FRICTIONAL' GEARING.

The following extract was lately publishel in the New York Times:-
"Frictional gearing is coming into successful use in Great Britain for all purposes, from small machinery up to the driving of the screws of steamships. Instead of one wheel driving another by the intersection or 'mashone wheel driving another by the intersection or 'mashsurfaces or faces of the wheels are grooved lengthwise, or in the direction of their motion, like the rolls of a or in the direction of their motion, like the rolls of a
rolling mill. The grooves are V shaped, and the fricrolling mill. V The grooves are V shaped, and the fric-
tion of the $V s$ of one wheel against the sides of the V s tion of the $V s$ of one wheel against the sides of the Vs
of the other wheel is so great that the one drives the of the other whecl is so great that thic one drives the
other, as in the case of cogs. The friction of the jourother, as in the case of cogs. The friction of the jour-
nals of the shafts is somewhat greater than in the case nals of the shafts is somewhat greater than in the cas of toothed gearing, but in other respects the frictional wheels seem to work most smoothly. The 'back-lash or rattle of teeth, especially when worn, is prevented. The chief economy is in first cost. The cutting of the teeth of gearing involves the application of abstruse mathematical principles: cach side of each tooth is shaped to an epicycloidal curve, varying with the diameters of the wheels. The machines and processes required are extensive and numerous, especially in cases of beveled gearing. But the preparation of frictional gearing is the most simple and straight-forward work of the turning-lathe.
Regarding the exclusive use of this system of driving machinery in England, the accompanying letter tinows some new light on the sulject:-
Messrs. Editors:-In regard to an article on "Frictional Gearing" which recently appeared in the New York Times, and which has been copied into other papers, it is liable to lead many persons to suppose such gearing had never been introduced into this country. It was first used in this section, however, by Mr. William Nichols, who put it up to drive the feed works in a sawmill which he was building. He first tried flat surfaces, but they did not satisfy him, so he took the same wheels and had a V -groove turned in one and the other with a rim to fit it. I think it was entirely original with him, and he considered it an experiment at the time he tried it. The gearing answered admirably and has been in use in Messrs. Bartles \& Readin's millever since, up to this day. For smoothness of action and the ease with which it is thrown in and out of gear, it is vastly supexior to the toothed gear usually in use in sawmills; as a sawyer can, with one hand and very little effort, throw the "feed" out and the " gig-back" in, and vice versa. It would also make an excellent arrangement for "jack ing " the logs into the mill ; in fact, it is superior in any place in which the clutch is now employed. I think that if all your sawmill readers will only try it, they will agree with me in regard to the superiority of the frictional gearing in any situation where it can be used.
H. F. S.

Williamsport, Pa., Jan. 3, 1860.
[Our correspondent does not state when Mr. Nichols first introduced frictional gearing into the mill in question, but we suppose it was several years ago.-Eds.

FALL OF A FACTORY--SAD AFFAIR.
One of the most heart-rending events which have eve taken place in this country occurred at Lawrence, Mass., on the 10th inst., by the falling of the Pemberton Mills, an immense cotton factory, by which 115 persons were killed and 165 wounded. The building was 280 feet long, 70 wide, and 5 stories high. It contained 2,700 spindles or spinning frames, several hundred looms, carding machines, any other machincry, and 960 operatives were employed in it. About 600 persons were in the mill when it fell, and that all were not killed appears miraculous. Some extraordinary cases of escape are related, and more persons would have been rescued from under the ruins, but a fire broke out when the walls fell, and many of the poor creatures, who were only covered up under fallen beams and the flooring, were consumed in the flames, and perished in great agony. It is said that the structure was deficient in strength from the first day it was erected. There is no country in the world where life is so insecure, from defective buildings, as the United States. We feel and acknowledge the disgrace.
To Re-Japan Old Trays.-First clean them thoroughly with soap and water and a little rotten-stone; then dry them by wiping and exposure at the fire. Next get some good copal varnish, mix it with some bronze powder, and apply with a brush to the denuded parts. After which set the tea-truy in an oven at a heat of 212° or 300° until the varnish is dry. Two coats will make it equal to new.

WEEKLY SUMMARY OF INVENTIONS.

The following inventions are among the most useful improvements patented this week. For the claims to these inventions the reader is referred to the official list on another page:-

```
boots and shoes.
```

The object of this invention is to enable the manufacturer to perform the work, which is now done by hand, and to make the entire boot or shoc by any ordinary sewing mechanism for carrying waxed thread, with the exception of putting on the heel, which is a very simple and comparatively casy operation when the sole has been properly attached. This improvement enables the the manufacturer of boots or shoes to put together his work with great facility and a great saving of time is accomplished, there will be less expense attending the manufacture of sewed shoes, and they may be furnished below the present market value of pegged shocs. Another great advantage in this invention is that the entire work of sewing about a boot or shoe can be performed in a neat and perfect manner by ordinary workmen, and those unskilled in the present art of making boots and shoes, therefore the expense of workmen will be much reduced, while the work can be made equal if not superior in strength and durability to those at present furnished to the market. For this purpose the invention consists in sewing the welt or strip of leather to the leather upper, which is previously fitted as near the edge of the same as may be found necessary, before the upper is lasted. The patentee of this invention is Francis D. Ballou, of Abington, Mass.

manufacture of stearic acid.

In the manufacture of stearic acid, by what is known as the distilling process, the oil, tallow or other crude fatty matter after being washed or otherwise purified, is put into what is called the acidifying pan and therein subjected to the action of sulphuric acid and heat, and when thoroughly acidified, as it is termed, the fat is drawn off from the pan to be distilled, leaving therein the black residuum known as " acid bottoms." This residuum has been known to contain a considerable quantity of fatty matter, and attempts have made to extract it by various means, but none have been found to pay. Attempts have been made to convert the said residuum to various useful purposes but it has never been successfully used otherwise than as a fuel. This invention consists in subjecting the said residuum to a distilling process in which it is exposed to the action of the superheated steam, by which means fatty matter (stearic acid \&c.) to the amount of from 20 to 25 per cent by weight of the whole of the residuum may be obtained from it. This invention has been patented to David Thain and William Jackson, of Philadelphia, Pa.

cotron gin.

This invention rolates to an improved feeding device by which the cotton is presented to the rollers in such a way as to permit of the free escape or discharge of the seed as they are detached and ripped from the staple without permitting any valuable portion of the staple to cscape with the seed, and also presented in a layes or bat equal in width to the length of the rollers, whereby the latter are enable to operate in the most efficient manner. It consists firstly in combining a guard with a feed board substantially as hereafter shown, whereby the feeding device is simplified and rendered more efficacious than hitherto. It consists secondly in the employment or use of a corrugated roller in connection with an auxiliary smooth roller in addition to a roller furnished with a smooth yic ling surface, against which the two first mentioned rollers bear, whercby the process of ginning by rollers is greatly expedited without in the least deteriorating the staple. It consists thirdly in the employment or use of a discharging device composed of rollers so arranged that the ginned cotton is discharged in a loose light and untangled state. This improvement was designed by Lewis S. Chichester, of this city.
sewing machines.
Thie invention consists in a novel mode of applying two dogs, the one to move, and the other to prevent the backward movement of the feed wheel, whereby the necessity of the application of a friction brake to the said wheel is dispensed with, and the said wheel, though secured aqainst any tendency to turn it the wrong way, is permitted to turnin the right direction with very little friction. It also consists in certain novel and very convenient means of regulating the feed movement, whereby
it may be adjueted before commencing to operate the machine, to produce any lengths of stitch that may be desired. The inventor of this improvement is John Dick, of this city.
candles.
This invention consists in providing a candle with a tubular wick which forms an air channel right through it for the admission of air through the conter of the flame, such wick having a lining of sized, starched or glazed paper or other substance sufficiently impervious to the material of which the candle is composed, applied within it, for the purpose of excluding the melted material from its air channel during the burning of the candle and preserving a free passage for the air to the center of the flame till the candle is all burned. The credit of this contrivance is due to Halvor Halvorson, of Cambridge, Mass.

spinning frames.

This invention consists in constructiug the ring employed in the spinning frame with a narrow upwardly projecting rim arranged midway or thereabout betwecn the inner and outer margins of the face of the ring. The object of this constrution of the ring is to provide a better bearing for the traveler to keep it in a horizontal or nearly horizontal position than the ordinary flat topped ring, and thereby to cause a more uniform draft upon the sarn in the spinning process. The patentee of this invention is M. P. Wilmarth, of Pawtucket, R. I.
cotton-schaper.
Among the rarious implements for the purpose of scraping and weeding young crops, such as cotton, sugar cane, corn, \&c., the cotton-scraper of Messis. Newcomb \& Bird is one of the most novel and cffective tools which has lately come to our notice. It consists in tho employment of a vibrating double acting loc, that is operated by a vertical rockshaft in such a manner that it cuts both ways in a direction across the row of cotton, corn, or other drill plant, in which the machine runs forward, leaving the weed in bunches the size of which may be varied according to the size of the box. The inventors of this device reside at Smith's Fork. Tenn., and it was patented last week.

hop frames.

This invention relates to a device for lowering the vines and bringing them within reach, for the facility of gathering the hops, and then for elevating them again to their original position, keeping the horizontal cords or wires, upon which the vinesare ent wined, nnder tension all the time. This invention consists in attaching to the posts a vertical strip with a small grooved pulley in its top over which passes a cord, which is attached to a sliding box for clevating and depressing this box, and to this sliding box is connected a yoke provided with a hook which hooks into an eye or loop on the end of the wires forming the frame upon which wires the rines are twined; the object being to tighten up these wires, and to kcep them under tension while raising and lowering them. L. A. Beardsley, of Edmeston, N. Y., is the patentee.

artificial legs

D. De Forrest Douglas, of Springfield, Mass., has what appears to be a very excellent improvement in Artificial lege, the principal object of which is to enable the knee and ankle to be made with mortise and tenon joints. These joints have been generally admitted to be the best for the purpose, but some practical difficulties which have been overcome by Mr. D. have prevented their being hitherto generally used. This invention is one that cannot well be explained without illustrations, which wo hope soon to give.

boring brush blocks.

This invention consist in the use of a polygonal drum having the brush blocks attached to it, and so arranged as to have an intermittent longitudinal sliding movement, an intermittent rotary morement, and a reciprocating feed movement, said drum being used in connection with drills whereby the blocks may be bored very expeditiously, and a considerable number operated upon simultaneously. The credit of this contrivance is due to Thos. Mitchell, of Lansingburgh, N. Y.
alarm lock.
This invention consists in a novel arrangement of levers and stops with the knob-arbor and an alarm placed within a suitable case and applied to a draver or till, whereby the drawer or till cannot be illegitimately opened, or an effort made to thus open it, without ar
alarm being sounded. The invention is chiofly designed for tills in stores to prevent the abstraction of money by shoplifters and the like. This improvement was designed by William B. Card, of Sag Harbor, N. Y.

FOREIGN NEWS AND MARKETS.

The Liverpool Cotton Supply Association has recently received sundry samples of cotton and cotton yarn from Africa, forwarded by the celcbrated Dr. Living ston. This cotton was grown in the valley of the Shire which is 100 miles long by 20 broad. The natives spin and weave it for their own use ; so abundant is it in this valley that a vast number of cotton trees are annually burned to the ground. The navigation of the Zambesi and the Shire is open to the center of this cotton valley during the greater portion of the year. It is evident, thercfore, that a large supply of cotton may be readily obtained from this part of Λ frica; and the above association arc earnestly bespeaking the support of the government to Dr. Livingston, in his cfforts to develop what is termed "the vast productive resources of the regions now opened to commercial enterprise."
A paper was recently read before the Institution of Mechanical Engineers (Lưndon), by Mr. Benson, of Cincinnati, Ohio, who exhibited a model of the boiler used or the steam firc-engines of that city. The members scomed to consider this boiler a very great improvement for economizing space and weight, by the immense amount of heating surface which it contained. Λ boiler for an engine, upon this principle, is now being constructed by Messrs. Russell, tube manufacturers, of Weduesbury, Englanil.
Several experiments have lately becn made on the Oxford and Wolverhampton Railroad, to test the qualities of brakes for stopping trains. In six experiments with "Fay's brake," at an average speed of 36 miles per hour, the experimental train was stopped in a distance of 507 yards. On a second sct of experiments, at the same speed, the train was only stopped within 795 yards from the place where the brake was first applied. A similar set of experiments was tried with "Chambers' brake," which stopped the train within a distance of 731 yards ; and cxperiments were also conducted with two other brakes, namely, "Gasses'" and "Newall's," which only stopped the train within a space of 900 yards.
A new apparatus is now being exhibited in Paris, by M. Vert, to solve the problem of aerial navigation. It consists of a large bag, shaped like a fish, made of goldbeater's skin, anll filled with hydrogen gas. The tail of the fish is to serve for a rudder ; a small steam engine is placed in a car under it to drive four rotary fans, and these are adjusted to rise and fallon an incline. The great objection to its ultimate success is that every effort yet made to make it fly has not budged it a foot !
The manufacture of condensed artificial manures is now conducted on a very extensive scale in several places in England and Scotland. Ammonia and the phosphatcs of lime appear to be the principal ingredients of fertilizing valuc in them. The ammonia is chiefly obtained from gas-works, and the phosphates from caprolites and marl. Λ great deal of deception has been practiced upon farmers in Eugland (as has also been donc in this country) by manufacturers of such manures. Shey have advertised them as containing far more genuine fertilizing substances than they possessed. Professor C. Cameron, M. D. (editor of the Irish Agricultural Reviev, and a good chemist), has exposed the frauds in adulterated fertilizers and has been presented with a suitable testimonial contributed by a great number of farmers in reward for his exertions to prevent such adulterations. So much for the power of the press and the esteem in which it is held in Dublin.
The Cunard Steamship Company have now no less than eight screw steamers in the course of construction on the Clyde, besides the Scotiu, which is to be the largest merchant steamer afloat (with the exception of the Great Eastern), and its speed is promised to exceed that of any steamship hitherto built.
The metal market is scarcely ohanged since last week. Scotch pig-iron has declined 1s. per tun, but there has been no other change in iron.
The advance in Banca and Straits tin, noticed in our last issue, is maintained; and perhaps there may be a still further adrance, as the total amount of Banca is less this year than the last.

NEW YORK MARKETS

Candles.-Sperm, city; 3Ec. a 4uc. per lb.; spernu, patent, 50c.; parafine, suc.; adamantine, cits, 18 se a 21 c .; stearic, 27 a 28 c .
 canuel, $\$ 12$.
Correzb.-Reaned ingot, 2 2\%cc, per 1b.; sheathing, 26 c . ; sellow metal, anc.
Cordade- Manilla, American made, efece per lb.; Rope, Russia hemp. $\mathrm{I}^{2} \mathrm{c}$.
 ding. 11% c. a 11% c.: good middling, 11% c. a 12% c.:. midding fuir 1176 c a 1234 c .
Dowestic Goong.-Shirthas, brown, 30-inch, per sard, 6 c. a $7 \frac{1}{4} \mathrm{C}$.; shirtings, bleached, 26 a 33 -inch, per yard, 6c. a 8c;; shirtings, bleachca, 30 a 3 -inch, per jard, ic. a 8% c.; ; sheetings, brown, 36 a 37 -incb per yard, $\bar{j} \neq \mathrm{c}$ c. a 8% c.; shectings, blencled, 20 -inch, per yard, $7 \% \mathrm{cc}$ a

 cassimeres, 8üc. a $\$ 1.37 \%$; : Eatincts,
Drewogns.- Barwood, per tun, $\$ 18$ a $\$ 20$; Camirood, $\$ 130$; Fustic, Cuba, $\$ 33 \mathrm{a}$ a $\$ 3$; Fustic, Tampico, $\$ 32$; Fustic, Savanill:, $\$ 19$ a $\$ 30$ Fustic, Miracaibo, $\$ 18.50$ a $\$ 1.3$; Logwood, Lagunaa, $\$ 2.2$ a 23 ; Logwood, Tabasco, $\$ 21$; Logwood, St. Domingo, $\$ 13$ a $\$ 13.50 ;$ Logwood, Ionduras, $\$ 16$ a $\$ 17$; Logwool, Jam:icu, $\$ 12.50$ a $\$ 12$; Lima wood, Fou a $\$ 75 ;$ Sapan wood $\$ 45$.
Foovn-State, guperfine lrands, $\$ 5.20$ a $\$ 5.25$; Ohio, common rande, $\$ 5.30$ a $\$ 5.35$; Ohio, good and choiece extra brauds, $\$ 5.85 \mathrm{a}$ $\$ 6.70 ;$ Michigan, Idiana, Wisconsta, $£ \mathrm{c}$., $\$ 5.35$ a $\$ 3.50$; Genesee,
 $\$ 6.70$; Virginia, $\$ 6$,
meal,
$\$ 3.75$ a $\$ 3.80$.
meal, $\$ 3.75$ a $\$ 3.80$
HExar.-American undressed, $\$ 190$ a $\$ 150$; dressed, from $\$ 160$ a 300. Jute, $\$ 87$ a $\$ 93$. Italian, \$82T. Rusian clcan, $\$ 190$ a $\$ 200$ per an. Munilla, 63\%c. per 1b. Sis:al, jor

 Coc. a $\$ 1.15$; Guatemalla, $\$ 1$ a $\$ 1.2 \mathrm{~s}$.
In:ox.--Pig, Scotcl, per tun, $\$ 34$ a $\$ 35$; Bar, Swedes, ordinary
izes, $\$ 85 \$ 86 ;$ Bar, Enclisu,
 ish, single, double aull trelle, 3% c. a 3% c.; Δ athracite pig, $\$ 23$ per tuu.
Ivorr-Per Ib, $\$ 1.2 \mathrm{a}$ a $\$ 1.50$.
L. тris.- Eastern, per M. $\$$. $\$.12 \%$.

Lead.-Galena, $\$ 5.50$ per 100 hbas.; German and Eagllah refined, $\$ 5.65 \mu \$ 5.70$; bur, sheet and pipe, 53 zc . a 6 cc . perlb.
Leature.-Oik slaughter, 1ight, 29c. a 31c. per 16.; Oak, medium,

 van, sjc. a buc.; Morocco, per dozen, $\$ 1 \times$ to $\$ 2.0$. Patent canm-
 ing, oak, 32c. a 34c. ; Hemlock, 288. a a 31c
Lime-Rockland, 75c. a 8 cc c. per bbl.
Lexabr.-Timber, white pine, per M. feet, \$17.75: rellow pinc, $\$ 35$ a $\$ 35$; oak, $\$ 13$ a $\$ 25$; castern piue and spruce, $\$ 14$ $\$ 15$; White Pine, clear, $\$ 3 \mathrm{ma}$ a $\$ 10$; White 1 ine, selcet $\$ 25$ a $\$ 30$; White Pine, box, \$14 a 1 k inch, dressed, tongued aud grooved, $\$ 29$ a $\$ 33$; White Pine, Al bany boards, decesscd, tongulud nndgrooved, $\$ 2 n$ a $\$ 21$; Black Walnut, good, $\$ \$ 5$; Black Weinut, 2d quulit'; $\$ 30$; Cherry, good, $\$ 45$; White Wood, chair plauk, s.42; White Wood, 1 inch, $\$ 23$ a $\$ 25$; Spruce Flooring, 1 difinch, dressed, tongued and grooved, each, 22 c.a 24c; Spruce Boards, 15c. a 17c.; Hemlock Boards, 12 亿c. a 14 c .; HemShingles, cyprese, $\$ 12$ a $\$ 25$; Stuves, W. O. pipe, light, $\$ 35$ a $\$ 5$; Staves, white onk, mize, heavr, $\$$ its a $\$ \$ 8$; Staves, white oak, pipe, culls, $\$ 30$ a $\$ 30$; Staves, do. hlhd., heavy, $\$ 70$; Staves, do. bbl. lipht $\$ 30$ a $\$ 35$; Staves, do. bll culls, $\$ 20$; Malogany-St.Domingo, finc crotches, per foot 3üc. a tisc.: St. Domingo, ordinary do., 20c. a $2 \overline{\mathrm{c}} \mathrm{c}$. Honduras, fine, 122 2 c a a 15 c.; Mexican, 13 c . a 15 c .
Naira-Cut, $3 \% / 4$ c. a 3% c. per 1 lb ; American clinch, 5 c . a $5 \% \mathrm{c}$. American horse-shoe, $14^{1 / 2} \mathrm{c}$
Oins.-Olive, Marseillee, backets nud boxes, $\$ 3.301$ a $\$ 3.40$; Olive, in creks, per gallon, $\$ 1.12$ a $\$ 1.25$; Palm, per pousud, sc. a $9 \% \mathrm{sc}$.; Linseed, city made, 5 Fc . n 5 sc . per gallon; linsced, Linglish, 5 ic. a a 58 c .; whale, fair to prime, 4 Jc a a $5 \mathrm{ce} . ;$ whale, bjeached 59 c . a 6 ctc .; 日perm,
 refined rosin, 30c. a 40c.; Wadsworth's boiled oil for painting, 35c a 40 c .: Wadsworth's tanner's improved and extra, 30 c. a 46 c .; Wadsworth's machiners, 5 cc . a $\ddagger 1$; camphenc, 44 c . a 4 cc . ; fluid, 50 c . a 53 C Platere-or-Pasis.- Bluc Nova Scotia, $\$ 9.75$ per tun; white, $\$ 3.50$; alcined, $\$ 1.20$ per bbl.
Resin.-Common, $\$ 1.65$, per 310 1be.; strained, No. 2, ©cc., $\$ 1.65$ $\$ 2$; No. 1, per 280 lbs. $\$ 2$ a $\$ 2.75$; white, $\$ 3$ a $\$ 4$; pale, $\$ 1.50$ $\$ 8.50$.
Somr.-Brown, per pound, 5c. a 8c.; Castile, 8\%c.a a 9c.; Chemical olive, 7 c a $7 \% \mathrm{c}$.
Srectran plates, $53 / 8$ c. a $5 \% \mathrm{c}$ c. per 1 b .
Steet.-English cast, 14c. a 16 c . per 1b.; Germnd, 7 c . a 10 c .; Am erienn apring, 5 c a a $5 \nless \mathrm{c}$.; American blister, 4\%c. a $5 \% \mathrm{c}$.
Somac.-Sicily, $\$ 60$ a $\$ 90$ per tun.
Tallow.-American prime, 10% c. a 103 z c.per lb .
Tru.- Manca, 32 c.; Straits, 3icc; plates, $\$ 6.50$ a $\$ 0.37 \%$, perbor.
Woort-American, Saxony fleece, per $1 \mathrm{D} . \mathrm{n}$. 5 c . a 60 c ; American full bloor merino, 48c. a 5 sc c: extra, rulled, 45 c . a 50 c .; superfine, pulled min, unwashed, 10c. a 18 c.; Mexican, unwashed, tic. a 14 c .
Zevc.-Sheets, Fc a $\mathrm{7x} \mathrm{fc}$. per Ib .
The foregoing rates indicate the state of the New York markets up to Japuary 1th.

There has been very little change in prices since last week ; a slight fall in flour is noticed, and a rise in resin. It is remarkable that the lowest and highest priced resins come from the same stock. Some new discovery, whereby the dark-colored resin could be converted into
white resin, would be of incalculable importance, and would be a vast fortune to the inventor.

The quality of Bengal indigo lately introduced into market is said to be very superior ; it was difficult to obtain the best qualitics a few years ngo. Most of the indigo which comes to our country arrives at Boston; the stock on hand at present is sufficient to maintain stationary prices for some time.

Brazil supplies us with the greatest part of our coffee, and New Orleans, Baltimore and New York are the chicf ports of this trade. The estimated sales of coffee for consumption in the United States, in 1859, were $1,110,000$ bags (a decrease of 900,000 bags from last year), all of which came from Rio.
The receipts of Cumberland coal into Baltimore, during 1859 , were 352,821 tuns, an increase of $3 \overline{5}, 000$ over last ycar. Many of our steam ferry boats, which once burned anthracite, now use the Cumberland coal, which is semi-bituminous, and not so destructive on grate bars and fire-boxes.
Baltimore is our principal copper mart. The quantity of cake and refined ingot copper made in that cit5, during 1859, was over $8,000,000$ pounds, valued at $\$ 2,000,000$.
Gold at the Mint in Pimladelfien in 1859.-
Gold from California.................. $\$ 43,751.00$
Kansas..................... 53,919.21

During last year 12,275 pieces of geld have been coined, valued at $\$ 173,459.68$. Of silver there were coined 293,000 picces, valued at $\$ 72,650$. Of copper cents there were $2,200,000$ pieces, valucd at $\$ 22,000$. Λ very small amount of the gold received from our mincs is converted into coin. Most of it is used in ingots, especially that which is exported. It saves a considerable expense to its owners in paying it out in this form.
Information in Regard to tile Mails.-Messtr. Conner \& Holbrook, No. 37 Park-row, have commenced the publication of a monthly sheet, giving the following important information in relation to the foreign and domestic mails connected with the New York Post Office:-1st, The rates of letter and newspaper postage of the various weights, to all the countrics of the world with which we have mail communication. 2nd, The routes of transmission, and plain directions for superscribing letters for these several routcs. 3d, Directions for the registration of letters. th, The times of departure of the European, California and Havana mails. 5th, The times of closing the domestic mails-North, South, East and West. 6th, The times at which the domestic mails arrive. 7th, The time occupied in the transmission of mails from distant points to New York city. Whe work is to be officially reviewed each month at the New York Post-office.

Not a Counterfeit.-The Bank Note Register and Counterfeit Detector, published by T. S. Hawks, of Buffalo, N Y., in speaking of the Scientific AmeriCAN, eays:-"This truly valuable scientific and mechanical paper commences the second volume of the new series with its next issue. It is one of the most useful publications of this country, and should be carefully and attentively read by every class of our citizens, as, in the great varizty of subjects presented in its columns, none can read it without profit. But the mechanic and artizan cannot afford to be without it, it treats upon every branch of mechanics, and the information conveyed may be relied upon as sound and correct ; there is nothing counterfeit about it ; it is entircly genuinc, bearing the true stamp."

How to Elevate Mechanics.-The enterprising proprietors of Blandy's Steam Engine Works, at Zanesville, Ohio, send us $\$ 42$, to pay for 30 subscriptions to the Scientific Amprican for one year. They inform us that they employ about 140 hands in their establishment, and that all the subscribers are from among their machinists. They also add:-" We expect to be able to create a better interest among them for this class of reading, instead of the 'blond-and-thunder' literature so common in this day." This is the right spirit, and is a sure guaranten that good engines and machinery will be turned out of that establishment. There are many other proprietors of machinc-shops who might profit by this example and aid ua in the bargain.

