PROGRESS OF PAILROADS IN THE UNITED STATES.
The following is a statement of ins naticr of miles of railond in operation in east yar since 1831:-
gtatement of totae inleage for thinty tears.

:S31...... ${ }^{\text {\% }}$	1841.....3,319	1851...... 8,856
1,832..... 32i	1842.....3, 877	1852......10,878
1833..... 570	1843.....4,174	1853......13,315
!ッ:1..... 762	1844......4,311	1854......15,511
i 3\%\%...... 018	1845......4,552	1855......18,153
1836......1,102	1846.....4, 870	185G...... 21,440
1837.....1,421	1847......5,336	1857......24,290
1838......1,843	1848......5,682	1858......26,2 10
183\%......1,920	1849......6.350	1859......27,857
1840......2,197	1850..... 7,475	1860......29,401

decennial increase.

1840	2,197		
18:50	7,475	5,278 or	240.2 per cent.
1860..	29,401	21,922	293.5 "

The total number of miles in operation on the 1st day of January, 1859, was 27,857 . The number of miles opened during the year, consequently has been 1,511 .
The number of miles in progress in the United States is estimated at 17,580 . The extent of mileage of roads in progress can never be stated with much accuracy, but we see no limit to the construction of these works, till they become the common highways for cevery portion of the country. In the northeastern and in some of the western States, this result seems pretty nearly accom. plished; yet, even in those, the system is constantly expanding. Their construction, under a state of affairs similar to the present, must rapidly continet to go on till an aggregate of 50,000 miles is reached. Eren the cm . barrassments of the country which culminated in 1857 . seemed to have exerted only a slight influence in checking their progress, which was never more active than at the present time in several of the States.
The total amount of capital invested in all the roads is $\$ 1,118,920,029$. The increase during the year has been $\$ 10 \overline{0}, 873,565$. Our statement a year ago did not embrace roads in progress. The actual increase may be somewhat over-cstimated. Not so with the aggregates, however.

Below is a comparative view of the mileage of railroads in the fereral States on the 1st of January, 1850, 1855, and 1860:-

1850.	1855.	1860.
Maine................... Milees. ${ }^{\text {175 }}$	${ }_{409}$	${ }_{476}$
New Hampshire........ 309	58.5	662
Vermont................. 243	454	561
Massachusetts.......... 1,095	1,102	1,391
Riode Istand............ 50	50	101
Connecticut.............. 434	571	599
New England States...... 2,306	3,171	3,790
New York...............1,070	2,623	2,779
New Jersey.............. 231	429	557
Pennsylvania 981	1,681	2,787
Delaware............... 16	39	127
Maryland.............. 324	367	478
Middle Atlantic States...2,622	5,139	6,728
Virginia................. 303	986	1,756
North Carolina......... 302	349	703
South Carolina......... 241	741	900
Georgia.... 609	975	J,243
Florida................... 54	21	290
South Atlantic States....1,509	3,072	4,892
Alabama................. 113	304	629
Mississippi............... 60	226	691
Louisiana................ 66	198	294°
Texas.................... 0	32	285
Frulf States.................... 239	760	1,899
Arkansas..		39
Missonri..	37	724
Tennessce...............	326	977
Kentucky................ 28	231	511
Sonth Interior States......... 28	594	2,251
Ohio.................... 299	2,453	3,017
Michigan............... 344	474	797
Indiana.................. 86	1,406	2,005
תlinois................... 22	884	2,728
Wisconsin.	200	876
Iowa.		395
Minnesota...............		\ldots
North Interior States....... 751	5,417	9,818
California	\ldots	23
Oregon..................	..	
Pacific States............. ...		23
Total, United States.....7,475	18,153	29,401

TO CUT ELBOWS OF STOVE PIPES BY RULE
At the special request in
he fol speial request of a subscriber, we re-publish the following article from pare $50, \mathrm{Vol}$. X . (old series) of the Scientific American.

Fig. ..-Draw a straggh line, $a n$, and make it equal to the diameter of the stove-pipe, then draw the semicircle, a f, and divide it (the semicircle) into as many equal parts as may bo found convenient, abc, \&c. From these parts of division draw perpendicular lines upon the diameter, which will divide the figure into ten nequal parts.
Fig. 2.-Calculate the length of the semicircle, Fig. 1 , by the proportion of $1 \times 3 \cdot 14159 \div 2=a l c d$, \&c. Draw a straight line for the base, and make it equal in length to this semicircle, and divide it into as many equal parts as the semicircle was divided-10; and then draw the perpendiculars al-a5-a10, and make them equal to the lengths of the parts of the diameter of Fig. 1 , beginning from a to 10 . That is, the vertical line, $n n_{a}, a 10$, Fig. 2, is the diameter of Fig. 1 ; the next vertical line, $a 9$, Fig. 2, is the length, $a 9$, of the diameter, Fig. 1, and thns draw all these vertical lines on Fig. 2, the last one being $a 1$ which is the short division al, Fig. 1. Join the ordinates in these points by short lines, and we have the diagram for a gutter (one half of Fig. 2), double it, and then we have one for a store-pipe (all Fig. 2), two of which, when joined, form an elbow of 90°. Fig. 2, it will be observed by tinsmiths, resembles the pattern used for elbows. Care should be exercised that the distance between the abscisses do not exceed halfan inch; a quarter will be about correct.

HOW TO BURN COAL.

Nine out of ten who attempt to burn coal in a stove, waste about as much coal as is necessary to be be consumed for the obtaining of all the heat desirable. Observe the following rules: We will suppose the stove cleancd out. First, To make a coal firc: Put in a I double handfull of shavings, or light kindling-wood instead. Fill the earthen cavity (if the stove has one) nearly full of chunks of dry wood, say four or six inches in length. On the top put a dozen lumps of egg coal. Light with a paper from bencath. In ten minutes add about twenty lumps more of coal. As soon as the wood has burnt out, fill the cavity half to two-thirds full of coal. The fire will be a good one. The coal will, by following these directions, become thoroughly ignited. Sccond, Never fill a stove more than half or two-thirds full of coal, even in the coldest weather. Third, When the fire is low, never shake the grate or disturb the ashes, but add from ten to fifteen small lumps of coal, and set the draft open. When these are heated through and somewhat ignited, add the amount necessary for a new fire, but do not disturb the ashes yet. Let the draft be open half an hour. Now shake out the ashes. The coal will be thoroughly ignited, and will keep the stove at high heat from six to twelve hours, according to the coldness of the weather. Fourth, For very cold weather. After the fire is made according to the rules first and third, add every hour about fifteen to twenty lumps of egg coal. You will find that the ashes made each hour will be about in that ratio.

This advice relates to cylinder stores of medium size, as the amount of coal to be fed in depends on the space in the fire-box.

A HOW TO BURN SAWDUST SATISFACTORILY.
Messrs. Editors:-In burning sawdust or any other comminutel fuel which affords no interstitial draft, the proper method is, at the first firing-up, to supply the fire | on the extreme one side of the furnace, the next time on the other, and so on alternately. A rigid adherence to this rule, with a little experience, will enable many millowners to use sawdust exclusively, whe now have to mix in other fnel.

Washington, D. C., Jan. 28, 1860.
Λ COLUMN OF VARIETIES.
The raiiroads in actual operation in the Unitel States, if extended in a continuous line, would seach round the earth, and from the Mississippi to En land beside. Perhaps the largest plate of glass ever produced was one made at the St. Cobain Works. in France. The length of the plate was 5.37 meters (18 feet), and it was was 3.36 meters (11 feet 9 inches) wide, and 12 milometers, or nearly half an inch thick........ A German clock, over two centuries old, has been eet in running order by a watchmaker in Hariford. Although it has not run for more than half a century, it is now keeping food time, and may last another two centuries. It was found by the artist Church, in the possession of a Dutch family in Nora Scotia. In that family it had been handed down from father to son for generations. This is one of the very first elocks ever made with a pendulum. The clock strikess for the half hour and hour, and is wound by means of an endless chain. It is an open frame of black, ancient oak, exposing the works, which are of brass, and very nicely finished....... The first printing office in Providence, R. I., was established in 1762, and the first two things printed were a hand-bill containing news, and a plag-bill. The latter was for tho first theatrical performance ever given in New England. The company was the first that ever appeared in North America. They were brought over by one David Douglas, a Scotchman, who fitted up a emall theater in New York and also appeared in one or two other places, before going to New England....... A line drawn level with the surface of the water in the distributing reservoir between Fortich and Forty-second streets, cuts the clock tower on the City Hall between the top of the pillars and the clock face.......A great exhibition of the industry of all nations is soon to be opened at Amsterdam, in Holland. It is announced that there will be a complete historical exhibution of apparatus for the manufacture of illuminating gas.......Large discoveries of mineral conl have recenily been made in the arrondissement of Alais, in France....... One of the cells of the yeast phant, when at its full growth, measures about $325-100,000$ th of an inch in diameter......It is positively ascertained-that the moon has neither water nor clouds; at all events, on the side which is turned towards the earth......The large guns cast at Woolwich are allowed each four days to cool...... 1 mixture of three parts snow and four of potash produces a cold of 57°, or 89° below the freezing point....... A column of the best cast iron would require to be nearly ten miles in hight before its lower portion would yield by crushing.......Sulphuric acid crystals, on being mixed with water in a platina crucible, evolresuch a heat as to heat the crucible almost instantly to rednessMr. Fairbairn has calculated that the greatest clear span at which an iron tubular bridge would support its own weight would be between 1,800 feet and 2,000 feet.
...The royalty claimed, under Mr. Griffiths' patent, for his improved screw propeller, is $£ 1$ per horse-power of the vessel to which the invention is applied.......With well-fitted piston packing-rings a pressure of between 3 lbs . and 4 lbs . per square inch of their bearing surface is sufficient to keep them tight, whatever may be the pressure of steam worked in the cylinder.....It has beenfound that in very small capillary tubes-say of the 1-200th of an inch in diameter-water may be cooled as low as 5° before freczing. Under the same circumstances water may be heated considerably above 212° befire boiling.Mr. Joshua Field found that, in a single instance, a strong laborer, exerting his whole strength, was able to raise $27,562 \mathrm{lbs}$. one foot high per minnte ; the duration of the effort being $2 \cdot 2$ minutes. This was in addition to the friction of the apparatns employed, and Mr. Field estimated the whole effect as equal to a horse-power of $33,000 \mathrm{lbs}$. raised one foot per minute. The average power of an ordinary laborer is only $3,300 \mathrm{lbs}$. raised one foot per minute.......Sulphurous acid, although extremely volatile, will not evaporate in a platina crucible previously heated red-hot. If, however, a few drops of water are thrown in. the mixture is brought into intimato contact with the sides of the vessel, and such is the encrgy of the evaporation of the acid, and its absorption of all the heat of the water, that the latter will be not only left behind, but perfectly frozen in the red-hot crucible, from which it may be thrown out as a button of ice......The declared value of British exportations of iron and stecl, in 1857, was $£ 13,406,076$. In 1858 the declarcd value was $\boldsymbol{£ 1 1 , 2 3 6 , 0 4 6}$.

