Improvement in Safety Holsting Apparatus. The use of cams and levers and of springs and levers for rreventing the fall of the cage of a hoist, on the breaking of the hoisting rope, is not new; but, unfortunately, neither cams nor springs are wholly reliable, the latter, especially, are unreliable transmitters of power, losing elasticity when kept long compreseed, and breaking when subjected to sudden strain. The object of the improvement, of which the accom. panying engraving is an illustration, is to provide a certain panying engraving is an fore forl of the cage in consequence of means for preventing the fall of the cage in consequence of
accident to the hoisting rope or chain. In this device the accident to the hoisting rope or chain. In
operation of the arresting levers is assured, as they are engaged with the rack instantly in case of the breakage of the hoisting rope by means of a counterbalance or weight,which, when the cage or platform is ascending, is moving in a contrary direction, thus giving the additional advantare of reducing the weight of the cage. Whenever the hoisting rope or chain ceases to act, the counterbal ance rope comes into action and prevents dis aster.
In the engraving, A, is the hoisting cage or platform, B, the lifting chain, attached by means of links, C , to the bell crank levers, D having their fulcrums at E , and provided a their outer ends with teeth cut to fit the racks in the uprights of the fiaming. The ropes suspending the counterbalance weights are attached to the levers, D , at points out side their fulcrums, and pass over grooved pulleys, F.

The nperation of the machine and its ar rangements is apparent from an examination of the illustration. So long as the hoisting rope is held "taut," the levers, to which it is attached, are drawn away from the racks, and the machine operates freely; but the instan the hoisting rope breaks, or is slackened sud denly from any cause, the weight of the cage and its load comes upon the counterbalance ropes, the levers instantly engage with the racks, and the descent of the cage is prevented. There is no possibility of the device getting out of order, and ceasing to operate, except by the breaking of both the levers or one of the ropes; and the former may be made of the toughest wrought iron, and the latter may be wire ropes. A large machine is in operation at the works of Merrick \& Sons, Philadelphia, Pa., and a working model may be seen at their office, 62 Broadway, New York city. Further information may be ob. tained by addressing the patentees at either place.

THE PAREHEAD FORGE.

The Parkhead Forge, Glasgow, is an extensive establishment, giving employment to seven hundred men and boys, but in consequence of the heavy nature of the work, the proportion of boys to men is smaller than in other branches of iron manufacture. The othcr branches of iron manufacture. The buildings cover several acres of ground, and
are built in a most substantial style. On are built in a most substantial style. On approaching the entrance to the Forge, the visitor is by, the vibration of the ground under his feet, car is startled by, the vibration of the ground under his feet, caused by the
incessant blows of the steam hammers; and a peep inside reveals a scene of extraordinary activity. We shall briefly describe what came under our observation as we were shown through the work by one of the proprietors, and thus endeavor to convey some idea of what goes on in the place. The first department we entered was the rolling-mill, which is three hundred feet in lengih, and one hundred and fifty feet in breadth. At one end of the nill are arranged twenty-two puddling furnaces, and balf a dozen reheating furnaces. The rolling and otber machines are driven by a pair of horizon tal engines of three hundred horse-power. The fly-wheel of the engines is eigbteen tuns in weight, and it makes one hundred revolutions in a rinute. The steam is supplied by fourteen vertical boilers, heated from the puddling furnaces. The iron is first rolled into bars, then cut up, re-heated, and either rolled into ship and boiler plates or wrought into pieces suitable for the forge. At one time the firm devoted attention to the making of armor plates, and their specimens stood the test of competition with those of English makers most creditably; and but for the want of convenience for carrying the plates-the nearest railmay being a mile dis-tant-Messrs. Rigby and Beardmore would have obtained a fair share of patronage from our own and other governments. The machines are capable of producing plates eight inches thick, and some of the plates made of that .thickness have
weighed twelve tuns each. At some of the puddling furnaces a new invention was being tested, and we were told
that the most satisfactory results were being produced by it. Its object is to hasten and render more perfect the puddling process, by injecting a current of air at high pressure into the furnace. This is done by making tbe puddling bar hollow, and affising to the outer end of it an india-rubber tube communicating with a powerful air pump. The patentee is Mr. Richardson, of Glasgow ; and the advantages gained by the conirivance are that a charge of the furnace can be puddled in fifteen minutes less than the time required by the

MERRICK \& SONS' PATENT SAFETY HOISTING APPARATUS,
iron is moved about is fitted with a chain collar or sling, in the loop of which the iron rests. The collar works in a pulley attached to the chain of the crane, and moves easily, so that the ehaft may be readily turned on the anvil. When the proper degree of heat is attained, the stopping of the furnace is removed, the steam crane put in motion, and the gigantic bolt is swung on to the anvil of the steam hammer. Several large slabs of iron, similarly heated in another furnace, are then brought out and laid on the "face" of the "haft." A signal from the head forgeman, and the hammer drops upon the glowing mass, and a dazzling abmer sparks fly off in all direstions. Again and again the hammer descends, the iron meantime being carefully moved about, so as to have the whole wrought into a homogeneous mass. Gradually the iron assumes a dull color, but not before the desired end is obtained. It then goes back to the furnace, comes forth glowing, has another addition made to its bulk; and so on. The most difficult part of the work is the formation of the crank piece, which is forged solid, and forms a buge square projection on one side of ile shaft. When the shaft has acquired the proper dimen sions it is allowed to cool, and the haft piece is cut off to be used again. As the shafts are turned down until a good surface is obtrined, an extra inch or so is al. lowed in the forging. The heaviest work on hand, at the time of our visit, were the shafts for two iron-clad rams which are be ing built by Messrs. R. Napier \& Sods for the British Government. These shafts were upwards of fourteen inches in diametor All shafts are made in lengths of about twenty feet, and these langthe about twenty feet, and these are made
with flanged ends so that they may be with flanged

For dressing and finisking such huge pieces of iron as we have described, special pod costly a ppliances arè necessary. These are locsted if the machine sbop, an apartment one hundred and fifty feet in length and fifty feet in breadth, both sides of which are lined with turning lathes, slotting and boring machines, and such like of extraordinary size. One of the turning lathes is said to be the largest in the world; and some idea of its dimensions and form may be obtained from the fact that the crank shaft of the Monarch, though weighing thirty-two tuns, was turned in it without taxing its capabilities to the utmost. Some of the iron shavings lying about the vast machine were fully one inch broad and one eighth inch thick; yet these ware turned off with apparently as little effort as if the material had been woodinstead of iron. Oue of the boring machines is sufficiently powerful to drill a bole ten inches in diameterthrough a solid block of iron; and the largest slotting machine can send off chips a pound ortwo in weight. When the work leaves usual process, and that the iron produced is purer and this department, it is generally quite ready for being fitted
tougher. and its fittings are of the most gigantic kind. There are two steam cranes, capable of lifting fifty tuns each; four, forty tuns each; and four, twelve tuns each; and these are so arranged that a shaft or other piece of work may be passed from one to the other all over the shop. There are fifteen steam hammers, varying in weight, from seven tuns to two. Finished shafts-that is, finished so far as the hammeling was concerned-were lying about in all directions and so delicately had these been operated upon by the hammers that the surfaces were so smooth that turning would seem to be almost supertuous. Yet they were destined before leaving the place to be fitted into a lathe and turned with the greatest exaciness. In the heating furnaces, and under the hammers, were a dozen more heavy jobs in the shape of crank shafts, rudder frames, and such like; and as these were in all stages of progress, a glauce at them made plain the whole process of forging. In making a crank shaft, for instance, a piece of iron, tight feet or ten feet long, and of suitable diameter, is used as a "haft" or handle. At one extremity it is fitted with cross bars or levers, by which it may be turned on its axis; and the other end is shaped conveniently for having smaller pieces of iron welded to it. The welding end is placed in a furnace, and in about an hour and a half raised to a welding heat. The crane by which the nto its place. This firm pay nearly $£ 40,000$ a year in wages; and in all departments of the establishment, 15,000 tuns of iron, and 60,000 tuns of coal are annually used. $-T h e$ lronmonger.

THE LIFE OF IRON BRIDGES.

The Engineer says: "It may be assumed that a wrought iron girder bridge, subjected at intervals to a dynamical load not exceeding the fourth part of its powers of ultimate resist ance, will be safe for traffic for a period of 328 years. This assumption is based upon the proviso, that the successive alternations of strain and repose sbould not be repeated more than 100 times during the same day. With the exception of some country lines and rural branch railways, the number of trains of every description passing over bridges in twenty four hours,considerably surpasses the limited number one hundred Taking the traffic during the night to be only one third of that during the day, we may conclude that, as a low average 200 trains pass daily over the majority of our metropolitan and suburban railway bridges, and as a maximun, the hard est worked member of the bridge tribe possibly undergoes as many as 300 alternate changes of active and passive conditions from sunrise to sunset. Adapting this calculation to our theory, we may estimate the life of the liardest worked railway girder to extend over a period, is round numbers, of 100 years, under ordinary circurestances.
"Similarly to all theories, conditipns are here supposed to exist, which, in numerous instances, are probably wanting In the experiments upon a wrought iron beam, from which these results have been deduced, the dynamical load was ac curately proportioned to the ultimate power of resistance there is no question, that in sowe of the earlier built iron ers no such proportion obtains. Certainly the majority of concerned, of the quarter ratio between their working and breaking load; but, if we may judge from failures that have taken place, some are comparatively weaker than they ough to be. Unfortunately, in these experiments, with the excep tion of those confined cast iron bars, in which the load ap plied was of a static and not dynamical character, the ele ment time does not enter irto the calculation, and the inevit able deterioration it produces upon everything expiosed to its nfluence, is altogether disregarded. It is one thing to rive up a beam, and then subject it immediately in the plentitude of its strength to so many alterations of state, before the cor roding action of wind and weather has the least chance of ex erting its destructive power; but it is a very different affai allow a beam, which is yearly becoming weaker, to be sub case the strength of the girder, so far as extraneous causes are concerned, is constant; in the other it is variable
'A difference will obviously present itself respecting the ultimate durability of cast and wrought iron girders individ ually. When the former fail they fail completely; there is no repairing a fractured cast iron beam, whatever shape it may posess; it is only fit for the cupola or the puddling fur nace. The same circumstances do not attend the dissolution f wrought iron girders provided they are well watched and he 'first gymptoms' attended to. The Menai Bridge, for ex ample, might be replaced piecemeal, accordingly as every plate, angle iron, or other portion of it becomes deteriorated 0 an extent sufficient to imperil the safety of the structure In this sense a wrought iron bridge is practically indestruct ble, since it admits of an. and every degree of partial repair and after the lapse of its first hundred years of life, may be completely rejuvensted and commence a fresh career. Lattice bridges-those constructed upon the open web system-in general afford special facilities for this process of gradual reconstruction, since a bar can be taken out and replaced without in any manner jeopardizing the safety of the remain der. The external effects, or visible appearance of the influ inexplicable action that is inceesantly in progress in connec. tion with the nolecular composition of the material. For similar reasens that the wrought iron girder, as a structure, can be preserved by successive reparation trom the results o visible corrosion and decay, so is it also independent, in some degree, of any atomic alteration, unless we imagine the whole girder to be equally affected, and to fracture precipitatoly like one of cast iron. It has always been a puzzle to engineers to satisfactorily account for the sudden fracture of cast iron much smaller strain, than what they had previously borne with impunity for a long period oi time. A ready and apparent, though by no means necersarily a true, explanation of the fact is that it is owing to 'a change having taken place in tbe internal st ucture of the material.' This is equivalent to the specious and clever manner in which members of the faculty extricate themselves from their professional dilemmas by ascribing the fatal termioation of any unknown complaint to 'disease of the heart.' The + xperiments made by Mr. Fair bairn upon cast iron bars, although meteresting and valuable so far as a mere static load is regarded, present no a nalogy to the case of a cast iron bridge undergoing the transit of some couple of bundred trains per diem. Whatever the exact nature of the change muy be, or the rate at which it progresses, unti the cohesive power of the material is injured, it is impossible o assert; but we are nevertheless certain that the continual repetition of severe strains in a girder, must ulimately im pair its powers of resistance. In a word, then, upon this hy. pothesis, every cast iron girder is doomed to break at some time or another, and what is worst, break suddenly, the precipitation of the passing $1 \cdot$ ad into the gulf keneath lveing the first sign of danger. This is not a very consoling reflection to a peopie who travel so much by rail as oursel ves; but immunity from accident begets indifference, and although the ontir:gency is possible, yet it is of an
is out of the ephere of probabilities.
to regatd the breaking down of a railway bridge in the light of a possib'e, but very rt mote contingency believe in sach an occurrence in a vague, uncertain man er as an event that might.or perhaps would take place 'some day,' but which, at present, is not worth thinking about There is a little of the Mahometan doctrine of fatalir m in all this, and although we do oot exacily sit down, fold our hande, and cry 'Bishmillah,' as the sole preparation aud defence against a coming danger, yet we require it to be brought prettiy well home to us before we are thoroughly aroused to action From the experiments we have quoted, it was ascer tained that the strengih of cast iron to resist repeated altera tions of strain was much greater than what has usually been accorded to it. At the same time we have no data up n which o luase the life of a cast iron girder, unless we assume it to be qual to that of a wrought iron one. It has already been shown that the facilities offiered by structures of the latter descripinn, for gradual repair and actual reconstruction, leave no cause for ansiety on their behalf. We are in possession of the true elixir vitæ as regards them, and all that is required is to watch the time for making use of it. On the other hand隹 whether the most careful and minute 'surveillance' which
can be exercised over everg cast iron bridge upon a line, would be able to detect the 'interual change of structure,' that invisible dissolution which precedes the visible downfall. Taking for granted, therefore, that the natural life of a cast ron railway bridge is, for a minituum, one hundred years some of our oldest esamples have about sixty years to run upposing that they die literally of old age, and their demise is not accelerated by accidental injury."

THE SHOEBORYNESS EXPERIMENTS.

During the months of June and July, a series of experi ments in artillery practice have been made at Shoeburyness England, to test the modern improved artillery, and its effect pon iron plating. The tests, were of the most severe char cter, the plates being of a great thickness and of a superio quality of iron One of the targets had a porthole in its cen er, and its condicion at the end of the experiments, as illusrated in the English journals, gives evidence of the enormous ficiency of the guns used in the experiments. The most ormidable shot at this target was from a 10 -inch gun, at a range of 1000 yards. The effect of this shot was to carry away, for a considerable area, the whole of the plating above and to the left of the port-bole, driving with it masses of iron, converted by the projectile into missiles more deadly than he ehnt they were designed to resist. We have waited for he conclusion of these important experiments, which have extended through a much long+r period than was at first an tici pated, that we might lay their results before our readers. We shall only refer to the most important of them, as decribed in the Mechanics' Magazine.
The firet experiment we shall notice was a 12 -inch shell, with full charge, aimed at the upper part of an extra plate placed on the front of the shield, and which it broke into several pieces. It penetrated 16 inches, and exploded back ward, doing no damage at the rear of the shield, beyond fracturing another horizontalplank. The Rodmangun, with a full charge, was then brought to bear on the upper part of the shield. It struck the curved plate at the left hand to corner, a portion of which was already knocked off, and i broke in two, doing no further damag $\stackrel{\text {. }}{ }$. A shell from the 12 nch gun was fired with a charge equivalent to 1,000 yards ange. Tiee shell struck the second plate from the left hand, arrying away a piece from the corner, and bursting; the exlosion lifting up a large triangular fragment of the adjoining plate previously broken, and hurling it on the roof of the building. This mass of iron was about 6 feet base by 5 feet sides, and remained pivoted on one of the large roof bolts, which held it without breaking. Inside the casemate at the rear, the iron work in connection with the roof was much distorted, and a great cavity, almitling daylight, was formed through the platos, the head and point of the shot remaining amed among the denris of the cavity.
The firing was afterward direced against the granite base on which the target stood. Tidik forms a plinrh about 4 feet the step being rounded off. The shot-a 450 .pounder, from the Rodman gun, with tull powder charge-struck the granite toward the right hand, plowing a furrow some 5 teet wide and 3 feet deep, sma-hins the granite to powder, and scattering a cloud of fragments and dust around. After this shot, wo rounds were fired at Sir John Brown's solid rolled 15 -inch plate, which merely stood against some iron standards and a ew balks of timber. This target had already had thre rounds fired at it, with a result highly creaitable to the plate consideriog the conditions under which it was tested. The firet was a 12 -inch shell, with 76 pounds of powder, and which struck the shell about 2 feet from the pnd, which it broke off and burled about 6 feet to the rear. 'The secund shot, which was from the Rodman gun, with full powder charg', strnck the plate near the center of the original length, and close to where it was hit by the two shots of the previous day. The plate at this p int was already severely cracked, and the result of the last shot was to complete its destruction, the plate separating into our pieces. The fractures showed a splendid qualitr of iron. although here and there symptoms of bad welding were visible, and this was all the most adverse criticism could pronounce against it. In its favor there was every the widely different conditions under which it was fired at those of a fort where it would be fixed as a defence, it stand out at once as a great success. Alchough the Plymoush fort stood a good amount of battering, $i t$ is to be remembered that it has been improved upon by replacing some of the bars by plates. These were just the pnints that withatood the firing the best, and this strengthens the conclusion that a mighty strength of resistance would result from the use of a siugl olid plate, instead of a compound laminated plating.
This was the conclusion of the third day's experiments,
nd at this point we may pause to notice the recorded details of the practice, as regards the force and velocities of the shot fired, and which are as follows: The Wool wich 12 -inch rifled 600-pounder, with 76 pounds of pellet powder, 5,588 f,ot-tuns 1,159 feet per second velocity. The 10 inch rifled 400 -pounder with 60 pounds 1 gr. powder, 4,431 toot tans, 1,264 feet velocity. The 15 -inch smooth-bore Rodmas, with 50 pounds English powder, equal to 60 pounds American, 4,215 foot tuns, 1,161 feet striking velocity. In the same gun, with $83 \frac{1}{4}$ pourde charge-equal to 100 pouvds American powder-the
velocitg was above 1,40) feet, and the total energy about 4.00) foot-tune.

The " War Office Casemate." was next made the object o attack. This casemate was mpnufactured at the Millwall testing the rin disposed in various thickneãses and positions. It is divided
into six sections, each one of which represents a different system. The first section consists of an 8 ioch eolid plate, placed
direct upon the 2 -inch skin, which is common to all the series The second is of $4 \frac{1}{2}$ inch plate upon a backing 7 inches deep, formed of channel-iron placed back to back. The third is a 6-inch plate, with backing 7 inches deep of Hughes' hollow stringers. The fourth is a 4 -inch plate, with 7 inch backing of channel-iron; the fifth is a $4 \frac{1}{2}$ inch plate resting partly upon 7-inch backing of channel-iron, and partly, with only the interstices between itself and the inner 2-inch skin, filled upwith 7 inches of concrete, forming the sixth section. The structure was roofed in with brick arches and concrete,
as in ordinary casemates. The firing was from the 7 -inch, as in ordinary casemates. The firing was from the 7 -inch,
9 inch, and 10 -inch rifled guns, and the Rodman 15 -inch smooth-bore gun, with battering cbarges, and at the same range as the Plymouth shield, viz., 200 yards. Only Palliser shells were used, these having established their superior penetrative power over the Palliser shot.
Twenty rounds were fired in all at this target, the first being a 7 -inch shell, which struck the 8 -inch plate, Fenetrat. ing a bout $8 \frac{1}{2}$ inches, but doing no damage to the rear. The second round, a 7 -inch shell, struck the $4 \frac{1}{2}$-inch plate supported by 7 -inch channel-iron backing. It penetrated 14 inches into the target, but caused no damage to the rear. The third shell struck on the vertical junction of the last plate fired at, with the 6 -inch plate backed by hollow stringers. The result was a penetration of 88 inches. the head of the shell remain ing in the hole. and the rear remaining undamaged. The above three pcrtions are marked A, B, and C, respectively, and they are backed with a massive tapering concrete pier. Tho fourth shell struck the last named section (C) where it has behind it 2 feet 6 inches of concrete, strengthened by iron girders. The penetration was $10 \frac{1}{2}$ inches, with half a do\%en nuts stripped off in the rear. The fifth s'jell struck that portion of the target covered by 4 -inch plates upon 7 -inch channel iron. The plate buckled $\frac{1}{4}$ inch for about two feet around the shothole, and the total penetration was $13 \frac{1}{4}$ inches, the head of the shell remaining in the hole. Seven more nuts in the rear were strioped off the bolts. The sixih shell struck the $4 \frac{1}{2}$ inch plate on coucrete backing, penetrating 14 inches into the structure.
The practice now commenced with 9 -inch shells, the first round striking section A of the target, penetrating 13 inches. The second shell struck the B section, penetrating $21 \frac{1}{4}$ inches, the plate buckling considerably, and seven nutstwisted askew in the rear. The third shell struck on a bolt in section \mathbf{C}, causing a buckle of $\frac{1}{2}$ inch at the top edge of the plate, the penetration being $18 f$ inches. The fourth sbell struck the same section, penetrating $14 \frac{1}{2}$ inches, and clearing off five amall nuts in the rear. The fifth shell hit on section D, the penetration being 9 feet 8 inches. At the rear the $\frac{8}{8}$ inch ron skin mantiet wasdriven back 3 inches, and twenty smal nut hedds were stripped off. This portion was driven back by a bolt, and the mantlet skin was turned up also beside the port, the whole forming a considerable smash. The sixth round strùck upon the \mathbf{E} section, penetrating $22 \downarrow$ inches, and causing no damage in the rear. The 10 inch gun was the brought into play, the first shell from which struck the A section, buckling the plate, and penetrating 32 inches. The second round struck the B section, causing a buckle, and pen etrating 4 feet $9 子$ inches. The shell was supposed to hav burst in the concrete backing. One of the vertical channel ir ins lifted up a tew inches through the concrete roof. The $\frac{8}{\delta}$ inch skin at the back of the pier opened slightly at the joints. The third shell struck the section C, penetrating 6 feet, and passing into the concrete pier. At rear, the cover ing slip at the angle of the pier, ripped open over a length of 5 feat 8 inches, with ten rivets sheared, and a bulge of 5 inches in the $\frac{8}{8}$-inch skin on the back of the pier
The next shell struck the C section in ansther place, and completely penetrated the structure, clearing everything before it, the point of the shell being carried 200 feet to the rear. Some pieces of the $\frac{3}{3}$-inch skin were thrown 20 feet away. The point struck was a weak one, being near a joint which was not covered by the backing. This points out th necessity of placing the stringers so that the joints of the plates should be supported by them, instead of having them at rightangles to the line of the plates, as at present. Tho fifth round, with the 10 -inch shell practice, struck the D sec tion, making a clean penetration. One of the $\frac{3}{8}$-inch mantlet plates in the rear was blown 20 feet away, and the timber screta was smashe 3 up. There was an opening in the back of the target 4 feet in hight and of considerable wi ith. The angle iron of a verical girder on the left of the shot-hole was curved 3 inches out of the straight, a 2 -inch bolt was broken off, and the concrete was blown out. The sixth and last 10 inch shell also struck upon the D section, and drove the whol side of the target back fromits brick-work setting abouthal an inch. It penetrated 4 feet 1 ll inches, lodging in the con crete backing, and bulged the cover plate in the rear, stripping sone more small nuts, and cra-king the root slightly all round. After this shot the Rodman gun was fired, a round shot striking the junction of the 6 -inch plates above the port hole. It caused an indent 7 inches deep, and sheared off a bolt head 6 inches from the face of the target. At the rea the angle iron s:lpporting the $\frac{3}{8}$-inch shin over the port bert three inches, thirty small screw nuts were knocked off, and the whole skin $\frac{3}{8}$-inch plate, was knocked out a distance of 9 nchos. One riret was knocked out from the top of each por jamb. The second round from the Rodman gun struck the A srction of the target, making an indent of $4 \frac{1}{4}$ inches, but do ing no further injury
From the above the nature of the subsequent experiments may be sufficiently inferred, as well as their general results. Engineering says that the protective points of the Plymouth Break water Fort have been well tested in this trial, Plymouth

