BAYLEY'S RAILROAD JOINT AND SPIKE.
The invention which we here illustrate is worthy the attention of engineers and superintendents of railroads; it comprises a new form for the rail, a new device for securing the joints, and an improved spise head.
The form of the rail is that which would be produced by splitting the common T-rail vertically in the middle, reversing the outside half, and placing the two pieces together; this forms a symmetrical rail with a narrow thick lip, a, at the top on the inside, and and a broad thin lip, u, on the outside, furnishing : firm table for the wheel, and with a narrow thick lip, c, at the bottom on the outside, and a wide thin lip, d, on the in side, making a broad basc for the rail. This rail, having the same furm at top and bottom, is reversible, so that when the top becomes worn too much for use, it may be turned orer and used as long with the oppos:te edge upriser most.
For fastening the ends of the rails together, the plate, A, is fashioned to fit the
outside of the rails, and is boltel to them as shown in Fig. 1, the holes for the bolts being clongated to permit the expansions and contractions of the rails. To prevent the nuts on the bolts from turning, the blocks, B and C , are placed snugly under them and secured by the spikes, e and g. The spike head is made of the solid and stron, form shown in Fig. 2 and is provided with a hooked projection by which it may be drawn from the tie by means of a crowbar without injury.
This invention is protected by two patents, secured through the Scientific American l'atent Agency; one dated Nov. 1, 1859, and the other Dec. 3, 1859, and persons desiring further information in relation to it will address the inventor, G. W. R. Bayley, at Brashear, La. Patents have also been secured in England for this invention.

OUR STEAM FIRE ENGINES.

A large fire occurred in Beckman-strect, this city, on the morning of Thursday, Dee. 29th, by which the paper warchouse of CyrusW. Field:and several other buildings were entirely consumed. At this conflagration two new steam fire engines exhibitel their superiority as firc-extinguishers in a most gratifying manuer. The Munhat. tan-(belouging to Engine Co., No. 8,) drawn by hand, and weighing only 5000 lbs - - threw two streams of of $1 \frac{1}{6}$ th inch each, being abcut jug gallons per minute; and the Niagara-a sclf-propeller-threw two streams of $1 \ddagger$ inch each, being about 700 gallons per minute. One of these engines commenced working at 5Λ. M., and the other at 6Λ. M.; and they never ceased pumping until the fire was completely sulntued; bein, keyt constantly working, for nearly ten hours. Thes firemen who. were engaged on the hand engines at the fire were stoon exhausted as the day was bitterly cold; but the stemm machine never gets tired. These engines were built by Leed Larned, of this city, and are each providel with Cary's rotary pump. It affords us pleasure to see these agencies adopted by our heroic firemen.
During the time the fire was raging, the Matyor of Philadelphia kindly telegraphed to the Mayor of NewYork, that, if help were wanted, two steam fire eugines were ready to start to assist in extinguishing the conflagration. The value of loss sustained is estimated at $\$ 500,000$; it would have been double this amonur, it is believed, but for the steam engines.

DOES A; RED-HOT STOVE BURN THE AIR? There is a very common notion that if stoves or furnaces are heated red-hot, the iron will combine with the oxygen of the air, in other words burn it, and render it unfit for breathing. If we examine the facts we find that this idea is true to so small an extent as to make it of no prantical importance. The compound which is formed by burning iron in atmospheric air is principally the black oxpd, which consists of three equivalents of iron and four of oxygen, $\left(\mathrm{Fc}_{3} \mathrm{O}_{4}\right)$ that is. 22 lts . of iron to 32 lbs of oxygen. Consequentiy, it wild require

32 lbs of oxygen to entirely consume a stove weighing 82 lbs . Now 100 cubic feet of air weighs about 122 ounces avoirdupois, of which the oxygen forms about 28 ounces. It would consequently take all the oxygen in 1,800 cubic feet of air to entircly consume a stove weighing 82 lbs . Λ stove heated red-hot and exposed to the air would certainly last as long as 10 months, and if it were completely burned in 300 days it would consume the oxygen in six cubic feet of air per day. Lavoisier and Sir Fhumphrey Davy estimated that a grom.n fierson consumes $2 \frac{1}{4}$ culic feet of oxygen per day, which

NEW RAILROAD JOINT AND SPIKE.

is the quantity containal in 11:3 cubic feet of air: consequently it would require at least 19 red-hot stores to burn the aji as fatt as one pair of human lungs. We have made a safe estimate, and it is probable that a stove would last much longer than ten months, and therciore, that, in fact, $\mathbf{z 0}$ or 100 stoves would not consume oxygen as last as the breathing of one man.
There are other considerations, however, to be talien into ascount in estimating the effects of rel-hot iron on the human system. Heat from warm iron, below the temperature at whi hit is luminous, passes through erystall; of rock salt as freely as any other heat, but this heat will not pass through glass, while that from red-hot iron will; showing that there is a difference in the nature of heat coming from red-hot iron and that from ironat a lower temperatiure. It may be that the effiects of these diff'crent kinds of heat upon the human system are as different as their effects upon glass. The mode in which heat operates upou the various viscera of our bodics is very mysterions, and if there is sufficient evidence that heat from red-hot iron is in jurious to our health, the truly philosophical method is to accept the fact and act upon it, whether we can find what is called an explanation or not.

The Skatino Carnivat.-Crowds enjoyed themselves happily by skating at the Central Park last weeck. Although the weather was severely cold, the ice was splendid and the animal spirits "tip-top." Statements have been made that about 600,000 pairs of skates have been sold in this city since the present winter commenced, and the recently patented kiuds seem to be great favorites. The Philadelphia Ledger gives the New Yorkers a spice of its feelings in regard to skating as follows:"New York boasts of her 20 -acre shating pond, at the new park, scarcely larger than some of our brick ponds. If the citizens of that city wish to know what skating is, they should visit Philadelphia in winter, when they would see the Scluylkill frozen over for a hundral miles in kingth, and enough not only for all the citizens of the commercial metropolis, but sufficient besides for all the skaters in the Union. If the Manhattan Islander goes crazy over a $\because 0$-acre skating pond, what would lie do with the Schulykill, Wissahicken, Hollander's Creck, and the hundreds of other sources of enjorment of that excreise which the youth of Philadelphia have at their command! !"

Preserving Meat- - A correspondeat writing, from Ickesburgh, Pa., says:-"It is not generally known that fresh meat may be properly coverch with salt and pickle, and remain there for the usual length of time, and yet spoil after being smoked, from exposure, when in pickle, to too great a degree of cold. Fresh meat will frecze in salt pickle as soon as the temperature of the pickle is sufficiently low to freeze fresh water, and so lon! as meat remains frozen it will take sal! vare slowly."

THE CHEMISTHY OF TANNING.
Messrs. Editors:-I noticed on page 411, Vol. I. (new series) of the Sciemtific American, that A. F. O. of Albany, states certain results without assigning a cause. The effect produced by electricity on hides while in the "bait" is to soften and rot them. That the entire pro. cess of converting animal gelatine into leather (except the finishing) is purely a chemical transaction, I think may te fully established, by the simple fact that no mechanical appliances can convert hides and skins into leather without the aid of chemical combination. Wo concede that varions mechanicil arrangements aro necessary to the production of leather, either as a preparatory or as a completion of the leather, after we have arrived at a chemical change.

The use of lime for the purposes of depilating, and the process of baiting and tanning following, are all chemi. tal. Lime acts chemically on the hite for the purpose of loosening the hair. The use of hex manure, urie acid, for the purpose, as is commonly said, of " taking out the lime," is a chemical operation of the uric acid on the lime for the purpose of neutralizing the lime in the hide before tanning.

The effect of electricity gencrated from a battery, or atmospheric electricity in the lime bait or tan vat, is to concentrate the action of the lime in loosening, and the acid in baiting, and the tan in tanning, in each and every case objectionable. Λ tmospheric electricity during the process of bait universally accelerates and conv. centrates the action of the acid, rotting the hide in spots, finally irretrievably damaging the whole pack; the samo result attends a long immersion in the baiting solution, which is one chamical reason at least for the lack of durability in leather exposed to the action of electricity, The same oljections may be raised to the use of many salts, acids, \&c., that are used for the purpose of saving time in tamning, alse the use of chlorine (muriatic acill), and alum, as a preparatory to taming; the last named, though old in the form of alum and salt, are exceedingly objectionable, cither as preparatory or for taviny, (not tanning) its introduction as a preparatory must fail, for the good reason that the combinations are forced not natural chemical combinations.
W. S. B.

Cleveland, Ohio, Dec. :31, 1859.
linanchal Condithon of the "Great Eastern." -The shareholders of the Cieut Easteratre sinking into an awful state of depression. 'The surveyor's report declares that not less than $\$ 200,000$ more must be expended upon her before she can be fairly said to be in a fit state for oceall royages. The new company is said to be in debt, and her shares are at so low a figure that they ean only be dealt in at a rumous loss. Some of the proprietors, it is rumored, contemplate instituting proceedings through the Boanl of Trade, or in equity, to obtain a full accomint of the stewardship of the board of management. Something will have to be done, and that inmediately. The slayes are quoted at one-half, with one paid up. It is supposed that another new company will be formed, ia order to get rid of the present board of management, and then, by the issue of 100,000 preference shares, to raise $\$ 500,000$ more, complete the vessel right off, aud set her to business. Up to this time the has cost $\% 5,060,0100$.

Cold Weather.-The first severe cold weather that we have experienced this winter, came upon us on Tuesday night, the $\mathbf{2 7 t h}$ ult. Wednesday morning at 6 o'clock the thermometer stood at zero, on Brooklyn Hights, and on 'Thursday morning it was 7° lower down still. l'ersons from the dry regions of the Nnorthwest say they experience a keener semsation of cold in Ner York city with the thermometer at zero than in St. Paml, Minn., at 30° below

A Smile from Califorma.-J. G. Carson, writing from San Francisco, bestows upon usthe following happy compliment:-"If the editors of the Scientific AmeriCas have en joyed the production of the "new series "half as much as the readers have had pleasure and instruction from its perusal, it ear no longer ba said that 'the editorial chair is cushioned with thnrns.' The very idea must be considered obsolete."

