"Similarly to all theories, conditipns are here supposed to exist, which, in numerous instances, are probably wanting.
In the experiments upon a wrought iron beam, from which In the experiments upon a wrought iron beam, from which
these results have been deduced, the dynamical load was ac these results have been deduced, the dynamical load was ac
nt there is no question, that in sowe of the earlier built iron ers no such proportion obtains. Certainly the majority o wrought iron girders are in excess, so far as their strength breaking load; but, if we may judge from failures that have taken place, some are comparatively weaker than they ough to be. Unfortunately, in these experiments, with the excep tion of those confined cast iron bars, in which the load ap plied was of a static and not dynamical character, the ele ment time does not enter into the calculation, and the inevit. able deterioration it produces upon everything exposed to its influence, is altogether disregarded. It is one thing to rivet up a beam, and then subject it immediately in the plentitude of its strength to so many alterations of state, before the cor roding action of wind and weather has the least chance of ex erting its destructive power; but it is a very different affai to allow a beam, which is yearly becoming weaker, to be sub mitted to the passage of heavy rolling wetight. In the one ase the strength of the girder, so far as extraneous cause are concerned, is constant; in the other it is variable
"A difference will obvioully present itself respecting the ultimate durability of cast and wrought iron girders individ ually. When the former fail they fail completely; there is no repairing a fractured cast iron beam, whatever shape it may poseses; it is only fit for the cupola or the purdling fur nace. The same circumstances do not attend the dissolution of wrought iron girders provided they are well watched and 'fie 'first gymptoms' attended to. The Menai Bridge, for ex ample, might be replaced piecemeal, accordingly as every plate, angle iron, or other portion of it becomes deteriorated oo an extent sufficient to imperil the safety of the structure In this sense a wrought iron bridge is practically indestruct ible, since it admits of any and every degree of partial repair and after the lupse of its first hundred years of life, may be completely rejuvensted and commence a fresh career. Lattice bridges-those constructed upon the open web syatem-in general afford special facilities for this process of gradual reconstruction, since a bar can be taken out and replaced ithout in any manner jeopar der. The external effects, or visible appearance of the influ inesplicable action that is inceesantly in progress in connection with the nolecular composition of the material. For similar reascns that the wrought iron girder, as a structure, can be preserved by successive rejaration trom the results o visible corrosion and decay, so is it also independent, in some degree, of any atomic alteration,unless we imagine the whole girder to be equally affected, and to fracture precipitatoly like one of cast iron. It has al ways heen a puzzle to engineers to satisfactorily account for the sudden fracture of cast ung a much smaller strain, than what they had previously borne with impunity for a long period oi time. A ready and apparent, though by no means necessarily a true, explanation of the fact is that it is owing to 'a change having taken place in the internal st ucture of the material.' This is equivalent to the specious and clever manner in which members of the faculty extricate themselves from their professional dilemmas by ascribing the fatal termieation of any unknown complaint to 'disease of the heart.' The + speriments made hy Mr. Fair bairn upon cast iron bars, although interesting and valuable so far as a mere static load is regarded, present no a nalogy to the case of a cast iron bridge undergoing the transir of eome couple of bundred traius per diem. Whatever the exact nature of the chauge may be, or the rate at which it progresees, until the cohesive power of the material is injured, it is impossible o assert ; but we are nevertheless certain that the continual repetition of severe strains in a girder, must ulimately im.
pair its fowers of resistance. In a word, then, upon this hy. pair its fowers of resistance. In a word, then, upon this hy.
pothesis, every cast iron girder is doomed to loreak at some time or another, and what is worst, break suddenly, the pre cipitation of the passing 1 ad in to the gulf keneath being the first sign of danger. This is not a very consoling reffection to a peopie who travel so much by rail as ourselves; but immunity from accident begets indifference, and allhough the contirgency is possible, yetit is of an occurrence so rare tha it is our of the eplere of probabilities.

One is apt to regatd the breaking down of a railway bridge in the light of a possib'e, but very $\mathrm{r}+$ mote contingency; oo believe in sach an occurrence in a vague, uncertain man yer as an event that might.or perhaps would take place 'some
day,' but which, at present, is not worth thinking about. There is a little of the Mahometan doctrine of fatali m in all hiis, and although we do dot exacily sit down, told our hande, and cry 'Biehmillab,' as the sole preparation aud defence aqaiust a coming danger, yet we require it to be brought pretty well home to us before we are thoroughly aroused to action From the experiments we have quoted, it was ascer tained that the strengih of cast iron to resist repeated alterations of strain was much greater than what has usually been accorded to it. At the same time we have no data up n which to lase the life of a cast iron girder, unless we assume it to be equal to that of a wrought iron one. It has already been shown that the facilities ofiered by structures of the latter descriptisn, for gradual repair and actual reconstruction, leave no caune for an siety on their bchalf. We are in possession of
the true elisir vitye as regards them, aud all that is required the true elixir vite as regards them, and all that is required is to watch the time for making use of it. On the other hand, he 'irst symptoms' of approaching rupture is questionable whether the most careful and minute 'surveillance' which
can be exercistd over every cast iron bridge upon a line, would be able to detect the 'interual change of structure,' that invisible dissolution which precedes the visible downfall. Taking for granted, therefore, that the natural life of a cast iron railway bridge is, for a minimum, one hundred years ome of our oldest examples have about sixty years to run, is not accelerated by accidental injury."

the shoeboryness experiments.

During the months of June and July, a series of experi ments in artillery practice have been made at Shoeburyness England, to test the modern improved artillery, and its effect pon iron plating. The tests were of the most severe char cter, the plates being of a great thickness and of a superio quality of iron One of the targets had a porthole in its cen ter, and its condicion at the end of the experiments, as illusrated in the English journals, gives evidence of the enormous fficiency of the guns used in the experiments. The most formidable shot at this target was from a 10 -inch gun, at a range of 1000 yards. The effect of this shat was to carry a way, for a considerable area, the whole of the plating above and to the left of the port-bole, driving with it masses of iron, converted by the projectile into missiles more deadly than the ehnt they were designed to resist. We have waited for the conclusion of these important experiments, which have extended through a much longer period than was at first antici pated, that we might lay their results before our readers. We shall only refer to the most inportant of them, as decribed in the Mechanics' Magazine.
The firet experiment we shall notice was a 12 -inch shell, with full charge, aimed at the upper part of an extra plate placed on the front of the shield, and which it broke into several pieces. It penetrated 16 inches, and esploded backseveral pieces. It penetrated 10 inches, and exploded back-
ward, doing no damage at the rear of the shield, beyond fracturing another horizontalplank. The Rodman gun, with a full charge, was then brought to bear on the upper part of the shield. It struck the curved plate at the left hand to corner, a portion of which was already knocked off, and i broke in two, doing no furth ${ }^{\circ} \mathrm{r}$ damag. A shell from the 12 .
inch gun was fired with a charge equivalent to 1,000 yards nch gun was fired with a charge equivalent to 1,000 yards
range. Tie shell struck the second plate from the left hand, carrying away a piece from the corner, and bursting; the explosion litting up a large triangular fragment of the adjoining plate previously broken, and hurling it on the roof of the building. This mass of iron was about 6 feet base by 5 feet sides, and remained pivoted on one of the large roof bolts, which held it without breaking. Inside the casemate at the rear, the ironwork in connection with the roof was much distorted, and a great cavity, almitiong daylight, was formed through the platos, the head and point of the shot remaining ammed among the denris of the cavity
The firing was afterward direc'ed against the granite base on which the target stood. Taqug forns a plinth about 4 feet the step being rounded off. The shot-a 450 .pounder, from the Rodman gun, with tull powder charge-struck the granite toward the right hand, plowing a furrow some 5 teet wide and 3 feet deep, sma-hing the granite to powder, and scattering a cloud of fragments and dust around. After this shot, wo rounds were fired at Sir John Brown's solid rolled 15-inch plate, which merely stood against s \cap me iron standards and a ew balks of timber. This target had already had thre rounds fired at it, with a result highly creaitable to the plate considering the conditions under which it was tested. The
firet was a 12 -inch shell, with 76 pounds of powder, and which firet was a 12 -inch shell, with 76 pounds of powder, and which
struck the shell about 2 feet from the end, which it broke off and burled about 6 feet to the rear. 'Whe secund shot, whic was from the Rodman gun, wilh full powder charg $\%$, struck the plate near the center of the original lengti, and close to where it was hit by the two shots of the previous day. The plate at this pint was already severely crackel, and the result of the last shot was to complete its destruction, the plate separating into our pieces. The fracturessho wed a splendid quality of iron. although here and there symptoms of bad welding were visible, and this was all the most adverse criticism could pronounce against it. In its favor there was every
thing to be said. Considering its unsupportod position, an thing to be said. Considering its unsupportwd position, and the widely different conditions under which it was fired at to those of a fort where it would be fixed as a defence, it stands out at once as a great success. Although the Plymoush fort stood a good amount of battering, $i t$ is to be remembered that it has been improved upon by replacing some of the bars by plates. These were just the pniuts that withstood the firing the best, and this strengthens the conclusion that a mighty strength of resistance would result from the use of a siugle olid plate, instead of a compount laminated plating.
This was the conclusion of the third day's experiments, of the practice, as regards the force and velocities of the shot fired, and which are as follows: The Wool wich 12 inch infled 600-pounder, with 76 pounds of pellet powder, 5,588 f.oot-tuns, 1,159 feet per second velocity. The 10 inch rifled 400 -pounder, with 60 pounds 1 gr. powder, 4,431 toot tuns, 1,264 feet velocity. The 15 -inch smooth-bore Rodmax, with 50 pounds English powder, equal to 60 pounds American, 4,215 foot tuns, 1,161 feet striking velocity. In the same gun, with $83{ }_{4}^{4}$ pounde charge-equal to 100 pouvds A merican powdor-the
velocity was aloove 1,40) feet, and the total energy about velocity was a.
4.003 foot-tuas.
The " War Office Casemate." was next made the object of attack. This c.semate was mpnufactured at the Millwall Iron Corppany's worke, and was designed with the view of testing the resistance offered by a given weight of iron plate, disposed in various thicknesses and positions. It is divided
in to six sections, each one of which represents a different system. The first section consists of an 8 ioch eolid plate, placed
direct upon the 2 -inch skin, which is common to all the series The second is of 4t in inch plate upon a backing 7 inches deep, formed of channel-iron placed back to back. The third is a 6 -inch plate, with backing 7 inches deep of Hughes' hollow stringers. The fourth is a 4 -inch plate, with 7 inch backing of channel-iron; the fifth is a $4 \frac{1}{2}$ inch plate resting partly upon 7.inch backing of channel-iron, and partly, with filled upwith 7 inches of concrete forming the sixth section, filled upwith 7 inches of concrete, forming the sixth section.
The structure was roffed in with brick arches and concrete, The structure was roofed in with brick arches and concrete,
as in ordinary casemates. The firing was from the 7 -inch, as in ordinary casemates. The firing was from the 7-inch,
9 inch, and 10 -inch rifled guns, and the Rodman 15-inch smooth-bore gun, with battering cbarges, and at the same range as the Plymouth shield, via., 200 yards. Only Palliser shells were used, these having established their superior penetrative power over the Palliser shot.
Twenty rounds were fired in all at this target, the first being a 7 -inch shell, which struck the 8 -inch plate, Fenetrating about $8 \frac{1}{2}$ inches, but doing no damage to the rear. The second round, a 7 -inch shell, struck the $4 \frac{1}{2}$-inch plate supported by 7 .inch channel.iron backing. It penetrated 14 inches into the target, but caused no damage to the rear. The third shell struck on the vertical junction of the last plate fired at, with the 6 -inch plate backed by hollow stringers. The result was a penetration of $8 \frac{8}{4}$ inches. the head of the shell remain ing in the hole. and the rear remaining undamaged. The above three pcrtions are marked A, B, and C, respectively, and they are backed with a massive tapering concrete pier. The fourth shell struck the last named section (C) where it has behind it 2 feet 6 inches of concrete, strengthened by iron girders. The penetration was $10 \frac{1}{2}$ inches, with half a do\%en nuts stripped off in the rear. The fifth s'ell struck that portion of the target covered by 4 -inch plates upon 7 -inch channel iron. The plate buckled \ddagger inch for about two feet around the shothole, and the total penetration was 13 inches, the head of the shell remaining in the hole. Seven more nuts in the rear were strioped off the bolts. The sixih shell struck the $4 \frac{1}{2}$ inch plate on coucrete backing, penetrating 14 inches into the structure.
The practice now commenced with 9 -inch shells, the first r ound striking section A of the target, penetrating 13 inches. The secoud shell struck the B section, penetrating $21 \frac{1}{4}$ inches, the plate buckling considerably, and seven nutstajsted askew in the rear. The third shell struck oa a bolt in section C, causing a buckle of $\frac{1}{2}$ inch at the top edge of the plate, the penetration being $18 \ddagger$ inches. The fourth sbell struck the same section, penetrating $14 \frac{1}{2}$ inches, and clearing off five mall nuts in the rear. The fifth shell hit on section D, the penetration being 9 feet 8 inches. At the rear the $\frac{8}{8}$ inch iron skin mantlet was driven back 3 inches, and twenty small nut heads were stripped off. This portion was driven back by a bolt, and the mantlet skin was turned up also beside the port, the whole forming a considerable smash. The sixth round teruck upon the E section, penetrating $22 子$ inches, and causing no damage in the rear. The 10 inch gun was then brought into play, the first shell from which struck the A section, buckling the plate, and penetrating 32 inches. The second round struck the B section, causing a buckle, and pen etrating 4 feet $9 \ddagger$ inches. The shell was supposed to have burst in the concrete backing. One of the vertical channel ir ins lifted up a tew inches through the concrete roof. The 8 inch skin at the back of the pier opened slightly at the joints. The third shell struck the section C, penetrating 6 feet, and passing into the concrete pier. At rear, the covering slip at the angle of the pier, ripped open over a length of 5 feat 8 inches, with ten rivets sheared, and a bulge of 5 inches in the ginch skin on the back of the pier
The nest shell struck the C section in an:ther place, and completely penetrated the structure, clearing everything be fore it, the point of the shell being carried 200 feet to the rear. Some pieces of the $\frac{3}{3}$.inch skin were thrown 20 feet away. The point struck was a weak one, being near a joint which was not covered by the backing. This points out the necessity of placing the stringers so that the joints of the plates should be supported by them, instead of having them at rightangles to the line of the plates, as at present. Tho ifth round, with the 10 -inch shell practice, struck the D sec tion, making a clean penetration. One of the $\frac{3}{8}$-inch mantlet plates in the rear was blown 20 feet away, and the timber scretn was smashej up. There was an opening in the back of the target 4 feet in hight and of considerable wi ith. The angle iron of a verical girder on the left of the shot-hole wa curved 3 inches out of the etraight, a 2 -inch bolt was broken off, and the concrete was blown out. The sixth and last 10 inch shell also struck upon the D section, and drove the whol side of the target back from its brick-work setting about hal an inch. It penetrated 4 feet 11 inches, lodging in the con crete backing, and bulged the cover plate in the rear, strip ping soine more small nuts, and cra-king the root slightly all round. After this shot the Rodman gun was fired, a round shot striking the junction of the $\mathbf{6}$-inch plates above the porthole. It caused an indent 7 inches deep, and sheared off a bolt head 6 incles from the face of the target. At the rear the angle iron supporting the $\frac{3}{8}$-inch shin over the port bent three inches, thirty small screw nuts were knocked off, and the whole skin $\frac{3}{8}$.inch plate, was knocked out a distance of 9 inches. One riret was knocked out from the top of each por jamb. The second round from the Rodman gun struck the A 8.ction of the target, making an indent of 4 inches, but do ny no further injury.
From the above the nature of the subsequent experiments may be sufficiently inferred, as well as their general results. Engineering says that the protective points of the Plymouth Break water Fort have been well tested in this trial, and found
wanting, and nothing more conclusive is requirtd to prove the fallacy of

THE PACIFIC MILLS MANGFACTURING ESTABLISHMENT

 AT LAWRENCE, MASSIn connection with the French Exhibition of 1867, the Emperor Napoleon proposed ten awards of 10,000 francs each peror Napoleon proposed ten awards of
(nearly $\$ 2,000$ in gold) to ten different individuals or associations, who, in a series of years, had succeeded in securing state of harmony between employ-rs and their workpeople, and most succesefully advanced the material, intellectual, and moral welfare of the employés. In response to this appeal, the "Pacific Milis," at Lawrence, Mass, devoted to the manufacture of ladies' cotton and wool dress goods, prepared and forwarded to the jury a statement concerning the operations of their establishment. The jury awarded the third place on the list to the Pacific Mills, together with a prize and a gold medal.
We have before us the printed statement, which embodies many very interesting facts about the organization and management of this model establishment, some extracts from which will interest our readers.
the organization.
The management is confided by about one hundred and fifty stockholders, to nine directors, chosen annually.
The original number of shares of the company was ope thousand, costing $\$ 1,000$ each, making a total capital of $\$ 1,000,000$. The cost of the buildıngs and machinery having exceeded this sum, fifteen hundred shares more, at same cost, were issued, making the total number of ehares to be twenty five hundred, and the cost of the capital stock $\$ 2,500,000$.
They commenced operations near the close of the year 1853 but no goods were ready for market until the spring of 1854. The amount of machinery then consisted of one thousand looms, with carding, spinning, and dressing machinery suff. cient to sepply them, together with combing machines and cient to eepply them, together with combing machines and
spinning for worsted yarn, used in the manufacture of mixed spinning for worsted yarn, used in the mancifacture of mixed
fabrics, and was equal to the production of about two hunfabrics, and was equal to the production of about two
dred thousand yards weekly, of calicoes and mousseline dedred thousand yards weekly, of calicoes and mousseline de-
laines, with ten printing machiaes for preparing these goods laines, with ten
for the market.
The buildings and machinery have since been increased, so that there are now in operation about one hundred thousand spindles for spinning cotton, with cleaning, picking, and carding machines to supply them, and about sixteen thousand epindles for worsted, with all the necessary preparing the two clasees of goods above-named, and others, together the two clasess of goods above-named, and others, together
with twenty-two printing machines, producing a weekly with twenty-two printing machines, producing a weekly
average of about seven hundred thousand yards. The machinery is propelled by eight turbine wheels, eix of them being seventy-two inches in diameter, with a fall of water equal to twenty-ix feet, yielding fifteen hundred horse power.
The average sale of the manufactured groods of the com pany, for a few years past, has exceeded $\$ 7,500,000$.
About thirty-six hundred work-people are now employed by the company; of these there are sixteen hundred and eighty men, Gfteen hundred and ten women, eighty boys bet ween ten and twelve years, one hundred and fortr boys from twelve to eighteen yeare, forty girls from ten to twelve
years, and one hundred and fifty girls from twelve to eighteen years.
In the origin of the establishment the principle was adopted by the managers that there was to be a mutual dependence
between employers and employed, each having rights which the other should respect, and that inasmuch as the success o the proprietors must depend much upon the cheerful and intelligent co-operation of the work-people, certain plans were adopted to secure "the material, moral, and intellectual were aropted to secure "the material, moral, and intellectual
welfare of the workmen," both as a duty to them, and one o welfare of the workmen, bot
selfinterest to the proprietor.

MATERIAL.
For the material well-being of the laborers, special care was used in the original construction of the work-rooms, to make them cheerful, comfortable, and well-ventilated, so as to avoid as far as possible, the unpleasant drudgery of work, and to secure order and neatness throughout.
Houses were constructed for $\mathrm{d}_{\boldsymbol{\pi}} \mathrm{ellings}$, which should give to families residences at moderate cost of rent, that would secure the health and comfort of the work-people, while they were cheerful and attractive. Men pay for these houses a
weekly rent about equal to one-cighih of their wages. Large buildings were erected for the use of single females whose residences were at a distance, and divided into seventeen large apartments, capable of accommodating eight hundred and twenty-five persons in the aggregate. The rooms are arranged for two persons each; well ventilated and lighted, and comfortably furnished. Unmarried men are never allowed to lodge in these houses, nor in any case a married man, excepting he is accompanied by his wife, and even then but rarely. Females pay about one-third of their average wages for rooms in these boarding.houses, including food, lights and for rooms in these boarding.houses, including food, lights an
washing. Fuel for fires in the rooms is an extra expense.
It is common to provide coal, and sometimes flour, for th work-people, at the cost price of large quantities.
Another effort for the material welfare of the operatives was adopted in the earliest history of the enterprise, and has been continued for nearly thirteen yeare, with marked suc-
cess, doing much to promote "harmony among all those co cess, doing much to promote "harmony among all those co
operating," and to establish a bond of sympathy and union. An association was formed, called " Pacific Mills Relief Society," of which each person employed by the company must be a member, the entire management thereof being in the
hands of the work people, each officer being chosen by them selves from their own number, excepting the president, whic office has always been filled by the resident agent or man ager, whe
umpire.
Each person, on commencing service, elects whether he will fay two, four, or six cents per week to the relief fundthe lower sum being a little more than one-hundredth part of the weekly averages of those who are the youngest, and consequently least paid, and the highest sum, six cents weekly, bearing the same proportion to the averago weekly wages of the entire body of work-people. When the sum in the hands of the treasurer of the societp, who is always the confidential clerk of the company, and keeps the deposit with the company for protection, has reached the sum of $\$ 1,000$ the weekly subscription of all person who have the weekly ployed by the company thr
tinues with the new comers.
This condition of funds occurs so often that for nearly on half the time the older employés are not assessed, and the real sum withdrawn from thpir wages annually is a very small proportinn of their wages, and is far from being a burden to the poorest.
When a person has been in the employment of the company three months, and consequently for that time paid his elected sum to the funds of the relief society, he becomes a full member of that society, and entitled to certain privileges. If sickness occurs, preventing him from laoor, and he sends notice to the overseer or head workman of his room, one of the appointed stewards is sent to learn the nature of the ill. ness, and the sick one becomes the special charge of this steward, who for a man is one of his own sex, or if a female, a woman ; and it is this steward's duty to see that a nurse and physician, are secured, if neceesury, and to draw from the
wardrobe of the society such changes of personal and bed wardrobe of the society such chan
linen as the circumstances demand.
Each sick person, if the illness continues one week, is thenceforward granted an allowance from the funds of the society. He who has paid two cents per week for at least three months, receives $\$ 125$ weekly for the period of twentyix weeks, if sick so long. Double this sum is allowed if four cents have been paid; and $\$ 3.75$ when the amount paid has been six cents weekly. In cases of special need the officers of the society are authorized to make an extra allowance, though great care is used in such a dispeneation. Those who die poor have their funeral expenses paid, and are respectably buried in the beautiful lot in the city cemetery belonging to the society. In some cases the deceased has been sent to his native town, by the desire of his friend without cost to them if they were poor.
Sick members are often accompanied to their friends by a steward, or the overseer of their workroom, when too feeble to go alone, or the friends too poor to come for them. The blessings of this society are thus made known to parties at a distance, and it often induces persons of excellent character to seek employment of this company, while those who have secured the benefits of the relief society retain it in warm remembrance. More than one poor mother, whose only child, while a member of this society, has been disabled by sickness, has found the weekly allowance an invaluable aid to her slight income, and called loudly for blessings upon its officers and the institution engaged in such a work of merciful kindess. Many a father or mother, or othar relative, whose child orfriend has been sent to this company, have besought the blessings of heaven upon the members of this society who have cared for their absent ones in time of sickness, and oothed them as ther have faded away from life.
Though there is not space for details of great interest, it nust be seen that this plan has a direct tendency to promote sympathy for each other among the work-people, and to secure a bond of union. Most surely those who daily observe its workings see it.
It will also be noticed that a very important feature of this plan is that it is an association of the work-people themselves, wholly coutrolled by them, and consequently sure of permanency, while favored to its present extent by the employers. This is likely to continue, because they witness its important nfluences and usefulness.
The total amount of money expended for the benefit of sick members in twelve years of its existence, ending in April 1866, has been $\$ 25,53068$ to eighteen hundred and sixty eight persons, and the amount paid to the fund has exceeded his sum about $\$ 1,200$. The corporation contributes weekly especially aggravated.
moral.
To meet the protection of the large number of single females employed by the company, who, as is often the fact in the manufacturing estallishments of the United States and perhaps elsewhere, are away from the guardianship of their friends, the boarding-houses referred to above are conrolled by persons carefully selected for their ability to influence this class of work-people, of established good character who will take an interest to secure the comfort of their boarders, and save them from bad moral influences, acting really, as far as possible, in the place of guardians. If a young female is known to visit places of evening amusemen of doubtful character, or gives any reason for suspicion that she is guilty of immorality, or even of careless unguarded conduct, she is admonished, and if reform is not immediat she is discharged from the house and from en.ployment.
The doors of the bouse are locked at ten o'clock at night and no one allowed to be out after that hour without a satisfactory excuse. Doubtless persons of immoral character secur their connsction. Among so large a number some will b
mpure, but it is believed that very few if these females are ed astray while connected with the mill, if virtuous when commencing work. It is impossible for an openly vile person to retain conntetion with the company.
Men of intemperate habits, or of general bad character, ar excluded from the company's service, though patigree with hem is encouraged, with the hope of securing reform, and his forbearance and attendant labor has often been rewarded. It is an established principle that all profanity or other bad anguage, any bad example, or even abuse of authority among the head workmen, must be strictly avoided, especially whea these overseers have in their charga females or young per sons. More than one such responsible workman has been removed for using improper words, or ill-treating subordinates. It is absolutely demanded of these persons that they reat those under them as they would desire to be treated hemselves if in their position.
The directors have placed their associate, the manager at the works, to represent their feelings to the work-people; to show them sympathy in their trials; to counsel them in their eed of advice, and to be their Friend.
Careful efforts have been made by him to secure their confidence, and he has cultivated the conviction that they could ever find in him a father, a brother, or friend. Many hearts have been moved to earnest gratitude for the aid which they have thus secured in their time of need. It requires a vast amount of patient listening to complaints; to tales of sorrow and want; but it has had its reward in secing so many relieved and made glad and hopeful. The real moral effect and the real satisfaction in such a relation between employe and emploved cannot be written. The spirit of the employe is imparted to the more responsible and influential work men, and to those under them, while a healthy moral condi tion is secured.

intellectual.

When the company was first established, the directora appropriated $\$ 1,000$ for the purehase of suitable books for a circulating library, and provided a suitable room for it on their premises. The work-people have always been required to pay one cent each week during their services, and they thus become members of the Pacific Mille Library Association, which is managed entirely by themselves, they choos. ing their own officers for the control of its affairs, and for the se'ection of books, but selecting one resident manager for the president and chairman of the library committee. This weekly payment secures the privilege of the use of the library and reading-rooms of the society. One room is appropriated to males, and is supplied with the local newspapers of the city, and of Boston and New York, together with numerous serials of a scientific and literary character, and is open from six o'clock A. m. till nine P. m, warmed and lighted. It is in close proximity to the other room containing the library, now exceeding four thousand volumes, and also a cheerful, airy, comfortable apartment for the females, which is carpeted, and made attractive by daily and weekly publications, specially adapted to their wants, and stereoscopes with numerous slides, all in charge of an intelligent and cultivated young lady. It is open from nine o'clock A. m. till nine o'clock P. m., and is much frequented and valued.

A large number of volumes of the library are in constant circulation, as the number of the work-people who cannot read or write does not exceed fifty in one thousand, and these are principally of foreign birth. All new publications adapted to this class of readere are bought as soon as published. The privilege of taking books from the library is extended to members of families whose head is a member of this association.
The funds of the society are also used to purchase tickets of admission to lectures, and suitable popular amusements, which are distributed among the members. This association, as well as the relief society, it will be seen, is supported and managed by the work-people themselves, who secure a valuable return for their small outlay, and aleo the permanency of its operations, avoiding the dependence for existence and usefulness upon the life or even connection of any one person of special prominence.
The law of the S ate forbids the employment of children under ten years of age, and requires that children employed between ten and twelve years of age shall be in school sixteen weeks of each year, and those between twelve and sixteen years, eleven weeks. The company contribute annnally to the support of an evening-school for both sexes.

success.

It has often been stated that care of employers for the education and welfare of their operatives, especially to the extent herein shown, is incompatible with pecuniary success. Facts prove that this is not true with the Pacific Mills, but others must determine how much of this is due to the principles of action established and maintained. It is also believed that he work-people have received great benefit. Some of the evidences of this are the following:

1. There have been no strikes among the work-people, which are their curse and the dread of employers. They have been encouraged to feel that any grievances will be patiently listened to, and frankly discussed, and the result has always been favorable to good order. By no means has every uneasy spirit been quieted, but the mass has been satisfied.
2. A higher class of workmen has been secured. Those best able to appreciate the privileges enjoyed in connection with this company have been drawn thither for employment. Specially is this true among the overseers who engage the laborers in their different departments, and give character to the mass. Their intelligence and hearty co-operation in the plans for the material, moral, and intellectual advancement of the operatives, mold the whole and secure a higher stand-
