutting, which is, however, really a grinding process, performed by means of iron, sandstone, or copper disks, of various sizes and forms, according to the nature of e work to be performed. The disks are fixed, by prope ing, and emery for finer work. A stone sand for rough grind efface the sery for finer work. A stone wheel is also used efface the sand marks, and wood disks are used for polishing,
supplied, at first, with a mixture of pumice and rotten stone and finally with "putty powder," a preparation of tin and lead. Flint glass is the best for this purpose, as its superior hardness enables it to take a finer polish. Great skill and artistic taste is shown by the artisans, in this depariment, and cut-glass wares command a higher price than any others.
Plate glass constitutes a large and important branch of the glass manufacture, and may form the subject of a future article. The numberless uses to which glass is now applied render all information, respecting its manufacture, of value and although the manufacture of plate glass has not yet been successfully introduced into the United States, the extent of the demand here would seem to justify further attempts a home production.

THE NORTHERN PACIFIC RAILROAD

A joint resolution has passed both Houses of Congress re lieving the Northern Pacific Railroad Company of the prohibition against mortgaging the road. This resolution was
adopted in consequence of a proposition by the company to adopted in consequence of a proposition by the company to
build the road withoutt further Government aid, in consideration of the wuthority thus given to them.
The Superior Gazette says an assurance has been given on the part of the company that the road will be commenced early in t需 spring and pushed with a vigor worthy of so great an entoprise
Now that the timg begins to Iook like work, we lay before our readers some facts showing the advantages this route possesses over that of the Union Pacific. The eastern termi nus of this road is at Superior, situated at the western ex-
tremity of Lake Superior, and its western terminus is to be at the southern extremity of Puget Sound. Its length is 1,725 miles, of which the journal above quoted says:
" Not over 250 miles will have an elevation exceeding 3,000 feet above the sea, while of the Union and Central route 1,100 miles are more than 4,000 feet above the sea, and more than 500 miles of it have an elevation of 7,500 feet above the ocean. Every 300 feet of ascent lowers the mercury one de gree. The elevation of the valley of the Yellow Stone is scarcely above 2,000 , while upon the same meridian the Union road reaches an elevation of 6,000 feet, and at the summit
reaches 8,424 , while the Northern route only attains $5,330-a$ difference of nearly 3,100 feet. Beside this, the fall of snow at the same elevation on the two routes is one-half less on
the Northern than on the other, owing to the extreme drynes the Northern than o
"While a large portion of the lands granted to the North ern road is susceptible of a high state of cultivation, and of sustaining a dense population. not one acre in one hundred of the Union grant is susceptible
one sage hen to the square mile.
"The Northern road will cross
it the country to which the United States must look for all
time to come for its supply of wheat. The country which the hardy emigrant from the north of Europe will cccupy in almost countless numbers, when this road is cpened. On this route he will find his 'home' climate, and as they are the better class of immigrants will add millions to the wealth of the country through which the route passes. By the time the road reaches the mountains, at least two or three huncred thousand of population would be drawn to its line; while on the Union, except at two or three isolated spots, hardly as many hundreds have an abiding place. The arable portion of the great central plain of the American contincnt extends welve hundred miles to the north and northwest of the head of Eake Superior ; while it does not reach over holf that dis tance to the west of Chicago. The distance from the former to Lake Winnipeg is less than from Chicago to the Missouri river
"The Northern route for six months in the year will not ave a land carriage to exceed 1,750 miles, and from this point to the seaboard during the season of navigation reights can be transported for one-third what railroads harge.'
The latter advantage will also enable the company to do through business for a considerable portion of the year before the road is completed, by laying sections connecting the navi gable waters which,for a large portion of the route, lie almest parallel to its general course.
Although this route lies so much farther north than the Union Pacific, its lower mean elevation compensates for the higher latitude in its climatic effects, and we regard it as es tablished that there is less danger of snow olstruction than on the Union Pacific line. We have always regarded this route with favor, and arc glad to see such good prospects for its speedy construction. When it is remembered that vessels coming from China make the North American coast near the straits of San Juan De Fuca, the entrance to Puget Sound, it will be seen that this road is destined to become, on its completion a formidable rival to the Union Pacific for the Clina trade. So far are we, however, from thinking either will ul timately suffer from competition, that we believe ere another half century shall have passed, the increase of population on he Pacific coast will necessitate the construction of a thir trunk line connecting the great West with the Atlantic.

Mercury and Sulphur.

A few interesting facts,in which mercuryplays a remarkable part are worth mention. Certain Dutch chemists discovered that plants cannot live in an atmosphere which contains vapor of mercury. Boussingault, of Paris, found that this noxiou effect could be neutralized by introducing sulphor in to the at mosphere ; and further, that sulphur, when exposed to vapor of mercury, takes on a coat which resembles iron, and doe not easily rub off, or soil the fingers. This coat is sulphuret of mercury. Here, therefore, is a suggestion which may be turned to account by enterprising artists. Lat them melt $\leqslant u l$ phur, and cast it into statuettes, friezes, moldings, flowers, and so forth, expose them to vapor of mercury, and they will ob. tain a number of ar icles, all wearing a metallic appearance, which may be found useful for ornamental purposes. The French chemist, taking a wide view of the subject, asks whether sulphur, which is at times found in the atmosphere whether sulphur, which is at times found in the atmosphere,
may not play an important part in neutralizing the effects of aoisome vapors, or the deleterious miasm which rises from marshes and the banks of rivers in hot countries. And may we not ask, whether it will ever be found possible to stay the progress of an epidemic by flooding the atmosphere with fumen of sulphur?

The Hydroscope

An instrument called the Hydroscope has recently been invented in England, and is intended to be used for the pur pose of measuring the distance of an object from a coast bat tery, situated at least one hundred feet above the sea level The construction of this instrument is described as leeing exceedingly simple, and the apparatus, it is asserted, can be used with great ease. The hydroscope consists of a piece of ordinary gas pipe, about six feet long, to the extremities of which upright tubes are attached. The whole is filled nearly ful of water, and in each upright tube is inserted a tin float, car rying a crosspiece, and weighted so that when the long tube in a horizontal position the cross bars are on an exact level An upright tangent scale, graduated for yards of distance is attached to the sight end of the tube, which moves on it center in both a horizontal and a perpendicular direction. The instrument is placed in any part of the kattery which commands an open view, and the observer revolves the tube un til it is in a line with the object, and then raises the tangent scale until he can just see the object in a line with the two ross bars. The range is then read off in the tangent scale and the gun is placed in the direction thus ascertained.

Well-Directed Liberality.-Mr. Peter Cooper, the ounder of the Cooper Union in this city, has furnished the Trustees with the sum of $\$ 20,000$, to be applied to purchasing complete $s t$ of mechanical models, illustrating every con eivable form in which power can be applied to machinery The models will be procured in Darmstadt, in Germany, and will be about 2,000 in number.

Proposals have been published in Berlin for the formation a company to lay down a new telegraph line between Eu rope and America, to be called the International People's Ca ble. One part of the arrangement is, that the subscribers are to receive bonds which will be accepted in payment for tien transmission of messages when the line is in working order.

Improved Steam Cooking Apparatus.

It is well known that steam is a valuable agent in the cooking of food, and it is utilized, to a great extent, not only in large establishments, where food is cooked by wholesale, but in private families. The design of the apparatus shown in the accompanying engraving, is not only to afford a means for generating steam for this purpose, but to generate it rapidly and continuously, with the expenditure of but little fuel.
The lower portion, A, is the furnace, or the compartment into which gas is introduced by the flexible pipe. The top of this department consists of a fine wire gauze, through which the gas passes and is rendered combustible by passes and is rendered combustible by
means of the oxygen of the atmomeans of the oxygen of the atmo-
sphere, that gains access through the sphere, that gains access through the
space, B, between the gas chamber and the generator, C. The construction of this portion is peculiar. It is seen plainly near the top of the figure, where the shell is shown as broken away. The water spaces are radial, interspersed with similar radial spaces for the products of combustion, their cross-sectional area being two or three times greater than that of the water spaces. The than that of the water spaces. The
latter communicate with a central cyllatter communicate
indrical chamber.
indrical chamber.
It will be seen that the heat entirely envelops the water, and, passing up through the interspaces, escapes, as seen, in the direction of the arrows. The relative area of heating surface, compared with the water surface, is very great, insuring a rapid boiling ${ }_{\boldsymbol{r}}$ and a constant and equable heat of the fluid, notwithstanding the influx of water to supply that thrown off as steam. The supply that thrown off as steam. The at D. This may be connected to the generator, as shown, or may be distinct and apart from it, as desired. The water passes from it to the water spaces of the generator by the pipe, E, by which the hight of water in the generator is kept always at the same hight as that in the reservoir. The steam is delivered to the food to be cooked through the pipe, F. The principal advantages claimed for this apparatus, are the rapidity and equability of the generation of steam for cooking purposes. The heating surface, compared with the water surface, is enormous. It is evident that gas is not absolutely necessary as a fuel, as any lamp, or even charcoal, may be employed with a slight modification of the furnace portion. The inventor has, also, other arrangements of this device, also, other arrangements of this device

DAVIS' PATENT CULINARY STEAM ${ }_{z}{ }^{\text {GGENERATOR. }}$

yielding power. Patents were issued to Job A. Davis, Nov. 8,	pounds and weighing only forty pounds, although clumsily
constructed. By substituting a side saddle and shortening	1868, and Feb. 2, 1869 Communications and orders should be addressed to the patentee, Watertown, N. Y.

Improved Three Wheeled velocipede. An objection strenuously urged by physicians against the velocipedes, now so popular, which are driven by the feet, is that the labor demanded by the lower limbs tends to produce hernia, or rupture. We question the ground for this objection, but if any exists, the vehicle shown in the accompanying engraving obviates it, being impelled wholly by the hands and arms, the feet and legs merely guiding the machine.
The front, or driving wheel, may be made of any size required, within practicable limits, that represented in the engraving being about four feet diameter, with which the inventor says he can make twenty-five miles per hour on a level. This wheel is held in the fork of an arched reach, the rear end of which is pivoted to an arched axle, the ends of which pivoted to an arched axle, the ends of which form journals for the two guiding wheels which are about two feet in diameter. The
rider sits on a saddle connected to the reach by rider sits on a saddle connected to the reach by
an upright sliding bar, and is sustained by a spiral spring to give ease of motion. Directly in front of the rider is an upright, through the crosspiece of which runs a shaft, having on each end hand cranks, from which rodsrun to corresponding cranks on thedriving wheel shaft. These cranks are placed at right angles so that the machinemay be put in motion from a state of rest, in whatever position the cranks a state of
may be.
Stirrups, in which the rider places his feet, are attached to cords that run to the rear axle and serve to guide the machine, as may be plainly seen. When the vehicle is to be run straight forward a spring fixed to the center bolt of the rear axle, that passes through the end of the reach, holds the axle in the proper position. This yields when pressure is brought mup is released
vorse position. verse position.

SAMUELS' PATENT HAND CRANK VELOCIPEDE.
ent Agency, Feb. 23, 1869, by Issac Samuels, of Marysville, Kansas, who may be add
Box 773 New York city.

DOUGLAS' IMPROVED PATENT GLOBE VALVE.
One of the greatest annoyances to which the occupants of buildings fitted with steam and water pipes are subjected, is the leakage of the valves. It is a well-known fact that the best fitted metallic valve will become leaky very quickly, if a particle of scale or dirt from the pipe is caught between the valve and its seat while under pressure; and a leak, however slight, will cut a channel that continually grows larger. De. vices have been contrived for re-grinding valves when leaky. This, however, is attended with inconvenience. The accompanying engraving illustrates a valve that seems to obviate there difficulties.

The shell is made in the usual way, but with somewhat greater depth of seat than others, the stem, stuffing-box, etc., being the same as those ordinarily used. The valve is attached loosely to the stem by ball and socket joint allowing slight play. The valve proper is composed of three parts, the lower disk, A , and the upper one, B , embracing between them a vulcanized rubber disk, C, held securely by a screw forming a part of the upper disk, and a nut, as seen. Either A or B, alone or combined, form perfect valve plugs as safe as any used on ordinary valves. In addition the flexible disk renders assurance doubly sure. The steam coming in the direction of the arrow and pressing upon the disk, A, expands this elastic disk, so that the greater the pressure the closer the fit. When worn or injured this disk may be quickly removed and another substituted. These parts are all manufactured in duplicates. This is valve adapted to steam, gas, water, and other liquids.
Patented March 17, 1868, by Frank Douglas, Norwich, Conn., who may be addressed for the right to manufacture or for the valves. They may be obtained also of Belknap \& Burnham, who manufacture them at Bridgeport, Conn.

American Antiquities.

At the meeting of the Americali Association for the Advancement of Science, recently held in the city of Chicago, many of the papers indicated considerable activity in the researches into the antiquity and character of the early races of men who inhabited America. Col Charles Whittlescy, in a paper on the "Geological Evidences of Man's Antiquity in the logical Evidences of Man's Antiquity in the
United States," maintained that four American United States," maintained that four American
races preceded the red man :-First, the moundraces preceded the red man :-First, the mound-
builders; second, a race in the territory now called Wisconsin'; third, a warlike race in the region south of Lakes Ontario and Erie; and, fourth, a religious people in Mexico. Pottery, arrow-heads, etc., have been found in conjunction with and beneath the mastodon and megatherium. Human remains havealso been found during excavations at New Orleans at a depth of sixteen feet. Mr. Foster exhibited a copper knife found in New Orlcans, which he believed knife found in New Orlcans, which he believed
was a relic of the mound-builders. A waterwas a relic of the mound-builders. A water-
jug, saimounted by a human head,and a statuette of a captive,with his hands bound behind him, both from Peru, and evidently of extreme antiquity, attracted much attention. It may also be mentioned, that the recent explorations of Mr. E. G. Squier, in Peru, and the curious photogfaphs of ancient temples, dolmens, etc., which he has brought back, have renewed some old theories as to a connection in origin between the earlie
Amexica and those of the oriental countries.

