Patent Wire shears and Pliers Combined. Artisans have long felt the need of such a tool as the annexed engraving represents. Its advantages over others for the same purpose are very great. The jaws of the pliers are constructed in the required form, without the knives at th sides to obstruct their free use, as in the old combined cutting pliers.
The shears are made in the joint, which is formed of two smoothly faced surfaces held firmly together, and moving on a common center in opposite directions, as the pliers are opene and closed.
These surfaces are, in fact, two circular plates of steel which being angularly notched at the periphery in one or more places, form the most perfect wire cutters in use. They are arranged so as to operate to the best possible advantage, either for ease of cutting or durability. The superiority of the shear cut, together with the increased leverage, enable the operator to cut a wire by one hand with these shears that cannot be cuî by both hands with the ordinary cutting pliers; and while the mere at tempt in the latter case would be almost certain destruction to the tool, the shears will cut the wire without showing any evidence of having been used. The utility of these combined pliers is obvious, Beside being useful to all who work in wire, such as tinsmiths, machinists, telegraph builders, hoop-skirt manufacturers, etc. every farmer and every house keeper will find them quite as useíul as a hammer or saw. They are made from best cast-steel, and are said to be equal in quality to the best Stubbs goods The manufacturer has so much confidence in the success of these pliers that he will supply responsible parties in the trade with them, to be returned at his expense if found unsalable.
All orders or letters of inquiry addressed to L. Button, man ufacturer of steam and hand fire engines, steam pumps, etc. Waterford, N. Y., will receive prompt attention.
uncation
munnicafionome Pacific Railroad and n Ship Canal.
The New York Shipping and Commercial List, in favora bly quoting our brief article on page 345, last volume, on the facilities for international communication, very truthfully says:

Our cotemporary's views, with regard to the relative cost of water and land transportation, are substantially correct. Still, a good many light costly goods, from Japan and China, such as But the transportation of tea, in any considerable quantities, over this route, may reasonably be doubted, as, in the opinion over the trade, the length of the carriage by rail would result in
of the
so pulverizin the article, asto detract materially fromits value. so pulverizing the article, asto detract materially fromits value.
There cannot be the slightest doubt, however, that the trafic There cannot be the slightest doubt, however, that the traffic
between the Eastern and Western portions of the Continent, tobetween the Eastern and estern portions of the Continent, to-
gether with the business which a short route to China is certain getherwith the business which a short route to China is certaich
to bring, will affor the Pacific Railroad all the business which it can accommodate, to say nothing of an important interme diate commerce, which it must build up. Nothing is more certain than that this great highway will, within a brief period be instrumentalin thickly populating a vast extent of country stretching away from the Missouri River to the Rocky Moun tains, thus rendering necessary a network of railroads simila sippi and Missouri Rivers there was, in 1860, a population of twenty-seven millions: westward there was less than one thir tieth the population, though double the area. And yet this great area is full of mineral and agricultural wealth ; so full, that thirty-five millions of dollars of gold and silver are drawn from it every year, and the rich valleys of the pregnant rivers
yield a maximum of agricultural products in return for a minimum of toil. The greatness of the traffic which will come to the great national highway between the Atlantic and Pacific, all contributing to its success and profit, can hardly be over es timated. That it will be so vast, a few years hence, as to ne
cessitate one or more through roads may, we think, be taken cessitate one or more through roads may, we think, be taken for granted. But, for our countrymen to control the rich trade
of China, India, and J apan, a cheaper and shorter water route is absolutely essential. This want will be supplied as soon a science shall assure us the projected Darien Canal ; the Isthmns being unquestionably the key to commerce between the Atlantic and Pacific Oceans. Since Cortez first viewed the two oceans from an elevation on the Isthmus, this magnificent project has been the dream of philanthropy and of liberal enterprise. Th Spaniards, the French, and the English have repeatedly, during
the last three centuries, sent expeditions to solve the problem. No less than nineteen canal routes, and seven railroad and com mon road lines, have been contemplated, only one of whichthe Panama Railroad, an American enterprise-has been accomplished. This avenue, in connection with the steaniship lines, has been a potent element in the development of comaccurate index of the success that would be likely to atend the canal. We are pleased to know that this grand project is as suming a shape that will, sooner or later, insure its consummation. The leading merchants and capitalists of the United States have taken it in hand, and with them "there is no such word as fail."
"The Wheel, the Axle, and the Rail."
This is the title of a circular containing valuable tables and other information for railroad men, compiled for the Ramapo (N. Y.) Wheel and Foundery Co., by W. G. Hamilton, engineer. We extract from it the following statistical information about car wheels :
There are in daily use on the 37,000 miles of railway in the United States, not less than $1,250,000$ truck and car wheels, un-
der 8,500 locomotives, 5,500 passenger cars, 2,700 baggage and express cars, and 160,000 freight cars.
The available statistics show that passenger cars make an annual mileage of 28,400 miles, or $88 \quad 75-100$ miles per day of to be $31-3$ tuns. With this load the average life of a wheel is 45,000 miles or $158-100$ years. On trains running at express speeds, the average life does. not exceed 10 months' service while wheels under tender trucks have a life of 18 months. Under freight service in the State of New York, with an annual
train mileage of $11,483,123$ miles, transportin. 75.5 tuns of train mileage of $11,483,123$ miles, transporting 75.5 tuns of freight per train, the annual mileage per car was 14,649 miles, 3.08 years as the life of a freight wheel, corresponding withth

The Origin of Porcelain.
An apothecary's assistant at Berlin, John Frederick Bottchei An name, being suspected of alchemy, fled thence to Dresden, where the Elector, believing him possessed of the secrets of he transmutation of base metals, and their conversion into gold, placed him in the laboratory, and under the close surveil ance of Tschirnhaus, who was seeking for the Universal Med cine. It was here that the contents of some crucibles, pre pared for alchemical purposes, unexpectedy assumed the ap pearance of Oriental porcelain, which had been introduced into Europe from China, after the voyage of the Portuguese navi gators around the Cape of Good Hope, and which was even then much prized by and only in possession of the wealthy. Au gustus II. appreciated the impor ance of the discovery ef Bottche and 10 Me Cas, brechtsburg, at Meissen, where with an officer as a constant at endant, he was provided with every comfort and luxury, and with every facility for his re search, till, in 1709, the true white porcelain was produced ; and, in the succeeding year, the great manufactory at Meissen was e tablished, with Bottcher as direc tor.
The secret thus discovered was carefully and jealously guarded strict injunctions, with respect th secrecy, were enjoine upon the we castle was a complete fortres the portcullis raised neither day nor night, andno stranger allowe o enter, whatever the pretence. The chief inspector and all unde im, were sworn to the closest s ence, with the punishment of im

WIRE SHMARS AND COMBINED PLIERS.
experience of one of the principal roass in the State. But a suming that the average life of car wheels, under all kinds of service, as being five years, the total number of wheels worn
out annually in the United States will not be less than 250,000 . At an average cost of eighteen dollars per wheel, allowing one half for their value for the old wheel, the annual loss may b stated at two and a quarter millions of dollars.

POCKET SHEET METAL GAGE

The difficulty of accurately measuring the thickness of sheet metals is well known to all persons who have occasion to use or deal in them. The edges of metal being often imperfect, ordinary gages are prevented from going on readily. It also usually happens that the extreme edges are thinne than the rest of the sheet and cannot therefore be relied upon to give the thickness correctly. In selecting sheets for many purposes, it is desirable to have a gage to indicate the exact thickness in parts of an inch, and to accomplish this result the gage shown in the cut has been devised, which will show the
 thickness of a piece o metal up to three tenths of an inch in thousandths of aninch and at some distance from the edge of the sheet. The piece in form of the letter U has a projecting hub, a, on one end.
Through the two ends are tapped holes in one of which is the adjusting screw, B, and in the other the gage screw, C. At ached to the screw, C, is a thimble, D, which fits over the ex erior of the hub, a. The end of this thimble is beveled, an the beveled edge graduated into twenty-five parts and figured $0,5,10,15,20$. A line of graduations 40 to the inch is also made upon the outside of the hub, a, the line of these divisions unning parallel with the center of the screw, C, while the graduations on the thimble are circular The pitch of the screw, C, being 40 to the inch, one revolution of the thimble opens the gage $\frac{1}{46}$ or $T \frac{2 \cdot 3}{0}$ of an inch. The divisions on the himble are then read off for any additional part of a revolution of the thimble and the number of such divisions are addto the turn or turns already made by the thimble allowing $\frac{23}{0}-$ for each graduation on the hub, a. For example, sup ose the thimble to have made four revolutions and one fifth f the graduations on the hub, a, and opposite passed four graduation will be found on the thimble the line marked 5 Add this number to the amount of the four graduations, which is $\frac{100}{100}$, and it equals $\frac{105}{100}$, which is the measurement shown
by the gage. by the gage.
The gage illustrated above, which is full size of implement will measure the thickness of sheet metal or other material by thousandths of an inch up to three tenths of an inch at any point within half an inch from the edge and will also answer to measure the diameter of wire. Means of adjustment are rovided in case of wear by continued use.
The attention of machinists is called to the usefulness of this gage for convenient and accurate measurement. It is light, small and suitable to carry in the pocket. Address for further particulars, Brown \& Sharpe Manufacturing Company Providence, R. I.

A citizen of Mechanics Falls, Maine, has a very old coin, a Spanish silver dollar, bearing the date 1179. The figures and lettering are very perfect. On both sides there are several
prisonment for life attached, for divulging aught connected with the manufacture. Every where around the establish ent was the warning motto: " Be Silent unto Death."
Despite these injunctions and precautions, and even before Bottcher's death, which occurred in 1719, one of the foremen escaped from the manufactory; and, going to Vienna, was cordially received by Charles VI., and granted the exclusive manufacture for twenty-five years. Thence the process, no longer a secret one, spread over Europe, and the art, relieved from its cramping restrictions-and with the incentive of ri valry among various manufacturers-assumed its proper im portance, and made its products available to all classes.

What it costs to Go Around the world
Putnam's Monthly for January says the circumnavigation the earth has become an easy and not a very expensive un ertaking. A European journal gives the following estimate, taking Paris as the starting point; we translate the sums int $\underset{\text { From }}{\text { greenbacks }}$
Frim
Paris
Marseilles
Alexandria
Suez
Aden to
Marseilles,
Alexanandria,
Suez,
Aden,
Point
Poin Gale

From Paris to Ceylon,
From Point de Galle the circumnavigator has choice wo routes. The first and most direct is via Japan, as fol lows :

Ceylon to Paris,
The other, via Australia :

Ceylon to Paris
The time occupie
dy the two routes is thus give
The time occupied by the two routes is thus given: Day
 completed, the journey around the earth will be reduced to completed, the journey around the earth will be reduced to
eighty days, traveling time. Not only the intercourse beween China and Japan and Europe, but between Australia nd Europe, will then find its speediest route across the Ameri can continent.

A Better Umbrella Wanted.

A correspondent in one of our exchanges asks the question Will no inventive genius improve upon the construction o is shockingly ill adapted to its purposes. The best part of it where one would put his head, is occupied by the stick and wires, so that only half the sheltering cover is available. Then
the roof is so contrived as to cast the rain that falls upon it the roof is so contrived as to cast the rain that falls upon it either on to the shoulder or into the coat pockets, or down ove ne's knees and feet. To remedy these evils the stick should be placed out of the center, and a turned-up rim should be
made to constitute a gutter, with one shoot or spout only, madich can be turned into such a position as to throw the wate always to leeward of the pedestrian. If I were an umbrella maker I would endeavor to work out these improvements; as it is I can only enforce them upon the attention of those whon hey may concern.
A convention of white lead manufacturers was held in St. Louis on November 11. The object was to effect a concert of action on matters relating to the trade, and the further object of promoting the interests of Western white lead manufactur ers exclusively, reducing the price of white lead, and ridding the markots of adulterated material.

Improvement in Plane Stocks and Irons. ded the best seasoned wood and such necessary dimensions as to make it heavy and unwieldy the ordinary plane stock occasionally warps and has to be re dressed on the face. The common method, also, of adjusting the bits or irons tends to spring the plane and to destroy the wooden key or wedge. Both these difficulties are intended to be obviated by the improvements shown in the accompanying engravings.
Fig. 1 shows an improved plane, the stock lighter than usual, and stiffened, strengthened, and adjusted, as to weight, by an ornamental malleable iron or brass casting extending its whole length. Fig. 2 is an iron cap similar to that in Fig. 1 but specially adapted to planes as ordinarily used, these being susceptible of receiving this improvement without costly altera prov. Fig. 3 is a common plane tion. Fig. 3 is a common plane
iron, or bit, witha metallic wedge iron, or bit, witha metallic wedge
instead of the wooden wedge, and instead of the wooden wedge, and
double or stiffening iron, both of double or stiffening
which it supersedes
which it supersedes.
The plane-Fig. 1-has a fixed incline, A, secured in the throat of the plane by a common wood screw passing through a slot in the incline so that it may be ad justed as necessary. This has a bearing on the inclined supports of the metallic top, seen plainly at B, Fig. 2. The pointed downward projections, C, same figure, engage with the upper surface of the wedge, D, Fig. 3, and the thumb screw, E, by turning one way, brings the wedge firmly against the bit near its edge, and by turning in the other direction, after being seated in the plane, presses the seated in the plane, presses the
wedge, D, against the projections,
C, holding both bit and wedge C, holding both bit and wedge
firmly. The recesses, F, Fig. 2, firmly. The recesses, F, Fig. 2,
are for the reception of the handle are for the reception of the handle
and guide, G, Fig. 1. In the orand guide, G, Fig. 1. In the or-
dinary slotted plane iron the dinary slotted plane iron the
screw, E , turns in one end of a strap that slides in the slot of the bit, the other end being held to the bit by the ordinary flat headed screw.

SMITH \& CARPENTER'S PATENT PLANE.
organic life exists would be only a small fraction of an inch in hickness.
The lecturer next proceeded to define the word barometermeasurer of weight. Until the 17th century the air was gen erally believed to have no weight. Aristotle tried to demon
strate the weight of the atmosphere but failed to strate the weight of the atmosphere but failed to do so. Galileo determined it first. He showed that water would only rise
in a tube when the pressure of the air was removed from its upin a tube when the pressure of the air was removed from its up-
per extremity beyond a definite hight. His pupil, Torricelli, ollowing in the footsteps of his illustrious master, conceive the idea of substituting mercury on account of its greater point, above and below which it fluctuated as the outside pressure varied.
glass tube and a tumbler, and stated that that apparatus was
plicable to this instrument as were made of the aneroid barom eter. The siphon barometer is the only one that approaches in reliability the original Torricellian barometer. This form of instrument, instead of having a tube of mercury inverted in cup of mercury, has the lower end of the tube bent upward in the form of the letter U. The external pressure upon the ope end of the upturned leg of the tube sustains the column in the leg of the tube, sealed at the upper end, so that the mercury in that branch receives no pressure from the external air. The dation of an ivory float upon the surface of the mercury in he open end of the tube having a thread attached to it, th thread passing over a small wheel attached to a hand upon dial, and a counterpoise fixed to the end of the thread opposite the foat, the whole being in closed in a case, constitutes th closed in a case, constitutes the
common well-known wheel ba commom well-known wheel ba rometer. Another common form of the barometer is the tube and cup fitted into a wooden case with a vernier scale at the top strument wereillustrs of the in grams. Two were illustrated by dia grams. Two of thediagrams dis played upon the stage, one illus trating the self-registering and printing barometer invented by Prof. Hough of the Albany Ob servatory, and another the curv of hights from Oct. 5 to Nov. 3 end, with mercury, and, inverting it in a cup containing the 1868, as delineated by that instrument, were not alluded to me substance, found that the mercury settled to a given by the lecturer, probably for want of time. It is much to be

Prof. Guyot here remper device could not have been given. It depends upon the making Prof. Guyot here reproduced the Torricellian vacuum, with a and breaking of an electric circuit by the rising the making the best barometer that had yet been invented, although some improvements for convenience of transportation, but not affecting the essential principle, had been added to better adapt kinds have been devised, but they all have for their object the measurement of the distance between the level of the mercury in the cup and the top of the column in the tube. This being the al the the this being he case, should be adjuste to a fixed level, the zere of the scale, or that the error arising from its variation from that point, should be allowed for in reducing the observation. Other sources of er ror arising from differences in temperature, etc., were pointed out. 'The Torricellian vacuum could not be relied upon as being sufficiently perfect, unless all air had been removed from the mercury by boiling it in the tube before inverting it. The surface of the upper end of the column is convex, owing to the mutual repulsion of the glass and the mercury. The highest point of the convexity, is therefore, not the true reading. mean between it and the lowest point must be taken. This can, however, be easily corrected by calculation.

The speaker next procee to escribe various other barom eters. The aneroid barometer was described as being an air tight box with elastic walls, which are compressed when the weight of the atmosphere increases, and expand when the ex ternal pressure diminishes. The motion cause by the com pression and espansion is multiplied by an ingenious mechan prm marthon the by a hand. mand Athoug the ment is suffiently accurater fany purpos of orsation, it can not be reccommender for scientinc investigation. The circumstances which render elasticity constant are subject to requent disturbance; and a slight blow upon the exterior of an aneroid barometer is sufficient to change its zero, and give rise to grave errors. The instrument, although good for home use, is a bad traveler. Another instrument, invented by French savant, consists of a hollow angular tube bent like bow, which straightens or contracts with the varying exter nal pressure, and which, by mechanism similar to the aneroid marks the variations upon a dial. The same romarlis were ap
 of the mercury, for the communica tion of impulses to electro-magnets which unlock a train of clockwork so devised as to not only to describe a constant curve upon a piece of pa per, representing the hight of the column at anytime of day and night for many days in succession, but also to print upon pages, which may be subsequently bound, the hights of the column as oiten as may be de sired ; thus, making a printed recor with great accuracy, and with scarce ly any attention being required oth er than to renew the battery and to substitute new slips of paper as often as they are flled with the record The tube used is a siphon, and the means by which the above results are accomplished rank among the most ingenious and remarkable of modern in ventions. The value of such an instrument to science can scarcely be over estimated. Neither was any mention made of the barometro graph, illustrated and described on page 149, of the curren volume of the Scientific American, but it could scarce! y be expected that more than a mere allusion to these inge nious devices should have been made in a single lecture. Such an allusion, however, was due to these instruments, a a tribute to their great scientific value and the genius displayed in their construction.
The speaker pointed out the fact that in the use of the ordinary wheel barometer errors were. liable to occur, owing to the friction upon the float caused by the oxidation of the mercury and from other causes. These errors, and the fact that the public had in general been led to expect too much from them as weather indicators, had tended to make this form of the instrument unpopular. The value of a barometer as a weather indicator depends upon the correctness of the interpretations put upon its indications. It does all that it purports to do, that is, it indicates variations in the weight of the atmosphere. These variations are intimately connected with changes of weather, as they depend upon differences in heat, moisture, and direction of winds ; but as the precise nature of the relations existing between these phenomena are in general very imperfectly understood, it follows that observers are by far more numerous than competent interpreters.
The form of instrument best adapted to scientific use is that adopted by the Smithsonian Institute, and hence known as the Smithsonian instrument. It is a mountain and observatory barometer, so called from its use in measuring hights in mountains and for observatory purposes. The lecturer himself had the honor of introducing these instruments into this self had the honor of introducing these instruments into this vided into pieces of suitable lengths for easy transpertation; has an adjustment for bringing the level of the mercury in the cistern to zero, a vernier scale for reading fractions of an inch, and adjustments which can be made to correct all the errors above enumerated, so that a simple reading can be made as exactly as can be one with the old form of the mountain barometer, without the necessity of subsequently reducing the results of the observations. This instrument is so perfect in its operations that a variation of sof an incu can be read. The lecturer has determined the hights of mountains with it within three feet of their actual hight as determined by angular measurement
The lecturer next proceed to show the causes for fluctnation of the mercurial column. These fluctuations may be divided into regular and irregular. The irregular fluctuations increase from the equator toward the poles. At the equator the fluctuations are mostly regular and uniform. The regular fluctuations are monthly, daily, and hoaity. The monthly

