## copernicts by earta light.

On page 82 of the current volume, we gave a condensed report of a lecture by Professor Morton, of Philadelphia, and of the magnificen esperiments by which the lecture was illustrated. We also described some splendid phetographic views of the moon, and of the planet Mars, among which was the view of the lunar volcano Copernicus. We herewith reproduce this view from the Journal of the Franklin Insti. tute, and we feel that in so doing we are presenting an en graving that will prove of the greatest interest to our graving that will prove of the greatest interest o seren
readers. Who does not long, while gazing upon the sere face of the queen of night, as she glides in majesty over a cloudless sky, to know and see the hidden wonders of he structure? Her mean distance from the earth is two hundred and forty thousand miles, yet it is hard to realize on one of those glorious autumn evenings which occur in our latitude, that she is so far amay. It is even harder to realize that her fair face is seamed, and scarred, and blotched, and torn-a scene of the wildest confusion, a dreary, barren, and lifeless desert, only variegated by rude precipices of enormous height and extinct volcanoes, which, in their former active state must have presented a spectacle of the arousel forces of nature beyond conception, awful, and sublime.
We ordinarily see the moon by means of the light of the sun reflected from her surface. During one half of her revolution, however, the sun shines upon the portion of her surface which is entirely or partially turned away from us, leaving the side which is toward us, dark, with exception of the light which falls upon it from the stars and planets, and the light of the sun reflected from the earth. Surfaces are good reflectors of light, in proportion to thir 20 of tight in prop the earth can, therefore, be only an imperfect reflector. Even the water, which, if at rest, would form a more perfect reflecting surface than the land, is rarely perfectly still; and the regions near the poles, where the water is congealed into snow and ice, present also great irregularities of surface. Color bas also much to do with the amount of light which bodies reflect, and all reflecting bodies which have not pure white surfaces, modify more or less the character of the light which they reflect. Snow is, therefore, a better reflecto than the bare earth, both because it is white, and its sur face is smoother than the land which it covers. All bodies seen by reflected light are less illuminated than the reflecting surface. The moon, viewed only by the reflected light of the earth, stars, and planets, is, therefore, very dimly seen. The eye, unassisted, can scarcely see more than the mere outline of her form. When the moon is entering upon her flrst quarter, she may be seen as a thin crescent upon that side of her disc which lies nearest the sun. The remaining portions being only just perceptible. The dark portions of the moon whicb, seen at the full, are fancied to resemble the human face, are shadows cast by the summits and craters of extinct volcanoes. The principal mountains which form these shadows are called Tycho, Copernicus, and Kepler. The largest of these is Copernicus, which has a crater fifty-five miles in breadth. Its height above the surrounding plains is eleven thousand two hundred and fifty feet.
The engraving represents this immense crater as seen by earth-light. It is a vast plain surrounded by a circular wall, with central cones and huge boulders scattered over its sur face. Mars, proportionately magnifled, is seen above the horizon, with masses of clouds floating in his atmosphere, and showing the marks of continents and seas. In the im mediate vicinity are seen lesser craters, their edges illumined and inclosing gulfs of vast depths and proportions. The rugged and mountainous appearance of the moon is admira bly shown, and the appearance of desolation most truthfully delineated. What features are presented by the side of the moon which luman eyes have never seen we cannot certainly say; but it is probably just to infer that it possesses the same general characteristics as the side presented to us. The craters of some of the lunar volcanoes are of immense depth, thousand feet
In 1787, it was announced by Sir Wm. Herschel that he had observed three volcanoes in a state of eruption upon dif ferent parts of the moon. Astronomers have, however, generally supposed that the phenomena seen by Herschel were due to peculiar reflections of earth-light from portions of the peaks having great reflecting power. There have been, with out doubt, some recent changes in the craters, which are found everywhere upon the moon's surface. In 1866, Schmidt Director of the Observatory of Athens, observed the total dis appearance of the deep crater Linné. In its place remained only what appeared to be "a little white cloud." This obscuration, which was observed by other astronomers, occurred in October and continued till the latter part of December, when the crater was again distinctly visible. The cause of this phenomenon bas never been explained; but it indicates that the forces which have so convuised the surface of the moon in ages past, have not yet fully expended their ene gies.
A single coffee plant, taken from Arabia to Paris, in 1614, was the parent stock of all the coffee plantations in the West Indies.

## Correspondemte.

## respondents

Experiments---The Condensation of Alcohol by Frost.
Messrs. Editors:-Being induced to believe that the se ere frosts of winter may be utilized in the condensation of alcoholic liquids, by the freezing of the water combined with the alcohol, and subsequent separation of the water by draining off the unfrozen liquor, leaving the water in the bottle as ice, I instituted the below.described experiments to satisfy myself as to the correctness of this idea
A bottle, of pure new grape wine, having betn exposed at low temperature, appeared to have become frozen. Upon examination I found that its contents were only partially frozen, a feathery crystallization filling the bottle, the inter stices between which were occupied by the unfrozen liquid. Suspecting that this latter was prevented from freezing by the greater amount of alcohol which it contained, I decanted the unfrozen liquid into another bottle, leaving the ice (or
liquid being distilled, gave one hundred and fifty midims clear distillate ; thirty minims remaining in tube-retort, and consisting of fined carbon and yellow volatilizable matter, which latter was almost inappreciable. It was probably derived from the decomposition of the sugar present. About five minims out of one hundred and eighty minims was a precipitate containing tartaric acid
No. 4. One hundred and twenty of the clear red liquid being distilled, yielded one hundred and ten minims, clear distillate ; about three minims of yellow liquid of empyreu matic odor was rendered by severe heat (fusing of tube re tort), and seven minims of flyed carbon, etc., remained About four minims in one hundred and eighty minims wa a brown sediment containing much tartaric acid, togethe with some organic or microscopic vegetable matter. Alcohol and sugar, undetermined ; though the former was present in some quantity in the clear distillate and the latter (sugar) existed in quantity in the remainder being afterward met morphosed by heat into the yellow liquid and fized carbon.
No. 5. In this instance the record of amounts and results distilled was unfortunately lost; however, the general teno of the experiments suffices. Thi was the rich, blood-red liquid, heavy and sirupy; greater in spe ciflc gravity than any of the preceding. From its characteristic I was led to suppose that I had succeeded in condensing nothing but the sugar. Here, however, I was mistaken; the clear distilla te which first passed over was a proof spirit, inflammable. A piece of paper dipped in it, was lighted upon being brought near flame. Much of the yellow liquid before described passed over with severe heat, and considerable "fixed" carbon remained in tube,covering the sides of tube with a black scsle.that shrunk with a "crinckiing" sound upon the cooling of the tube.
From the result of these experiments I was led to infer that the process of freezing and decantation, etc., had been one of condensation.

That from the regular increase of specific gravity in the liquids, something besides al-
water) in bottle No. 1. Though the liquid thus decanted remained a liquid, the ice in No. 1 remained unthawed. No. 2 was finally frozen, however, by the increasing severity of the weather (winter of 1887-288), which, as the technical nature of the experiment demanded, was $m g$ only reagent for rejuction of temperature. A crystallization similar to that in the first instance also existed throughout the contents of the second bottle, No. 2 ; but as before, a portion of the liquid did not congeal. This also was decanted, the operation being repeated until the original wine had been separated into five portions, the last decanted of which-the fffth-which was of a ruby red color-refusing to congeal even at a temperature of rom $28^{\circ}$ to $30^{\circ}$ Fal
The liquids thus separated had the following peculiarities The liquid in bottle No.1, which was obtained by thawing he ice, formed in the first instance by the partial congela ion of the wine, was greater in amount than any of the separated liquids, having a slight amberish tint, though al most clear.
No. 2. This liquid was one quarter less in amourt than that in No. 1, but had much the same color and quality, containing, however, a little organic, sacclarine, and volatile matter, with tartaric acid, depositing one half to one quarter of a minim of sediment from seventy-flive minims of liquid. No. 3. The liquid in receptacle No. 3 was till less in mount, one quarter less than the contents of No. 2. Color ed amberish, light tint of red prevailing. Organic, volatile alcoholic), and acid matter, etc., were present in increased quantity.
No. 4. Amount of liquid one quarter less than No. 3. Color, clear red; about five minims in one hundred and eighty minims of liquid, being a faint reddish sediment of organic matter, containing much tartaric acid.
No. 5. The amount of liquid was similar in its proportion to the rest, being about equal to three quarters of the contents of No. 3; its specific gravity being perceptibly greater than any of the preceding. Color, deep, rich red; liquid, irupy and rich
The comparative amount of liquid, color of, and epecific gravity of, was, in a sort of proportion, much as below

| Lreoid No. | No. 1. | No.2. | No.3. | No. 4. | No.5. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Amount of Iiquid in dr.,and fractions of | $9 \cdot 4$ | $7 \cdot 05$ | 4.7 | 3.525 | 2:1+ |
| $\begin{gathered} \text { Color } \\ \text { of liquid. } \end{gathered}$ | Clear. | Amberish. | Faint Red. | Red. | rich R |
| Specific gravity in proportion of. | 0.6 | 07 | 0.8 | $0 \cdot 9$ | 1.0 |

The next step taken in the examination of the separated liquids was a fractional distillation; or the separation by heat (in the form of vapor) of the different substances exist ng in the liquids.
No. 1. The liquid denominated "No. 1" was not distilled eing little but water
No. 2. Also undistilled (only differing from No. 1 in leav ng a sediment).
No. 3. One hundred and eighty minims of this reddish

From the results of distillation, caromel and yellow liquid. having the odor of burnt, or, rather, decomposed sugar having the odor of burnt, or, rather, decomposed sugar,
sugar was supposed, also, to have been condensed. Tartaric acid, or tartrates, were also condensed.
My conclusions are, that, by the method described, alco holic liquids, wines, etc., may be condensed; the sugar, alco hol, and tartaric acid, being the condensed substances. I have thought that the condensation of the sugar was more complete than that of the alcohol and tartaric acid.
A hundred casks of wine, of an inferior grade, may, by freezing and decantation in the winter season, be condensed into a less in amount, jut stronger, more sirupy, and valuable "port" wine
It is a fact, that, from a barrel of fermenting cider, wel frozen, may be drawn gallons of strong drink, unfit for temperance folk.
It is a fact of the "Sugar Busb," that maple sugar-makers, when, on a sharp morning, they find a bucket of sap stand ing half frozen under the tap, throw out the clear, taste lessice, and flnd a thick syrup beneath.
Hoping that these hasty notes may not be without interest, and, perhaps, of assistance to those desirous of pursuing the subject further, or may save others from wasting time upon an already explored fleld, I remain, respectfully,
Albany, N. Y.
Verplanck Calvin.
Change of Pitch in the Tono of Moving Bodies, Messrs. Editors:-In regard to this suhject-flrst men tioned by a correspondent, page 247, Vol. XVIII, and cor rectly explained by Mr . Welling, page 323, same volume-it may be remarked that I was present at the first experiments, made in Holland about the vear 1845, on the railroad from Amsterdam to Rotterdam, of which the purpose was to ascertain if practice would fully verify the teachings of theory, as to the amount a musical tone would become sharp or flat, when the distance between the ear and the instrument producing the tone was rapidly diminishing or increasing. It was done simply by sounding a trumpet or other loud musical instrument on one train, and observion carefully the pitch on the other train passing in an opposite direction, or similarly sounding the instrument on board the passing train and ob. serving it upon the road, or vice versa. The results were always perfectly in accordance with the theory.
The theory is very simple. For instance, the middle C of the musical scale makes 256 vibrations in one second, which are transmitted with a velocity of nearly 1,100 in the same time. Suppose now we could move toward the sounding body with a velocity of 1,100 feet in a second, twice the number of vibrations, or 512 , would reach our ear, which corresponds with the octave above and the tone would appear an octave higher. Such velocity is, however, at present beyond the power of actual experiment, but the illastration serves to make the theory clear. As the oc'ave is divided into twelve so-called semitones, we can easily flnd how fast we have to move to raise the pitch a semitone; namely, the twelfth part of the velocity of sound or about ninety feet in
a second, about sixty miles an hour or one mile in a minute When we move from the sounding body with this velocity the opposite will take place; one twelfth of the vibrations will reach our ear and the tone will appear flattened a semi tone. When the sounding body moves and we are at rest the effect will be the same. as is self-evident.
When two railroad trains are passing one another and one locomotive sounds the whistle, the passengers in the othe train will hear a higher note, when the trains are approach ing, due to the combined effect of the two motions. When each train is moving at a velocity of sixty miles an hour, the rise of pitch will be a whole tone above the real note. When the trains have passed and the distance intervening is increas ing at the same velocity, they will then hear the sound a whole tone below the true one. Hence, at the moment of passing a change of pitch will be observed of two whole tones or a major third. Buth trains, however, seldom reach this velocity, and the change of pitch usually observed will seldom be more than a minor third, or one tone and a half, which corresponds to a mean velocity of each train of one fifth less than sixty, or forty eight miles an hour. The same fact is obsersed in the sound of the locomotive bell when it is rung in passing.
When traveling at night I have of ten amused myself in noticing the correct interval of this chandrein pitch; deducing from it the sum of the velocities of the $t$ wo passing trains. Fhen, by knowing the size of the drive soheels of the loc mo tive of my tsain, aud taking into coneideration that four puffs of steam correspond always with one revolution, and timing the velocities of these steam puffe, I had the key to the velocity of my train; and subtracting this from the total velocity obtained th.. velocity ot the train which had passed, and of which nothing but the changing $p$ itch of the whistle had been observed.
P. H. Vander Weyde, M. D.

New York City.

## Explostive Ganes in Steam-EBollers.

Messrs. Editors :--The explanation of the bighly interstin! case, meinti ned by a "Piactical Engineer," page 35 , is evident. When the supply proper refused to give water, there was, of couree, a lack of water in the boiler; and, not withstanding that the engineer withdrew his fires, some part of the builer became hot enough to decompose the steam, no into its elements (this is a pure speculation, having no fact to support it), but the iron became oxidized by the oxygen of the support it), but the iron became oxidized by the oxygen of the
water, and the hydrogen was set tree, which is always the water, and the hydrogen was set iteau is in contact with red hot iron It is, in case when steam is in contact with red hot iron It is, in
fact, one of the ways to marutacture hydrogen. The boiler fact, one of the ways to maru'acture hydrogen. The boiler
being closed, and the hydrogen not soluble in water, it re mained there; and when, after cooling, the man-hole was opented, air tnough entered to f.imn with the hydrogeu an explosive misture, to which the engineer ser fire with his lamp. Any practical chemist, acquaiated with the enormous explosive power of oxygen and bydrog $n$ n, wechanically mixed in such proportion as they are chemically combined in water, will agree that, if such a misture had bern in the boiler. something much worse would have happened to the engisomething much worse would have happened the the boiler also. In this case it was simply hydroneer and to the boiler also. In this case it was simply hydro-
gen and common air, which may be considered almost harmless, when compared with the tremendous power of hydrogen and oxygen.
P. H. Vander Wexde, M. D.

New York city.
The Use of Ozone in Sugar Refining.
Messrs. Editors :-In your journal of June 23d and August 5th, I notice two articles on the use of ozone as a decolorizing ath, I votice two articles on the use of ozone as a decnlorizing six weeks since while in London, I thought that the following facts might be of interest to you.
The first exptriments in blea ching sugar by ozone were made in the couutry, about sixty miles from London, and were a pertect success, changing a dark brown solution of sugar to
a straw color in a few minutce, and at the same time deposita straw color in a few minuter, and at the same time depositing all the foreign substances. The result of these experiments being so satisfactory, the owner of a -ugar refinery is Whice Chapel was induced to put up a steam engine to drive an electric machine and bleach sugar by these means; but it has proved a total failure on account of his inability to produce ozone in any quantity. The owner of the refinery attributes this to the air of London being, to a great extent, deprived of that gas by its immense population. Be that as it may, until somebody discovers a means of obtaining that gas in large quantities at a modera'e price, sugar refining by oz'ne will remaiu in its present c ndition.
H. W. B. Philadelphia, Pa.

Useful Hints for the Season by Septimus Plesse.
Remedy for Insect Bites. - When a musketo, flea, quat, or other uoxious insect purcturt a the human skin, it deposits or injecta au atom of an acidulous fluid of a $p$ isonous nature. This causes an irritarion, a sensation of tickling, itching, or of paio. The tickting of flits we are comparatively indif ferent about ; but lie itch produced by a flea or gnat, or other noleome insect, disturbs our sereuty, and, liks. the pain of a
wasp or bee sting. excites us to a "renuedy." The best r-mwasp or bee sting. excites us to a "renuedy." The best r-m-
edies for the sting of insects are those which will instantly neutraize this acidulou- poison deposited in the skin. These are tither ammonia "r borax. The alkalin reacti $n$ of borax
is scarcely vet sufficiently a preciatud. However, a time will is scarcely yet sufficiently a preciath. However, a time will
come when its good qualities will be known and on re universalle valutd than ammonia, or as it is commonly termed, "hartshorn." Borax is a ealt of that innocent nature that ic niay be kept in every household; it can be recommended as a domestic and harmlees chemical. The solution of borax for
inser is made thus :-Dissolve one ounce of borax in one
pint of water that has been boiled and allowed to cool. In stead of plain water, distilled rose water, elder, or orange flower water is more pleasant. The bites are to be dabbed with the solution so long as there is any irritation. For bees' or wasps' stings the borax solution may be made of twice the ahove strength.
Water Coolers.-We all know that cold water during the summer is one of the greatest luxuries. When it is generally underetood that evaporation produces cold, it will be evident that any vessel or material that favors evaporation will induce this result. Now, all porous and absorbent vessels are of this character. Pottery not glazed is porous. A linen clothed dipped into water is porous, absorbs water, and when exposed to the air the water evaporates, producing cold hence, if any vessel be covered with a damp cloth, the interior will be colder than the exterior. A water cooler is a porous veseel, which allows evaporation to take place on its outer surface, thus cooling the contents. The water coolers, as sent to us from Stafordshire, have, however, one fault they are not sufficiently porous; hence there is only a very slow infiltration from the inner to the outer surface, and ans minute organic substance that may be in the water is arrested by the crock. After a time, this urganic matter, it is often observed, undergoes decomposition, giving a musty, earthy odor to the water that may be in the vessel. When this is the case, it ehould be cleaned both inside and out, with an ounce or two of strong muriatic acid, rubbing the exterior with a flaunel wet with the acid, followed with clean hot water. After this treatment the vessel will be, as before, a good water cooler.
Lemon Kall. - A teaspoonful of this compound in tumblerful of fresh cold water, forms a very agreeable effer vescing summer drink. When made, it must be preserved in a dry place, and in well-corked bottles, otherwise it will soun be spoiled. To make it, take one pound of powdered white sugar, half a pound of bicarbonate ot soda, halt a pound of citic acid, powdered, and hait a crachm of essence of lemon Sift the whole well together, then putit into drg, wide mouthed bittles. Tartaric acid may be used instead of the cinic acid at less expense, but it is not so good for general use. Citric acid is the true acid of the lemon ; tartarte acid is derived from grape lees, tamarinds and other fruit. The pleasing flavor of lemon kali depends much upon the quality of the essence of lemon, which rapidly epoils in druggists shops, and smells like turpentine. See that you have good nd fresh essence of lemon.
Fleas in Dogs.-Fleas trouble dogs, and one of the best emedies is the following: Rub colza or common olve oil ato the coat, eaturate the hair with the oil to the eurface of the skin, let it remain on for half an hour, then well-wash out the oil with the best yellow soap and lukewarm water A small portion of any sweet oil brushed into the coat of a woolly dog, will prevent its being infected with vermin Matrons of large schools may advisedly take this hint. In rects of every kind have a "Ife and death" dislike to grease in any form.

## mandfactoring, mining, and railroad items,

An iron steamer, the first ever built there, was launched at Clevelanc Ohio, on Saturday, 25
Ithasbeen suzgested in England to unite Scotland and Ireland by a tun nel. The distance of the proposed
and the cost is set oown at $£ 3,150,000$
Sun-dried oysters, cured lise beef by hanging in the sun, are becoming a mportant article of trafic in California.
Ninety locomotives are now in use on the
bundred and seven others have been ordered.
n fmperial French decree suspends the tunnage on vessels entering the Dorts of the Empire with breadstuff for three months from the 1 st of Octobe
next. This would seem to imply a soort harrest in Disonvery or Caloride of Porassicu.-A vast deposit of pure chloride
of potassium nas been discovere 1 in a salt mine in Hungary. This must of potassium bas been discovere in in a sal.
orove of great commercial valine to Austria.
Appropriattons for Iuprovenkyts,-C’ngress appropriated a million and a balt dollars for river and barbor improvements at the late sessipn,
Three hundred and dity thousand dollars go for the improvement of the Mrsisis.ppi.
NrW OCEAN STRAM Rovir.-A contract was concluded, a short time back,
b. the Chillan Government with the Pacifics Steam Navigation for direct mai communc:ation with Eng land. The vorage out and back mas
ted in forty-two days. The trst ship sailed on the 13 th of July.
Scaarin brbwing.-The use ofsuzar in British breweries has largely in crasaed. During the year 1867, 41,143,000 pounds were consumed. Narcotic
adulterations of an exceediogly deleerions nature are often added to the liguor.
A Nsw Past in Eoonory.-A specips of co-operation ssst-m tas been
doonted by the Pennsylvanis Rallioad Cumpany. It is ayreed to divid mons the enenineers and f remen a lithat they save from lastyear's ex pend

 sems tohave arrived at the conclusion that a tun of peat ( 2,240 pounds) equivalest toa tu not tbe b-st wood
 ool yei been deteranined.
Howa Striex was Conqurrid.-A sboe manufacturer in North Adams with a full force of workmen. He secured fortrory and is now ruuning With a full fore of workmen. He secured for
wow emplo ss none who beloug to a " Union.'

## new publications.

Happr Hours: A Colltction of Songs for Schools, Acade mies, and the tome Circle By Fidward Kingsbury anid
Alfred A. Gral-y. New York: Taintur Bros., No 698 Broduway.
quiring some skill and culture in tuerir execution. The words and the music seel. eqnally chaste and caretulty arranzed. Both are of a high order. The oillection is a good one, and will meet with great tavor with tenchers, pupils,


Mill for Grinding Cla y.--Levi Moore, Baraboo, Wis.-The object of this Invention is to provide a mill for reducing clay to a pulverulent and plastic rangement of tlie grinding devices, the whole being contained within a irame adapted to tbeir operation.
Frnor.-Henry J. Culp, Goshen, Ind.-This invention relates to an im.
provement in fences, and consists in so constructing the panels of which the fence is Sicele bar for Mowina machinges.-G. W. Chapman, Jr.,Iowa Falls, Iowa.-Tnis invention relates to an improvement in the construction of
sickle bars for mowcrs and reapers, and consists in forming the bars in two sickle bars for mowcrs and reapers, and consists in forming the bars in two pieces, in such manner a casily removed when necessary to sharpen and re pair them. or replace any when broken.
Loo Slid.-Chas. W. Mosher, East Leon, N. Y.-The object of this invention is to provide a log sled ur boat with means to cnable the logs to be takcn
on to the sled througb the draft force exerted by the catt'e hitched thereto It consists of an angular oraft force exerted by the catcr hichneons, whic ratter bave bearings on the sides or runners of the sled, or in suitable piece of timber afllyed thercto. together with a chain and 10 g hooks so arrange that the drafl
upon the sled.
Portable Clothre Rack.-Geo. H. Hammond, Davcnport, N. y.-The obJect of this invention is to provide a simple, durable, and portable rack for drying clothes. 't consists of a central staff having two huos afflsed there-
on, the said hubs being formed with jaws in whichare provided fold on, the said hubs beingformed with jaws in which are provided folding arms
and a jointed brace for holding tbe arms rigidy extended; the dryung ropes rc arrang $d$ at proper int rrvals on the arms, and the whole toset upon and revolve freely thereon.
Brlat Tuol--Eben Hester, Safteld, Conn.-The object of this invention is to furnisb a convenient tool for niting belts for machinery. It consists of a
square shank tetin a liandle and bearing two punches forcntting holes in the belt, and two punches having liol ow or concave points for heading rivets It is also provided with a flat lacing $\hat{\mathrm{w}} \mathrm{m}$ having an eye for carrying the eather lacing strip.
Coupling for Siozle Pitmans.-O. P. Drury, Niles, Mich.-The object of this inveution is t, provi e a strong, durable. ond easily worklng coupling
device for connecting the pitmans of a reaping or mowing machine with the device for connecting the
sickle oack of the sam
Lımp.-S.C. Brockington. Groton, Conn.-The object of this invention to construct alairp for kerose ie and other hydrocarbon liquids, in whic
the wick will always be equally far inserted in the liquid, so that thereby stcady and qual flame will alwass be obtained. The object of the inventio is also to provide an oil reservoir and counections of means of which any number of lamps can be supplied with the necessary fuel.
Writing and Draming Dess.-Wm. W. Levering, New Turk city.-Tbis invection relates to a new desis, which is provided with slates, thack boards,
and trausparent ground glass plates, in such manner that they will be conand trausparent ground glass plates, in such m
venient for teachers, artists, and business men.
Fly Frame Flyer.-James S. Streeter, frovidence. r. I.--This invention elates to a new and improved method of constructung fiyers for the twliting of yarn. wherever the same are more economicsity made, and wher
roving is more effectually prevented from flying out when running.
Ricr Coltivator.-Geo. W. Cooper, Ogeechee, Ga.-This invention rerokcu up, without tirowing ciods upon the p.ants, and without forming uriows and thills netwcen the drilis.
Sashes 1 ND Window Framps - Johann Schnell, New York city.-This in of facilitating to a new uanner of constructiug window frames, with a view and therepairing of broken eash cords. The invention consists lu hanging the frame in whicl the sashes move np and down to the casing of the win dows, so that it can be folded or
pruvided with slidiny sashes
Extension Wardiobe Frame.-Elias Gill, New York city.-Thc object of Lhis nvention is to construct a framcfor a portable wardrobe, in such manlength and width, according tu the room which it is intended itshould occupy. The invention consists in connecting the four posts of the frame
which fit with ineir lower ends mo slotted birs which fit with ineir lower ends mto slotted bars or beds, longitudinally as well as transversely, with toggle levers or slotted extension levers, or noth,
so that they can. longitudinally as well as transversely, be moved any desired distance apart.
Elabtio Supports for Car ShatBacts.-Geo. Higginson, Newaik, n. J. -This invention relates to a ncw device for supporting the arms of car seat backs and for receiving the shock when the same are reversed. The inven
ion consists in the use of bolts or blocks which are rescing upon spring or thet cushions, and which are secured to the sides ot the seat, so that the elastic supports, and may, if the baoks, is reversed and suddenly let fall, find a yielang support.
Grateforstoves and furnacis.-A. J. Magoon, Providence.R. I.-This arranged that it can at the same time serve as a grate and ash sifter. The granged that it can at the same time serve as a grate and ash sifter. The
grate is of circular form, and is at its center, by a vertucal pin, pivoted in a horizoutal shafl. On one side the grate is supported by a axed lug, so that it cannotbe dumped to that side. If ny snitable gearing connection the grate is revolved ar ound its vertical axis in one direction, it will simply obtain the
said motion and will cause tue coal held on itto be thorougbiy shoved and said motion and will cause tue coal held on 1 to be thorougbiy shoved and
sifted, but if revolved in the opposite dirention, it will not be held by the lag and will swing around the horizontal axle and be cumped.
Ice Pitoner. - Thomas Leach. Taunton, Mass.-In thisi ivention a detach. ane and remova ble lining, of glass, china, or earthcn ware, is emploved, and in conrection witu it a combined valve, and flter of pecular construction,
togetber sith a novel and convenipnt device for tolding the lining frmm in togetber $i$ ith a novel and convenipnt device for bolding the lining frmly in the pitche
the ice.
Maching for Digintrgrating Cementrd Gratel-J.b. Cox, San Fraicicco, Cal.-This invention relates to an improved mach nne oy means of
whict the compact gravel that abounds in and avout the gold mines of Caliornla and plsewhere can be readily disiutegiated, so tnat the gold which it cuntains may be eeparated trom it.
Pocket Counter - Jacib S. Detrick, San Francisco, Cal-The object o this invention is to provide a neat and convenieat pocket instru
which the velocity of shafting. etc., can be accurately aetermined.
mandfacture of Brooms.-Robert F. Dibson, Goderich, Canada.-This invention relites to an improvement in the mode of securing the broom oroper, or the corn to its handle, and it consists, tirst, in so fastenng the
bo oom corn that the free portion shall extend toward the upper end of the boom, corn that the free portion shall extend toward the upper end of the nandle and th
securing $i$.
fortable Fence.-Joseph W. Norman, Eugene, Ind -In tbis invention the p.ckets are conncted together nv inks. and each panel is so attic ed to s supportiug posts that it can readily be detached and oded or rinted ud
rmulg a rmil
new.
Scre
SCrewdriver.-W. S. Goss, Baltimore, Md.-In this invention the bar.dle is made of three pieces connected by claches and stops in such a manner
that its lower part can be turned continuously in eitier direction without eleasing the hand from the npper part. In addition to this improvement, he blade is provided with an anjustable tool holder. Which can be cmployed


