the cotton manufacture in the south.

In a recent article we proffered some advice to the South, as to the proper course to pursue in the reconstruction of her industries. In that article we recognize the possibility that some of the industries which under the old system of things were prosperous, could not under the existing state of affairs be profitably restored, and suggested the substitution of others. Since that article was published a correspondent has called our attention to the feasibility of cotton manufacturing in the southern states, and as evidence of the correctness of his views, has furnished us with some interesting details of the Augusia (Georgia) Manufacturing Company, as shown in the report of its President, for the first six months of the present year. Mr. Wm. E. Jackson, the President, says in his report:
In presenting my twentieth semi-annual report it is with pleasure I can state the condition of the company is very favor able
The gross earnings for past six months
have bəen
have bren.
\$135,510 65
3,921 65

From which is deducted expense account. . \$8,731 $64^{\$ 1}$

$\$ 139,43230$
$\$ 31,89816$
Leaving as net profits
$\longdiv { \$ 1 0 7 , 5 3 4 1 4 }$
From which two dividends of five per cent each; amounting rofit and loss account $\$ 47534 \cdot 14$ making the amount now to profit and loss account $\$ 47,534 \cdot 14$, makin
to the credit of that account, $\$ 224,798 \cdot 22$.
Goods manufactured from December 14, 1867 to June 13, 1868 :

$4-4 \ldots \ldots \ldots .707,018$	54,139
$7-8 \ldots \ldots \ldots .363,801$	33,475
Drillis.......60,685	4,589
$3-4 \ldots \ldots .53,341$	$\underline{6,145}$
$1, \overline{184,845}$	$\underline{98,348}$

1,324,691
$1,184,845 \quad \overline{98,348}$
3,888,301

Cotton consumed
dverage cost of cotton
. $1,362,571$
dverage cost of cotton
Average yas. per loom, per day.....
Average number of looms running
Average number of hands employed
Aggregate wages paid.
Aggregate sales
Aggregate sales
\$87,546.93
The operations of the company for the past three years
since the close of the war; viz., Fom Jane, 1865, to June 13th 1863, have been as follows:
Nominal balance 17th June, 1865,. .
Amount paid creditors due them in
Confederate notes,
35,775 22
$\$ 598,35831$
Deduct depreciation in Hamburg and
Columbia Railroad stock
Deduct lepreciation in various assets $\$ 26,62500$
Deduct saspense account St. Louis, .
True Deaknes, protit and loss account,
17 th June, 1365 , in United States
currency,
currency, 17 ith June, 186.
to 13 th June, 1868,
Expense
Repairs,
Repairs,
$\begin{array}{llll}\text { Dividends paid, } \ldots \ldots \ldots & 92,686 & 76 \\ 360,000 & 00-808,853 \\ 90\end{array}$
Add to profit and loss account,
124,052 67
\$224,798 22
..23,545
Bales groods made
Aggregate sales.
Aggregate wages ${ }^{\text {paid }}$
Average yards
Average yards per loom per day ...
Production for three years

4	${ }^{\text {Pounds. }}$	Picces.	Yards
7.8	2,120,137		1,337,660
Drills	362,173	-28,275	1,065,759
3	53,341	6,149	250,049

It may not be uninteresting to some of our present stock holders to state what has been accomplished in the past ten
years. It will be remembered by those who were among the original purchasers, that the property was purehased of the
city for $\$ 140,000$ on ten years credit, with interest at syen per city for $\$ 140,000$ on ten years' credit, with interest at seven per cent, payable semi-annually, and one tenth of the principal an
nually, the purchasers paying in as commercial capital $\$ 60,000$. This amount, in consequence of the dilapidated condition of the property, was almost entirely expended in the first two the property, was almost entirely expended in the first two
Years, in ropairs rendered necessary by the then condition of
the property. We have, since the purchase, paid for the enthe property. We have, since the purchase, paid for the en-
tire property without calling on the stockholders for another tipe property without calling on the stockholders for another
dollar ; added largely to the property by purchase and build ing, bought about $\$ 100,009$ worth of new machinery, increased
the capital to $\$ 600,000$ by the addition of a portion of the sur plus ; paid dividends regularly, and have now a property worth the par value ($\$ 600,000$ in gold).
Our correspondent, who writes us from Nashville, Tenn., says;

Should you wonder how it is, that the people of the South (who are usually suppose to be quite ignorant in regard to manufacturing knowledge) could succeed so well in making so mystery. In the first place, owing to the mildness and salu-
ter, or the extreme heat of the further South, added to the unbounded fertility of our soil, we produce provisions of all kinds, luxuries at the lowest possible cost of capital or labor-here we have cheap labor and especially of that class (I mean the youth) who are most needed as operators in cotton manufactur-
ing-and this class of labor too, is quite abundant, as there ing-and this class of labor too, is quite abundant, as there
have been but very slight drafts as yet made on it cheap labor and cheap means of lizing., we have a oreat abun cheap labor and cheap means of lining, we have a great abunlarge towns at a merely nominal cost-with a supply of bituminous coal enough to run every steam engine on the conti nent for centuries.
And again, we have the raw material (cotton) right at the ooors of the mills that fabricate it into cloth, saving the enor transporting its manufactured product back again
If you will estimate this item alone, and suppose for argument sake (for it is not otherwise supposable) that the labor employed in converting it into cloth is as great as it is in New England, you will at once see that it allows as much profit as any reasonably avaricious man should desire.
Our correspondent assures us that the above is not an isolat ed case, and there are plenty of others which although their business has not been so extended, have achieved equal success
in proportion to their investments. He says all that is needed in proportion to their investments. He says all that is needed capital of Tennessee as of the other slaveholding states in past times, consisted largely in their slaves. This is lost to the South, and until it is in some way replaced in part at least, manufacturing growth must be inevitably retarded. Hestates that clever, hone personal safety, and that of their property, willbe as assured there as in the North
The journal from which we have copied the above extract challenges a comparison of the report of the Augusta Cotton Manufacturing Co., with that of any similar establishment in New England had better look to their laurels.

Corxespondente.

The Ealtors are n respondents.

Propulsion and Dynamical Levers.

Messers. Editors : -The prevailing opinion among engi neers, and, in fact, with scientific men generally, is, that no power can be saved or gained by use of a lever. While this is absolutely true, as relates to the use of the statical lever, it namical levers, as will be veen great fallacy as relates to
Under the head of statical levers are included the common scales, the pulleys, the wheels of fixed machinery, and ev Dynamical levers are those where the supposed axis is fixed or stationary, but actually the point and line of motion and under this head are included the wheels of any vehicle the oar, the legs of all animal and insect organisms, the wings of a bird, the fins of a fish, the duck's foot, and, in short, the one vital principle of the propulsion of all animate and much of inanimate nature is the dynamical lever.
Let us inquire whether or no anything is gained by this kind of lever. Now, it is a solid fact, that a horse can pull a tun weight on wheels, at a speed of two or three miles per hour whereas, if the tun weight were not on wheels, he could scarcely move it at all. Why is this? The general answer given is because the wheel overcomes a large amount of friction. This, of course, is correct, but does not give a full solution; for it may also be asked, why a mere wheel being round, produces this economy ; the more philosophical answer being because the vital principle of the wheel is a lever of the dynamic series From this fact, one of two deductions only can be made; namely, that economy or saving of power is produced by use of dynamical lever, or that the wheel is not a lever.
Again, take another variety of this kind of lever-a man legs. Given, A and B , two men of exactly equal powers, let A use his own legs, and B have stilts added to his, enabling
him at each stride to step three times the distance of A, and it must be conceded that if there is no gam or economy in the dynamic lever, that A will be able to walk as far in any given
time as B. But we know that this is impossible, hence the manifest gain by use of the lever ; and those who would deny the gain or saving produced by the lever, will be forced to deny the fact that legs are levers.
Furthermore, the closer the student of nature examines the wonderiful structure of all living creatures, he finds that nothing is created by accidenti, evorything that God has created being supplied with most perfect means for any desired end and becomes more and more impressed with the wonders of the universe, and the goodness and absolute wisdom of its divine architect. Therefore, he who would still dispute the economy of the dynamic lever, must be prepared to deny the wisdom of he All Wise.
Were the practical effect of this fallacy limited to the mere xpression of opinion, and did it not interpose a serious obsta le to the advancement of a very important branch of science namely, that of propulsion and steam nevigation, it would be n error of gmall importance.
The paddle-wheel, owing to its axis being the actual and rue line of motion by which the speed of the boat may be measured, acts as a lever of the ynamic series, and much is to be gained in economy by the proper application of power; for from the application of power to the axle of the cart wheels, and to the axis of the levers we call legs, it is evident that the nearer the power is applied to the axis or line of motion, and the longer the lever used, the greater the economy. There ore, it stands to reason, thet the shorter the crank by which he axis is turned, the greater the economy-provided al counterbalanced, owing to some radical defect in the present counterbalanced, owing to some radicall
rotary system, as is actually the case.

Hence it is that well-informed engineers, and many scientific men, overlooking the fact of the difference in effects produced by statical and dynamical levers, and not realizing the fact that the paddle wheel acts as a dynamical lever, having its great economy overshadowed by the natural defects of the present rotary system of steam navigation, have erroneously decided that there is no economy or saving in the short crank. The writer has spent several years, and some thousands of dollars, in the practical study of propulsion, and has abundant evidence to show that, given the same boat, the same power and the same paddle, if the crank be one half length of radius of padale, the "slip" will be much greater than if some power is applied to a crank of one eighth or one tenth.
Now, as it can be proved that propulsion is simply a question of power and comparative resistance, and that the "slip" is diminished by shortening the crank, it follows, that if some other system, not rotary, could be adopted, that the application of the power as near the axis as possible, and as far away from the fulcrum (which in propulsion is the water at the propellers) that the limits of increased economy can only be estimated by mechanical possibilities
The writer has invented such a system, possessing not only the advantages of great economy in fuel and machinery, but also many important mechanical advantages over either screw or padale wheels, which will form the subject of another paper. I hope these remarks will clearly show that there are two classes of levers; namely, the statical and dynamical, and that while nothing can be gained or saved by use of the former, that the economy produced by the latter is almost limitless; and that by so doing, one of the errors that obstruct the path of the world's progress may be removed. New York city.
F. R. P.

Poisonous Drugs and Cosmetics.

Messrs Editors:-In your issue of November 25, I notice an article headed "Poisonous Drugs and Cosmetics." Now while the writer fully agrees with you that the evils to which attention is called are very great, he begs leave to differ as to the best curative measures, and he also thinks that the state ment, " we believe there is no department of trade in which, as a rule, retailers know so little that is requisite to the proper conduct of their business as in the drug trade," was made with out due consideration, and that it is altogether too sweeping a condemnation of the class.
The head of the largest drug house in New York remarked after twenty-five years of daily dealings with retailers in every State in the Union, that, "outside of the learne professions, no class of men possessed so much intelligence." You fortify your statement by the fact that "a druggist doing a large prescription business did not know that vinegar contained acetic acid." Now, unfortunately for the public, they are rery apt to give their patronage to the man who will sell the cbeapest, in his trade as in others, forgetting that they cannot judge of the purity of drugs, or the ability of the dispenser, with the sam accuracy as they can the quality of cloth, or the taste of the draper. Thus many a man builds up a large business who, judged by the standard of an experienced pharmacist would not be thought fit for a third assistant in a first-class store. If mistakes occur, and ignorance is shown, in such cases, who should bear the blame,-the class of intelligent apothecaries an unwise public? We answer, so long as the public will employ physicians or apothecaries who are not regularly eduate they must take the consequences if mistakes occur. We advocate the most thorough education on the part of the apothecary, but we think that the public are bound on their part to liberally support such men.
That "nothing should be done blindly" is impressed upon the mind of the youngest boy in the trade, as one of his ear liest lessons, in all well-regulated stores. No rule is more thoroughly estatilished and constantly acted upon than this If an overdose of a powerful medicine is ordered, the prescription is re-submitted to the prescriber; thus many times when physicians wish to order large doses of powerful medicines they find it difficult to get the prescription put up by the careful apothecary.
"Finally, prescriptions should be written plainly in plain English." One would suppose, to hear what is said, and to read what is written on this subject, that physicians adhered to obsolete and inconvenient Latin names for drugs, for the sole purpose of mystifying their patients. Let us examine this matter. That certain exact and invariable names, understood alike by the physician and the apothecary, must be used, is evident. The botanical names of plants, and the chemical name of chemicals, form the basis of the nomenclature of the United States Pharmacopoia. Should we gain anything by a resort to English names? Let us see. What, for instance, is the English name of the plant known in the Pharmacopeia as Cypripedium pubescens? It is called in various localities, nerveroot, nervine, moccasin plant, and ladies' slipper. What is the English for the Gaultheria procumbens? It is known as wintergreen, partridge berry, deer berry, tea berry, mountain tea, and checkerberry ; and no two old ladies well versed in herbs will be found, who can agree that these names all refer to the same plant. "Wintergreen, indeed!-why that's another thing altogether," one says. To be sure, the common princess pine is also known as wintergreen. Indian hemp may mean the Cannabis Indica, or it may mean the Apocynum Cannabi-num-two articles widely different both in nature and use.
Among chemicals, the synonyms are not so many, yet who would choose to give up the simple, exact, and descriptive chemical names for the inaccurate, and in many cases foolish common ones? If common namees are not sapted, how are
the mass of mankind to know what they are taking; for how Audemer possess the power, although the correspondent says double chemical affinity, the silicate of soda ang lime water,
many people in the hundred know even that Epsom salt is thicy threw the skins in the river to remove the lime, and sulphate of magnesia? If people have studied medicine suf- thence to the vats and cover them with "juice of tar" which ficiently to be able to judge "whether the dose presented to their lips is calculated to heal their infirmities or send them to eternity by the run," they ought at least to know the scientific names of medicines. The fact that these names are used is, too, something of a safeguard to the public, as it obliges the apothecary to know at least this much, although it is a very small part of the knowledge of the intelligent man, who will know thoroughly the thing itself, not barely its name.
The nomenclature of our Pharmacopecia, as well as the body of the work is revised once in ten years by a committee of able and scientific men, of whom Dr. Squibb has done, perhaps, more than any other man to perfect it.
The subject of abbreviations has been often and well discussed, and those sanctioned by use are such as cannot without gross carelessness be mistaken, if plainly written. We deny that the profession is behind any other in intelligence, or in a desire for advancement, and would ask all skeptics to read the Journal of Pharmacy and the proceedings of the American Pharmaceutical Association, at its annual meetings. Five colleges of pharmacy are already in existence, where lecturas on botany, chemistry, materia medica, and the art of Y barma cy are delivered by able professors. Young men are encouraged by their employers to attend these lectures, and to gain the diploma of these institutions. But something more is needed-it is this: a wise legislation which shall provide in every State a board of examiners whose duty shall be to test the qualifications of all who desire to practise the art, and whose certificate of ability shall be necessary before they are allowed to do so. Then, the public will have some protection, and not till then.
The public, also, must be educated to look upon the business in its true light, and it must be as willing to pay the educated pharmacist for faithfully compounding a prescription, as it is now to pay the physician who prescribes it. Then, perhaps, the assistant who works now, for fourteen hours a day, for from $\$ 12$ to $\$ 18$ a week, may earn as much as a mechanic.
All "cosmetics" and secret preparations should be obliged to pass examination before a Government assayer before they are allowed to be vended to a credulous and ignorant public; then perhaps we shall hear of fewer cases of poisoning from this source. I beg leave respectfully to commend these sug. gestions to our legislators as the view of
a Pharmacist.
(We cordially give place to the above excellent commen tion, and add that the suggestion that all ready-made prepara tions kept for sale by druggists should be submitted to examidation by an official appointed for that purpose meets with our entire approval.
In the matter of preseriptions, we do not object to the use of Latin names when there is any ambiguity involved in the use of an Englishone ; but the names of drugs are not all that is contained in a preseription-there are also quantities and directions for use. We yet fail to see why "every other hour" should be written in Latin: "alterna quaque hora," and abbreviated at that into "alt. q. h. ." or why " coochl. ampp." is better than "a ter than "twice a day," and so on. When our correspondent shows why they are better we will unsay what we have said on the subject of prescriptions.
If the suggestions we made in the article referred to by our correspondent were carried out, there would be no danger that the public would patronize incompetent druggists on account of cheapness; there would be none of that character to patronize.
We admit that all people are not competent to judge whether drugs prescribed are beneficial or hurtful ; but when, as in the instance we alluded to in the article questioned by our correspondent, a mistake is made in so powerful a drug as opium, and one patient is able to detect that the dose is too large when the prescription reads "Tinc. 0.:W," more could be found who could detect the same error, the druy being called simply "laudanum."
 rent volume, is more theoretical than practical in its details. As a practical tanner in the goo:i old way I should like to make some remarks showing the inconsistency of the corres pondent in regard to tanning. The making of leather is a chemical process and therefore rests upon a principle that thing done, is (so the article reads) to throw the hides in the lime to lossen the hair. Now a good tanner would laugh in his sleeve at the simplicity of the idea, for, if that was all, then we could easily dispense with the liming process, as we do in making" "sole" in our large tanneries. I was taught that it was for the purpose of softening the gelatine, a constituent
of the skin, and leaving nothing butt the cuticle or true skin to of the skin, and leaving nothing but the cuticle or true skin to
work upon. Lime having the solvent quality, performs its of fice in a perfect manner, at the same time loosening the hair so that it can be easily removed. The next step in practical tanning is of the utmost importance, and one which the article referred to completely ignores. My opinion is, that the tanners at Pont Audemer threw dust in the cyes of the correspondent, so that he was left in the dark as to their method of preparing the skins for the ooze. In liming we have softoned the tissue and the next step is to remove the gelatine or gluey
substance so that we can have a soft pliable skin to work upon. This is done by what dyers call a mordant.
Now I doubt very much if the waters that run through Pont
is a ridiculous blunder on his part. The mordant used in this country and England is the droppings of the hen or pigeon house ; thers are used, but these are the principal ones em-
ployed in all sections for upper and calf. We practical tan ployed in all sections for upper and calf. We, practical tanners, call this process " bating," that is, we mix a certain amount
of this manure with water, and throw our hides or skins int it. Once or twice a day they are raised, and as soon as the begin to soften, work them over on the beam ; this is done until they are cleansed from lime and glue and preseat a soft pliable appear
not the "tar."
The idea of putting skins from the "bate" into strong The idea of putting skins from the "bate" into strong
oze is simply absurd, as it would be to eat alum or a green persimmon before taking a piece of pie or sweet cake Fench calf is remarkable for its fine grain and soft velvet ap pearance which can only be secured by careful handling in a weak solution of tan. To put green skins in strong tan
would draw the grain hard and coarse it being would draw the grain hard and coarse, it being an astringent in its nature ; and hence the philosophy of handling in weak ooze and gradually raising the strength until a good color and grain are secured when you can bring on the "tan." The idea of laying away in dust may do, yet there is nothing gained is the operation, as the leather cannot absorb the \tan without moisture, hence you only loose time. You want sufficient to cover the mass and let it lay three to four months ; then change and make a degree stronger, until your leather is completcly tanned, even if it takes a year or two, the longer the better wish some of your scientific readers would give the reason why the tanning principle in bark grows weaker as you go West. I have conversed with tanners in various western States who have emigrated West and they all agree upon this, that it takes more bark than it did East to tan a given number
of hides.
S. P. W. Mechanicsburg, Ill.
[We are always happy to receive letters from practical men -and hope our correspondent will follow up the subject by sending us other articles. "Juice of tar," in the original ar ticle may have been a typographical error.- Ens

A Central Invention Bureau.

Messrs. Edrtor:-I am much pleased to see you advoca ting the necessity of a "National Invention Bureau." I have thought a great deal in regard to such a thing, and have de cided that the country calls for it. About eighteen months ago Isent a letter, containing hints of the necessity of an association of the kind, to the Farmers' Institute Club, in New York; it was published in the New York Tribune, but that seemed to be the end of it. Probably its source was too obscure to demand attention. If Henry Ward Beecher, Horace Greeley, or someothershininglight had made the suggestion, doubtless it would have been heeded. An association, or stock company, organized for the purposes as mentioned by you in the Scien tific American, would, beyond doubt, be a source of much profit to the association, a good thing for the inventor, and a still greater benefit to the country at large. As soon as it would be known by inventors that they could have their machinery advertised and exhibited by competent mechanics, at the com mercial metropol of the United States, they would make ap plication, and either pay a sum for exhibition, or have their rights for sale on commission, at a place where the people gen erally could see them. No better advertisement could possibly be obtained. It would be an inducement to inventors to con struct their models in a workman-like manner, and put them in good running trim. All the inventors in the country would
visit a place like that; all noted patent right dealers would go there for information. It would save the country from being imposed upon by bogus patents; it would save a vast deal of false circular printing ; it would throw on the market, at once any invention which might be useful to the farmer or the mechanic ; it would save thousands of dollars to individuals, spent now "lawing" eac:" other over some infringement in bogus sale. In fact, the present system looks very much like a headless man walking about over the connty-matinur nu merous mis-steps, for want of brains and eyes. In truth, we want a head and shoulders, as a grand center directory for the exhibition and sale of the new productions of the country.
Please stir the subject till the right men take hold of the matter. As for myself, I have three or four patents, and probably may have more in a short time, and I feel personally anxious about the matter.

James H. Reynerson.
Clayton, Indiana
Preservation of wood rom necay.
Messas. Editore:-For the past thirty-six years my atten tion has been directed to the subject of defending every species of wood from decay, and also to make it incombustible or fire proof. Beside making thousands of experiments, I have as-
sisted others to institute them, and have watched the progress which has been made by the various patents issued for this purpose, such as kyanizing by the use of bichloride of mer cury ; the Burnett process, (chloride of zinc); the Earl process, (protosulphate of iron); Behr's plan, (solution of borax); Heine mann's patent, by the use of resin; the carbolizing method,
the subject of two patents, one for cold carbolic acid, and one the subject of two patents, one for cold carbolic acid, and one Nicolson pavement, and many others, which have been brought out from time to time, but without having achieved perma nent success.

I claim the first application of silicates in their various forms to all organic substances, such as woody fiber, paper pasteboard, etc., for preventing the attack of the teredo nacolis,
fire, and water. I have frequently showa that by applying, by
as I will presently describe, I convert the woody fiber into a mineral substance. This process is the most reliable and economical of any I have seen.
Railroad sleepers have to be replaced, under the circumstances most favorable to their durability, every five years, never remaining sound over seven years, and generally lasting only three years. I saw in California, in the gold diggings, timber that had rotted in two years, and was informed that cross ties seldom lasted longer than that period. If we calculate the number of railroad sleepers to the mile, which is 2,112 , and their cost at 50 cents each, keeping in mind the fact that we have 40,000 miles of railroads in the United States, the annual cost per mile of replacing sleepers appears to ba about $\$ 150$, even if they lasted an average of seven years. Statistics show that farm houses of wood, wooden bridges, etc., last on an average about 30 years, and demand no less than $\$ 100,000,000$ annually for repairs. A large proportion, it not the most of this immense sum, could be saved by the use of soluble glass.
My method, described years ago, is simply to steam the timber, then inject a solution of silicate of soda for eight hours and then soak the wood the same period in lime water.

Dr. L. Feuchtwanger.
What Farmers Want ---Inventors take Notice
Messrs. Editors :-While machinery has done very much for the farm, there are yet some unsupplied gaps to be filled to make the mechanical aid complete. One in the hay-making process. We have excellent mowing machines, and horse ted ders, and horse rakes, and good horse forks for unloading hay in the barn, where there are no cross beams in front of the mow, but it costs as much as it evor did to get the hay from the field to the barn. We want a machine-a kind of rakeon wheels, eight or ten feet aparit, drawn by a single horse that will go into the spread hay, rake up and load upon itself eight or ten hundred pounds of hay, and bring it to the barn without further aid than the boy that drives it can render.
Most farmers have two horses, and most meadows are not ne quarter of a mile from the barn; and with two such ma chines, ten times the amount of hay usually gathered by the two-horse hay wagon, and the pitcher, and loader, and raker after, could be stored in the same time and with much less labor. The farm pays heavily for the machinery it wants, and or some that it does not want. And the inventor who can make a simple machine for the purpose named (first reading ditorial article in Scientific American, entitled, " Poor Me chanical Work on Agricultural Machinery," December 16, p. 93) need have no apprehension about its not paying. Give ver velocipedes and rat traps, and give the old "Mother of Arts" a hoist.
Sheffield, Mass.
What a Pechaic Thinles.
Messhs. Editors:-It gives me the greatest pleasure to send in this $\$ 3$ for the Scientific American another year I cannot help giving vent to my feelings by saying a word in praise of the Scientific American. It meets from me a hearty welcome every week. I often wonder how such a paper can be got up for $\$ 3$ a year, when we have to pay that amount or common papers, printed on poor paper, poor type, done u_{1} badly, and se

I them.

orked in a machine shop, and run steam en gines for more than twelve years, and the Scientific Amer ICAN just hits my case ; I have learned mowe from it than any one thing I ever read. People often say that the Scentific MERICAN is just the paper for me, because it is a mechanica paper. Now I contend it is just the paper for them also. I value my Scientific American papers very highly -so much so that I have them nicely bound-and I should not take for them what they cost me. They make a book to be proud of I was the means of your having a few subscribers for the Scientific American last year. In fact, I often advise my shopmates to take it. I often wonder how some mechanics slide along, year after year, and only learn what is pounded into them.
One more important iltiug and I close. I ofti:! read of boiler explosions, and I wortor why they are not more frequent. I think if those using steam power should furnish their engineer with a copy of your paper, they would be the gainers by it.

Edwin Flint.
East Canaan, N. H

Dangerous Hair Washes.

Messis. Edirors :-The article in your paper of 9th inst., on "Hair Washes," should receive the widest publication, as a warning against their use. Nearly all of the boasted "Vegetable(?) Hair Restorers," which are so extensively advergetable (?) Hair Restorers, which are so extensively advex public, contain lead in one or more chemical forms-mostly public, contain lead in one or more chemical forms-mostly
sugar of lead-the poisonous qua!ities of which ingredient sugar of lead-the poisonous qualities of which ingredient
can be attested by any one acquainted with medicine or chem. can be attested by any one acquainted with medicine or chem
istry, and by those who have been using any of these restor istry, and by those who have been using any of these restor
ers. If the country is to be flooded with articles for the purers. If the country is to be flooded with articles for the purpose of satisfying the vanity of those who have lost their
beauty, by the blanching of their former raven locks, the makers of these compounds should know the peril to which they subject all who use them.
It would also be proper, if "hair restorers," or "hair color restorers," are to be used, to invite the attention of inventors or chemists to the propriety of the production of such articles as will have the desired effect, without the danger which now threatens those who use them.
By devoting your columns to the ventilation of this subis ou will be adding much to their usefulness. and be dotn; a same time a favor for much suffering
Philadelphia, $P_{\text {a }}$

Patent Wire shears and Pliers Combined. Artisans have long felt the need of such a tool as the annexed engraving represents. Its advantages over others for the same purpose are very great. The jaws of the pliers are constructed in the required form, without the knives at the sides to obstruct their free use, as in the old combined cutting pliers.
The shears are made in the joint, which is formed of two smoothly faced surfaces held firmly together, and moving on a common center in opposite directions, as the pliers are opene and closed.
These surfaces are, in fact, two circular plates of steel, which being angularly notched at the periphery in one or more places, form the most perfect wire cutters in use. They are arranged so as to operate to the best possible advantage, either for ease of cutting or durability The superiority of the shear cut, together with the increased leverage, enable the operator to cut a wire by one hand with these shears that cannot be cuê by both hands with the ordinary cutting pliers; and while the mere at tempt in the latter case would be almost certain destruction to the tool, the shears will cut the wire without showing any evidence of having been used. The utility of having been usea. The uticy of these combined pliers is obvious, Beside being useful to all who work in wire, such as tinsmiths, machinists, telegraph builders, hoop-skirt manufacturers, etc. every farmer and every house keeper will find them quite as useíul as a hammer or saw. The are made from best cast-steel and are said to be equal in quality to the best Stubbs goods The manufacturer has so much confidence in the success of these pliers that he will supply responsible parties in the trace with them, to be returned at his expense if found unsalable.
All orders or letters of inquiry addressed to L. Button, man ufacturer of steam and hand fire engines, steam pumps, etc. Waterford, N. Y., will receive prompt attention.
mication
municationo-The Pacilic Railroad and
n Ship Canal.
The New York Shipping and Commercial List, in favorably quoting our brief article on page 345, last volume, on the facilities for international communication, very truthfully says:

Our cotemporary's views, with regard to the relative cost of water and land transportation, are substantially correct. Still, a good many light costly goods, from Japan and China, such as But the transportation of tea, in any considerable quantities, over this route, may reasonably be doubted, as, in the opinion
of the trade, the length of the carriage:by rail would result in so pulverizing the article, asto detract materially fromitsvalue There cannot be the slightest doubt, however, that the traffic between the Eastern and Western portions of the Continent, to gether with the business which a short route to China is certain it can accommodate, to say nothing of an important interme diate commerce, which it must build up. Nothing is more cer tain than that this great highway will, within a brief period be instrumental in thickly populating a vast extent of country stretching away from the Missouri River to the Rocky Moun tains, thus rendering necessary a network of railroads simila to that in the Midale and Northern States. East of the Missis
sippi and Missouri Rivers there was, in 1860, a population of twenty-seven millions: westward there was less than one thir tieth the population, though double the area. And yet this great area is full of mineral and agricultural wealth; so full, that thirty-five millions of dollars of gold and silver are drawn from it every year, and the rich valleys of the pregnant rivers
yield a maximum of agricultural products in return for a minimum of toil. The greatness of the traffic which will come to the great national highway between the Atlantic and Pacific, all contributing to its success and profit, can hardly be over estimated. That it will be so vast, a few years hence, as to necessitate one or more through roads may, we think, be taken for granted. But, for our countrymen to control the rich trade
of China, India, and J apan, a cheaper and shorter water route is absolutely essential. This want will be supplied, as soon as science shail assure us the projected Darien Canal ; the Isthmns being unquestionably the key to commerce between the Atlantic and Pacific Oceans. Since Cortez first viewed the twooceans from an elevation on the Isthmus, this magnificent project has
been the dream of philanthropy and of liberal enterprise been the dream of philanthropy and of liberal enterprise. The Spaniards, the French, and the English have repeatedly, during
the last three centuries, sent expeditions to solve the problem. the last three centuries, sent expeditions to solve the problem mon road lines, have been contemplated, only one of whichthe Panama Railroad, an American enterprise-has been accomplished. This avenue, in connection with the steaniship lines, has been a potent element in the development of comaccurate index of the success that would be likely to attend the canal. We are pleased to know that this grand project is as suming a shape that will, sooner or later, insure its consumma tion. The leading merchants and capitalists of the United
States have taken it in hand, and with them "there is no such States have ta
word as fail."
"The Wheel, the Axle, and the Rail."
This is the title of a circular containing valuable tables and other information for railroad men, compiled for the Ramapo (N. Y.) Wheel and Foundery Co., by W. G. Hamilton, engineer. We extract from it the following statistical information about car wheels :
There are in daily use on the 37,000 miles of railway in the United States, not less than $1,250,000$ truck and car wheels, un-
der 8,500 locomotives, 5,500 passenger cars, 2,700 baggage and The available 160,000 freight cars.
The available statistics show that passenger cars make an nnual mileage of 28,400 miles, or $8875-100$ miles per day of to be $31-3$ tuns. With this load the average life of a wheel 45,000 miles or $158-100$ years. On trains running at express speeds, the average life does not exceed 10 months' service, while wheels under tender trucks have a life of 18 months. Under freight service in the State of New York, with an annual
train mileage of $11,483,123$ miles, transporting 75.5 tuns of train mileage of $11,483,123$ miles, transporting 75.5 tuns of freight per train, the annual mileage per car was 14,649 miles, 3.08 years as the life of a freight wheel, corresponding withthe

The Origin of Porcelain.
An apothecary's assistant at Berlin, John Frederick Bottcher by name, being suspected of alchemy, fled thence to Dresden, where the Elector, believing him possessed of the secrets of he transmutation of base metals, and their conversion into gold, placed him in the laboratory, and under the close surveilance of Tschirnhaus, who was seeking for the Universal Medicine. It was here that the contents of some crucibles, prepared for alchemical purposes, unexpectedly assumed the appearance of Oriental porcelain, which had been introduced into Europe from China, after the voyage of the Portuguese navi gators around the Cape of Good Hope, and which was even then much prized by and only in possession of the in the in gustus II. appreciated the impor ance of the discovery of Bottche brechtsburg, at Meissen, where with an officer as a constant at tendant, he was provided wit every comfort and luxury, and with every facility for his re search, till, in 1709, the true whit porcelain was produced ; and, in the succeeding year, the grea manufactory at Meissen was es tablished, with Bottcher as direc tor.
The secret thus discovered was carefully and jealously guarded strict injunctions, with respect to secrecy, were enjoined upon the workmen. The establishment in the castle was a complete fortress the portcullis raised neither da nor night, andnostrangerallowe o enter, whatever the pretence The chief inspector and all unde him, were sworn to the closest s ence, with the punishment of im

WIRE SHMARS AND COPBINED PLIERS.
experience of one of the principal roads in the State. But as suming that the average life of car wheels, under all kinds of service, as being five years, the total number of wheels worn
out annually in the United States will not be less than 250,000 . At an average cost of eighteen dollars per wheel, allowing one half for their value for the old wheel, the annual loss may be stated at two and a quarter millions of dollars.

POCKET SHEET METAL GAGE

The difficulty of accurately measuring the thickness of heet metals is well known to all persons who have occasion to use or deal in them. The edges of metal being often imperfect, ordinary gages are prevented from going on readily. tt also usually happens that the extreme edges are thinne han the rest of the sheet and cannot therefore be relied upon to give the thickness correctly. In selecting sheets for many purposes, it is desirable to have a gage to indicate the exact
thickness in parts of an inch, and to accomplish this result the gage shown in the cut has been devised, which will show th thickness of a piece of metal up to three tenths of an inch in thousandths of aninch, and at some distance from the edge of the sheet. The piece in form of the letter U has a projecting hub, a, on one end.
Through the two ends are tapped holes in one of which is the adjusting screw, B, and in the other the gage screw, C. At ached to the screw, C, is a thimble, D, which fits over the ex erior of the hub, a. The end of this thimble is beveled, an the beveled edge graduated into twenty-five parts and figured, $, 5,10,15,20$. A line of graduations 40 to the inch is also made upon the outside of the hub, a, the line of these divisions unning parallel with the center of the screw, C, while the graduations on the thimble are circular The pitch of the screw, C, being 40 to the inch, one revolution of the thimble opens the gage $\frac{1}{46}$ or $T^{2} \frac{5}{0}$ of an inch. The divisions on the himble are then read off for any additional part of a revolu ion of the thimble and the number of such divisions are addto the turn or turns already made by the thimble allowing $\frac{23}{0}-$ for each graduation on the hub, a. For example, supose the thimble to have made four revolutions and one fifth. f the graduations on the hub, α, and opposite the four graduation will be found on the thimble the line marked 5 Add this number to the amount of the four graduations, which is $\frac{100}{100}$, and it equals $\frac{105}{1005}$, which is the measurement shown
by the gage. by the gage.
The gage illustrated above, which is full size of implement will measure the thickness of sheet metal or other material, by thousandths of an inch up to three tenths of an inch at any point within half an inch from the edge and will also answer to measure the diameter of wire. Means of adjustment are rovided in case of wear by continued use.
The attention of machinists is called to the usefulness of this gage for convenient and accurate measurement. It is light, small ,and suitable to carry in the pocket. Address for further particulars, Brown \& Sharpe Manufacturing Company Providence, R. I.

A citizen of Mechanics Falls, Maine, has a very old coin, a Spanish silver dollar, bearing the date 1179. The figures and lettering are very perfect. On both sides there are several
Chinese letters or characters, aloout twenty-three in number.
prisonment for life attached, for divulging aught connected
with the manufacture. Every where around the establish ment was the warning motto : " Be Silent unto Death."
Despite these injunctions and precautions, and even before Bottcher's death, which occurred in 1719, one of the foremen escaped from the manufactory ; and, going to Vienna, was cordially received by Charles VI., and granted the exclusive manufacture for twenty-five years. Thence the process, no longer a secret one, spread over Europe, and the art, relieved from its cramping restrictions-and with the incentive of rivalry among various manufacturers-assumed its proper im portance, and made its products available to all classes.

What it Costs to Go Around the world.
Putnam's Monthly for January says the circumnavigation of the earth has become an easy and not a very expensive un dertaking. A European journal gives the following estimate aking Paris as the starting point; we translate the sums int reenbacks :

From		
${ }_{\text {Par }}^{\text {Marseilles }}$,	Marseilles,
Alexandria	,	${ }^{\text {Suez, }}$ Stera,
Aden		Point ${ }^{\text {Aden, }}$

From Point de Galle the circumnavigator has choice of wo routes. The first and most direct is via Japan, as fol lows :

$$
\begin{aligned}
& \text { Ceylon to Paris }
\end{aligned}
$$

The other via Australia:
From
$\begin{aligned} & \text { Point } \\ & \text { Stane Galle } \\ & \text { Sanama } \\ & \text { Panama }\end{aligned}$
Ceylon to Paris,
The time occupied
Sy\&ney,
$\begin{gathered}\text { Panem } \\ \text { Paris, }\end{gathered}$
The time occupied paris,
upied by
to
ylon,
dey,
y the two rou

 Total,
104
Total,
is estimated,
Tot
when the completed, the journey around the earth will be reduced to completed, the journey around the earth will be reduce to
eighty days, traveling time. Not only the intercourse beghty days, traveling time. Not only the intercourse be
ween China and Japan and Europe, but between Australia and Europe, will then find its speediest route across the American continent.

A Better Umbrella Wanted

A correspondent in one of our exchanges asks the question Will no inventive genius improve upon the construction of
he umbrella? As at present formed this indispensable article is shockingly ill adapted to its purposes. The best part of it where one would put his head, is occupied by the stick and wires, so that only half the sheltering cover is available. Then
the roof is so contrived as to cast the rain that falls upon it the roof is so contrived as to cast the rain that falls upon it either on to the shoulder or into the coat pockets, or down over
one's knees and feet. To remedy these evils the stick should one's knees and feet. To remedy these evils the stick should be placed out of the center, and a turned-up rim should be
made to constitute a gutter, with one shoot or spout only which can be turned into such a position as to throw the water always to leeward of the pedestrian. If I were an umbrell maker I would endeavor to work out these improvements ; a it I I can only enforce them upon the attention of those whon hey may concern.
A convention of white lead manufacturers was held in St Louis on November 11. The object was to effect a concert of action on matters relating to the trade, and the further object of promoting the interests of Western white lead manufactur ers exclusively, reducing the price of white lead, and ridding the markots of adulterated material.

