tion with the Baltic. There is also the inland line completed as far as Vorouej from Moscow, afterwards to be extended to the anthracite mines at Grushevka, which last are already in communication with the river Volga by means of a short railway. Independently of the proposed branch lines, which from their situation may well be called mineral lines, it is proposed to lay another main line from a point about 100 miles south of Kharkoff to far-famed Sevastopol.
The imaginary circle thus drawn incloses the whole of the southern coal fields, and cuts into the border of the northern. As the nortbern coalfield is beyond the boundary line chosen little need be siid about it, although it is far from being an unimportant one. The coal is inferior in quality to that of the southern field, while at the same time the iron found there makes very good castings. According to the report of the latest investigations published last year, the northern coalfield is 114 miles long by 80 miles wide, or about 9,120 square
miles. Within this boundary there are no fewer than 113 miles. Within this boundary there are no fewer than 113
known places favorable for mining; and four of the best known of them are estimated to contain a supply for 150 to 200 gears, at the rate of 400,000 tuns annually. The price at present at the pit mouth is about one dollar per tun.
The southern basin with which we have more immediately to do is more extensive, and the coal is of a better average quality. The coal seems to crop up to the surface in the government of Kharkoff so that in many places coal is turned up by the plow, and they extend to within less than 60 miles to the shores of the Sea of Asoph. The northern or Kharkoff end of this field contains coal similar to that of the Tula-Kaluga field; while in the center of the basin the best caking and steam coal is found, and at the southern extremity antbracite, containing, according to reported analysis, 98 per cent. of carbon. That part of the coalfield lying in the government of Ekaterinoslar is bounded by the rivers Dneiper Don, and Donotz, and has a surface of over 10,000 square miles. Adjoining this in the territory of the Don Cossacks, and bordering on the Sea of Asopb, there are still 7,100
square miles under which lies the best coal and anthracite.

The now, in Russia at least, well known mines of Grushevka contain no fewer than 269 allotments, out of which, in 1866, 83, containing 93 pits or shafts, were being worked, and produced 150,152 tuns of anthracite against 85.401 tuns in 1865. The estimated quantity for the 43 square miles of this district alone is $24,000,000$ of tuns. In the 7,100 square miles of the territory of the $\mathrm{D} \bullet$ n Cossacks, reckoning only the upper seams and only those which are more than one assheen (2 ft . 4in.) thick, the estimated quantitg is $700,000,000$ of tuns. The seams vary from $2 \frac{1}{2}$ feet to 8 feet in thickness. In this
black country there is much work yet to be done for both the black country there is much work yet to be done for both the
mining and mechanical engineer. The 93 before mentioned pits are, with one or two exceptions, mere holes, and in the district generally, until within the last two years, the black diamond was left in the denths of the mine undisturbed; as soon as the water grew troublesome, another hole was struck, and the former one abandoned. At the present time, however, at Grushevka three shafts are being, or have been, sunk deeper in the water-bearing strata, and eight steam engines, from 6 to 75 -horse power, are either at work or are in the
course of erection. The price of the coal averages from one course of erection. The price of the coal averages from one
dollar and thirty cents to two dollars and seventy-five cents dellar and thirty cents to two dollars and seve
per tun at the pit mouth, according to quality.
This district is no less rich in iron ore than it is in coal. Geologists and mineralogists of different nations all agree in their statements as to the immense quantity of ore, and also to its high quality. The thickness of the layers varies in
some places from 9 inches to 21 inches, and in others from 14 inches to 3 feet. The layers of ore extend in many places in inches to 3 feet. The layers of ore extend in many places in
an unbroken line for many miles, and are interspersed with layers of coal, limestones, and schists. The ore lies in many
parts, especially in the ravines, at a depth of from only 14 parts, especially in the ravines, at a depth of from only 14
feet to 28 feet from the surface, while almost the only mining as yet has been that of the aforesaid geologists. There is indeed one iron works in the district, belonging to Government ; but from a mistake in the choice of a situation, caused by the wish to take advantage of water power, it is too far from the mines connected with it, and its rate of production has not as yet been very great.
The other subterranean products of this mine of wealth are in connection with iron smelting, limestone and goor fireclay, while for purposes connected with other manufactures are potter's clay, kaolin, gypsum, and the materials for good cement. There ore also beds of the stone generally used here for millstones, also paving stoncs, and in some parts thick beds of roofins slate. Specimens of this slate were sent to the Paris Exhibition, along with specimens of the anthracite near which it was found. Limestones and sandstones for
building purposes are also here, together with an inferior building purposes are also here, together with an inferior
sort of marble. Clays of all sorts abound, suitable for bricksort of marble. Clays of all sorts abound, suitable for brick-
masing, both fire and common red and yellow, and chalk enough to score up the reckonings of all the miners and puddlers in the world for centuries to come.
Lead ore, with a percentage of silver, is also to be found; while last, but not least, one of the great necessaries of life, common salt, has formed a staple article of commerce for more than a century. The yearly quantity of this article supplied by this district within the past thirty years has va.
ried from 5,000 to 16,700 tuns. With the exception of this ried from 5,000 to 16,700 tuns. With the exception of this
salt, this immense treasure vault has been little more than salt, this immense treasure valt has been little more than
peeped into by scientific men; the full opening up has been as yet unattainable, not having lad as in other countries. the assistance of the iron horse. The time of opening is however, now near at hand ; the iron horee is on his way down south with the keys. The first sod of the Kharkoff Taganrog railway was cut June 2d, 1868, although work had
been commenced upon the line generally some time before

The question now must be who will be the first to ravish
this almost virgin treasure. It must not be thoust
It must not be thought that the mineral wealth of Russia is confined within the boundaries of the imaginary circle
drawn; on the contrary, the northern coalfield might, by deep mining, yield a better quality of coal, and it is supposed dip a great depth under Moscow and some of the other northern governments, as it has been found to maks its appearance again in the government of Archangel. There is then the eastern or Ural system, and the still ricber western or Polish. where coal seams have been found from 35 feet to 42 feet, and in one instance even 49 feet in thickness, made up of layer clay. Then we have in Siberia, the Tomsk field, estimated at 170 miles long and 70 broad, and coal of an inferior qual ity, but still usable, at the foot of the Caucasus. Among other projected railways, first on the list stands one to con nect the frontiers of Siberia with the interior of Russia. Rail way communication has commenced in the Caucasus with th opening of the Poti and Tiflis rail way, and Kharkoff is looked upon as the future central station for direct communication with the Cancasus.
All these places may, at a future time, become seats of manufactures, but in the part of the country above described everything is favorable to enterprise; even at present, the climate is wholesome, and peace and plenty reign around. Some difficulty would be experienced at first in getting together workmen, but when once found and settled, the real Russian likes to remain in one place if he finds himself at home, and generally likes to stick to a good master. There is one thing, however, although tradea unions and geceral strikes are unknown there, still the workmen taken singly are very independent and firm in their demands; the being they can be led easier than they can be driven.

THE AINOS, OR HAIRY MENI OF YESSO AND SAG- HALIEN.

In Notes on the Expedition against the Settlements in Eastern Siberia, published in London in 1856, is an accoun of a peculiar race of people, of which some specimens were seen to the north of Cape Lamanon, on the western coast group. The author, Mr. Whittingham, who accompanied the expedition, thus describes the people and their manner of liv ing: "As we came near the shore, four dark men with very ong black hair flying in the wind, and clothed in seal-skin ackets, kills, and boots, waved their arms and hands, warn ing us to another landing-place, toward which they waddled
with a peculiar clumsy gait. With many demonstrations of respect they led the way to their huts of ruagh logs, covered and the interstices filled with birch bark and dry leaves ; they were $l o w$ on the ground, and could only be entered by scoop ing on the hands and knees. The larger huts were used as store houses for their fishing apparatus. One of the men was a magnificent savage, tall, lithe, straight, and strong, with hair, beard, and mustaches never desecrated by the touch of the scissors; with a high bread brow, dark eyes,
straight nose, and eval face, he was a far the Red Indian who, I had always fancied, was the pride o wild men. His fellows were less manly in their buaring, and smaller; and as far as dirt, mal-odor, and want of light persmaller ; and as far as dirt, mal-odor, and want of light per-
mitted me to see, the women were ugly and little." R llin, mitted me to see, the women were $u g l y$ and little. R
in La Pérouse's voyage, gives the following valuable meas urements of the head of one of these people :--circumference 2380 inches; its longest diameter, $10 \cdot 30$; and its shortes diameter, 683 inches.
In a recent communication to the Boston Society of Natural History, Mr. Albert S. Bickmore, A. M., gives the results of his late investigations in regard to the origin of this pesuliar race, and adds important and interesting particulars of their manners, customs, and religion.
The first of these strange people seen by Mr. Bickmor were at Mori, on Volcano Bay, at the western side of th island of Yesso. Along the shore to the north of Mori they were met with, sometimes at work with th
more frequencly in companies by themselves.
At Urope, twenty miles north of Mori, is a village of about two dozen booses only, three or four of which are Japanese,
the rest belonging to the Ainos. Mr. Bickmore describes this village as follows:
"The houses were scattered irregularly near the shore over a broad belt of sand, that has been drifted back by the easter ly winds. They all have the same rectangular form, and are imilarly situated in respect to the shore.

The best are composed of a house part about thirty fee long and twenty broad. To this is attached a porch about twclve feet long and eigbt broad, and around the whele is a straw fence. The house and porch are built of a frame work
of sinall poles, fastened together with strips of bark and covof sinall peles, fastened together with strips of bark and cov
ered with nillet straw. The walls are sbout four feet high and slightly sloping. The roofs project a few inches at the eaves, and rise from each side to a point in the center. In the walls under the eaves, there are two or three holes a feo through the straw fence into the porch, and thence through the door into the house. The house part is generally one room, and also the porch; but in a few, a kind of partition i made in the larger room by hanging up mats. Most of the houses have no floors, but instead the sand is covered with
mats of coarso straw, and on one side of the room tleere is a platform of boards on stones or blocks of wood, where the occupants lounge and sleep. They usaally sit on the mats on the sand. In the center of the rocm the fire is made on of frame woik held up by atrings from the rafters, where
they place the fish they wish to smoke. It also serves for a cupboard or dresser, where the smaller iron pans and bettles may be put away. There is no chimney, and I did not even see a hole in the roof for the smoke to sacape. Everything overhead is, therefore, black with smoke, and gentrally has a
shining, oily appearance. Each house is provided with a few iron pans and kettles of Japanese manufacture, and these with two or three wooden dippers, and some large valves of the pecten, comprise their cooking utensils. They make a fire by means of a flint, steel, and tinder, which are usually kept in a bag of undressed deer skin. In several heuees I saw a considerable number of lacquered dishes, which they had evidently obtaiued from the Japanese. Near each house there is another small one about eight feet square, perched on a platform five or six feet high, in which they store their fish, in much the same manner as the natives of Sumatra preserve their rice. In the first houve we entered, the man was itting cross-legged in one corner making spears, with a fire of charcoal and a Japanese bellows. The woman was crouched near the fire, twisting up thin strips of the inner layer of the bark of a tree into a continuous line of the size of a mackerel line. It is from such material, and in this way that all the lines for their fishing nets are made. They liad four children, all boys, the youngest two and the eldest ten. The two younger ones were without clothing, and the other had only each a long jacket, though it was quite chilly.

In the next house we entered--the dimensions of which have given above as a model--we found an old unan, his son, asd three women. The old man said he was seventy five, and his white hair and white beard made it appear probable, set young woman, apparently of twenty, was presented to me as his wife. She was demurely at work in one corner, making a straw matafter the Japanese style. The other young woman was weaving a piece of cloth about ten inches wide, from strings made of bark as already described. These strings, which represented the warp, were fastened at one end to a post and at the other end to a board which she kept leaning against while she changed them and pushed through the fil ing and pressed it down with a sharp edged board. This kind of cloth seems to be the only one they have, and it is ai made in this slow and laborious manner. In front of thi house, thatis, on the side toward the shore, there was a kind of lack filled with sticks, each having on its top the shall of a bear. In this single place I counted twentr-rine sisulls of this animal, a number that must make our eld friend and his sen rauk high in the estimation of his Aine companions. Is another house we entered, we found a man and his wife seated by the fire. The woman was sewing, but the man was doing nothing, and yet the bay was swaroning with fish. He showed us the bow he used in hunting the bear, but would only sell a medel of it, declaring that in their estimation it was most disgraceful for an Aine to part with the bew he sas accustomed to use. Howover I secterel a real arrow The after part of the shaft was of reed, the fore part of solid wood to make it fly point foremost, and the barbed part of banibee. They carry short knives, but they appear to relg on their
bows and arrows when they attack a bear or kill a deer. I bows and arrows when they attack a bear or kill a deer. I saw ne lances, nor any imploments of stone or bronze. 1 also two s^{\dagger} rips of wood bent like an ox bew, with the straight part faslened tegether with deer skin. The woman sold me a short knife, *ith a scabbard of wood and ivory rudely chased. It was the only piece of ornamental work I sa!v As I was anxious to ascertain the hight, the distance round the chest, and the length of the arn, hand, and foot of ar Aino woman, my interpreter bribed the husbancl with a sntal piece of silver to make the desired measurements, but tho paper was unfortunately lost, and now I can only state from memory, that the peculiarity whish struck me most was ihat the regions of the waist and chest did not appear as scparsto as in most women, but it remains to be seen whether this is a permanent character. The mamme were very largely de veloped, and gourd shaped.
"When a woman marries they tatioo her upper lip and sometimes the under one also. A favorite pattern has the ends curved up, in just the way exquisites sometimes curl up the ends of their mustaches. Several times I inquired what was the cause or origin of this strange custom, but invariably received the unsatisfactory answer-'because it is the Aino fashion,' which is, perhaps, as good a reason as could be assigned for a theusand foolish customs in the most civitized lands. At all events it gives these Aioo women the ap pearance of trying to add to their charms by artificially making up for what they seem to consider a defect in nature's handiwork. The women also tattoo the backs of their hands in narrow transverse bands, but ne other paris of the body They never blacken their teeth or compress the feet. In eacl aino village, the oldest man, or a very old man, is the chicf and he in turn is responsible to a Japanese official styled the ' Aino Interpieter.' As the chief was away fishing, we called on the Interpreter, who was also absent, but a sub official gave me some further items in regard to the strange pople under his charge. They culivate millet and potatocs, not rice. In one hut I saw the thick midrib of some wild plant finely chopped. When they kill a bear, they are llowed the head, but the skin belongs to the Interpreter. They are permitted however to wear deer skin, and the woman Isaw firstat Mori had on an outerdress of that kind.
It is said that shen young cubs are found they are brought home and nursed by the sino women like their own children but this is quite incredible.

On my return to Hakndaki I found that cight Ainos had ast a short distance east of Endermo Bay. With the pros pect of a ε mall present they readily came to the residence of Colonel Rice, whose kind hospitality I was then enjoying

They all sat down cross legged, in the Turkish style, not in semicircle, like our American Indians, but in a straight line, the oldest man on the extreme left, the highest position of bonor; the rest arrangingthemselves according to their ages to the youngest on their right. They could not tell, however,
how old they were, but said that the Japanese officials kept a how old they were, but said that the Japanese officials kept a
record of their ages. As soon as they were seated they Lerecord of their ages. As soon as they were seated they tc -
gan their ealutation, which consists in slightly inclining the body formard, at the eame time raising both hands as high as the eyes, with the palms inward and the fingers extended and nearly tonching each other. The hands then pass down along the beard to the chest. This is repeated three times, and when they wish to show still greater respect they accompany these motions with a low guttural muttering. Saki (Japanese rice whiskey) being their favorite drink, each was offered a glassand a chop stick. Taking the glass in the left hand and the stick in the right, they dip the end of the stick into the liquor they are about to drink, and slightly raising it, describe a circle with an uowara and inward motion. While describing these motions with the stick, they uttered a long prayer, in a low monotonous tone. This prayer, they afterward informed us, was not in our behalf. in return for the saki, but addressed to the god of the sea, asking that they might be preserved in their boats, and find an abundance of fish. One of their number spoke Japanese fluently, and Mr. James J. Enslie, the Japanese interpreter at the British Consulate, and liroself the author of two interesting papers on the Ainos, kindly voluntecred to o.sis them a list of questions I had prepared. In this way the following information was obtained directly from the Ainos themselves. As some of the questions proved quite perplexing, they became tired before the list was completed, and I failed therefore to get replies to all my queries.
"They hare many gods, but fire-not the sun, the moon, or the stars--is the principal one, and they are accustomed to pray to it in general terms for all they may need. They do not buy wheir wives, but are expected to make presents to the parents of saki, tobacco, and fish. At their marriages they make no great rejoicing or display. Their only feast is at the beginning of the new year, when they make offerings to all the gods. When a wife dies they burn the house in which she lived, but when a man dies they bury him without any funeral ceremony (perhaps the interpreter meant if he was a common man), To inter a body they dig a hole in the ground and lay in planks in the form of a box. The body is then clothed in white, and placed in at full length, with the head to the east, 'because that is where the sun rises.' A widower may marry again in two or three years, but a woman can only marry once. (This the interpreter probably intended to say was their law but not the universal custom.) A man can have only one acknowledged wife, but any number of can have only one acknowledged wife, but any number of
concubines, each of whom always lives in a separate house. At present they have no king, but a great chief living in Saru. The interprefer had met other Ainos whom he could not un de rstand (that is to say, there are at least two different dialects in the Aino language). They keepno cats, but catch rats in traps. They have 'only Japanese horses.' They keep fowls but no ducks. They eat their fowls and what wild birds they can take, but never eat eggs. They have no special burying grounds, and they desire only to forget their deceased relatives as soon as possible. They never speak of the dead, and if a man should call on a friend, and inquire for his deceased wife and say, 'Oh! is she dead?' such an act would be considered the grossest breach of good breeding. They say that they can make poison, but refused to tell how, and further declared that they kept it such a secret that even the Japan ese officials knew nothing of the process. They have sorcer-
ers whose advice they are accustomed to ask. They have no ers whose advice they are accustomed to ask
written characters, and only oral traditions.
"After this questioning I took measurements of two of them. These measurements were made from men of medium size. They show, that although the Ainos are stout and strong, they are hardly taller than the Japanese, and not near as tall as the average of the people in the north o China. The relative size of the hand
" One of their chief peculiarities is
"One of their chief peculiarities is the great development of their hair, not only the head and face, but over the whole body. Their eyebrows and eyelayhes are very thick, and like their beards and hair, elways of a jet black, till past middle life, when, as with us, they change to gray and in extreme old age to white. Their hair appears coarse compared with ours or with that of the Japanese. They wear it long-down to the shoulders. The men wear theirs as long, or longer than is the custom with their women. Their eyelids are horizontal and open widely, as in the Indo-European races, and are not oblique and open, but partially, as in the Mongols, Manchus, Chinese, Japanese, and also the Coreans. Their eyes are bright and sparkling. aud always black. The fine development of their chests, with their full heavy beards, gives them the appearance of noble and hardy men as compared with their effeminate Japanese rulers. They seem to be endowed with great vitality, and the fact that they so succeasfully resisted the repeater attacks of a more enlight. ened race for eighteen hundred years, sufficiently proves their daring and perseverance.
"The dress of the men consists of a strip of cloth covering the loins in the same way as is customary among coolies in
the East. In summer this is their only clothing, but in winthe East. In summer this is their only clothing, but in win-
ter they wear long, looso coats, or dressing gowns woven ter they wear long, loos coats, or dressing gowns woven
from strings of nark. Thiv is folded over from right to left, and bound at the waist with a sash. Their heads, feet, and legs are usually bare. The women have a shorter dressinggown coming down to the hips, and beneatin this a piece of cloth wrapped arouod the wajst and hanging down nearly to the knee.
" Δ s they have no written records, the earliest accounts of this people have come down to us through Japanese histories According to a Japanese chronology, compiled from the best eonrces, and translated by Father Nicholai, for the Russian Legation, Jin-mu, the first Japanese emperor appeared on Kiusiu at Hunga (or Hewng nga) in B. C. 667. In B. C. 663 he first came to Niphon, but was defeated and driven back by the aborigines. In B.C. 660, he returned and effected a perma nent settlement on the southeast part of that island. In most of the Japanese histories, at least, no mention appears of the arrival of any new people, and the Japanese all believe that these aborigines were the ancestors of the present Ainos Thus, these people, although so little known to this day, are mentioned half a century before the time of Nebuchadnezzar and six hundred years before the northera and western parts of Europe were first described by Cesar in his Commentaries, discovery of this continent by Columbus. In A.D. 272 the Ainos, for the first time, brought presents to the Japanese authorities, and acknowledged them as their rulers. In A.D 352 they rebelled, and in the year 366 they defeated the Japanese and killed their general. During the next two centuries, however, they appear to have been completely
subjugated; for an educated Japanese states that as early as A D. 655, the Japanese sovereign then reigning established a kind of government over the Ainos in Yesso, which was lo cated near Siribets, a volcano on the north sbore of Volcano Bay. In A. D. 1186, Yoritomo usurped the ruling power in Niphon. and becoming jealous of his brothor Yosi Tsunay, had him put to death according to history, at a headlaud on the east coast, now called Shendai. But according to tra-
dition, Yosi Tsunai escaped to Yesso, and treating the Ainos dition, Yosi Tsunai escaped to Yesso, and treating the Ainos
here with the greatest kindness, was deified by them and is now their chief hero.
"In their eyelids which are horizontal and open widely, in the abundance of their hair, and in the full development of their chests, these people differ totally from the Chinese, the Japanese, and the Coreans on the South, the Manchus on the west, and the Gilyaks and Famtschadales on the north ; but in these same characters the call to mind the bearded peas ants in Russia of the Slavonian branch of the Aryan family.

Are they, therefore, an extreme branch of the North Tu ranian family, or, as is more probable, in the same manner
that the Indo-European races migrated from the high plateau of Central Asia through the plateau of Iran to the west, and the Persians and Indians to the south, did another part of tbat same family pass on to the east until they finally reached the islands now forming the empire of Japan ; and do their living representatives now appear before us in the persons of this ancient and isolated people, the Ainos?'
Subsequently, Mr. Bickford was enabled to visit the Ainos of Saghalien, whose habits of living resemble those of their brethren at Yesso, in all important particulars. The follow ing details of their customs in regard to marriage and the
burial of the dead were learned of a Cossack who had been burial of the dead were learned of a Cossack who had been
sent to live among them in order to acquire their language and learn their customs
"The Aino name for Saghalien is Karapto. They have no written characters, but the old men can send intelligence to each other by means of sticks notclied in different manners. They are superstitiously afraid of the Japanese, and believe that theg have supernatural power to injure them and can at pleasure cause them to sicken and even die. When man dies they bury him clad, not necessarily in white, but in the best suit he may happen to have, and usually in furs when he possesses any. The bodies of persons of all ages are placed at full length in boxes, with the face upward. At such times they cry and mourn very bitterly, even to the children. The Cossack said that one time he wanted a little
child that was visiting her parents, and when he came to their house he found her crying with the others over the loss of a friend. When a widow laments, they do not beat her with sticks as a Japanese doctor reported to me was the custom of the Ainos on Volcano Bay. Every friend who comes to mourn with a widow is very careful not to mention her husband's name; not from any superstitious fear of the dead but for fear of reminding her of her loss, and thus adding to her sorrow. When a man dies, the next youngest brother
takes the widow as his wife, either for life or until she has an opportunity to marry again. A widower may marry again in a month, but a widow is expected to remain single somewhat longer. They have no marriage ceremonies. A man docs not buy his wife, but works for her father. A man may hav two or three wives; the Cossack did not know any man who had more than three. (The Gilyaks, their immediate neigh bors, usually have two.) If a woman is unfaithful, the hus band merely reproves $h \in r$, and if no one but be and the quilty parties knew of it, he would probably not mention it to any one. When a wowan is in labor, she remains with
the other members of the family, but is kept from her husband for one montb afterward.'
"They keep dogs to travel with in winter and also use them for food. They have no cattle, and do not cultivate the soil. They reckon time by twelve moons or months, and three when they fade
"These people are undoubtedly passing away. Even during the last century and a half that the northern of the Kurile chain has been a part of the Russian empire, their numbers on those islands have been ascertained to have greatly diminished, though the Russians have unquestionably treated
such obedient subjects with the greatest kindness. The causes of this decrease are supposed to have been the ravages of the sruall-pnx, and the considerable numbers lost while crossing from island to island in their frail boats over
those storny seas."

Atuong the experimenters on Electricity in our time who have largely contriluted to the "Curiosities of Science," An drew Crosse is entitled to special notice. Iu his school-days he became greatly attached to the study of electricity; and on ettling on his paternal estate, Fyne Court, on the Quantock Hills, in Somersetshire, he there devoted himself to chemistry mineralogy, and electricity, pursuing bis experiments wholly independently of theories, and searching only for facts. In Hol well Cavern near his residence, he observed the sides and the roof covered with Arragonite crystallizations, when his observations led him to conclude that the crystallizations were the effects, at least to some extent, of electricity. This induced him to make the attempt to form artificial crystal by the same means, which ho began in 180\%. He took some vatcr from the cave, filled a tumbler, and exposed it to the action of a voltaic baitery excited by water alone, letting the platinum wires of the battery fall on opposite sides of tho tumbler from the opposite poles of the battery. After ten days constantaction, he produced crystals of carbonate o lime ; and on repeating the experiment in the dark, he pro duced them in six days. Thus Mr. Crosse simulated in his aboratory one of the bitherto most mysterious processes of nature.
H o pursued this line of rescarch for nearly thirty years at Fyne Court, where his electrical room and laboratory were on an enornous scale: the apparatus had cost some thou sands of pounds, and the house was nearly full of furnaces He carried an insulated wire above the tops of the trees around bis house to the length of a mile and a quarter, after wards shortened to 1800 feet. By this wire, which was brought into connection with the apparatus in a chamber, he was edabled to see continually the changes in the state of the atroosphere, and could use the fluid so collected for a va riety of purposes. In 1816, at a meeting of country gentle men, he prophesied that, "by means of electrical agency, we shall be able to communicate our thoughts simultaneously with the uttermostends of the earth." Still, though he fore aw the porvers of the medium, he did not make any experi ments in that direction, but confined himself to the endear or to produce crystals of various kinds He ultimately ob tainad forty-one mineral crystals, or minerals uncrystallized in the form in which they are produced by nature, including one sub-sulphate of copper-an entirely new mineral, neithe found in nature nor formed by art previously. His belief was that even diamonds might be produced in this way
Mr. Crosse worktd alone in his retreat until 1836, when, atending the meeting of the Britivh Association at Bistol, be was inducid to explain lis experiments, for which he spas highly complemented by Dr. Buckland, Dr. Dalton, Professo Shwick, and others
Shortly after Mr. Crosse's return to Fyne Court, while pur suing his experiments for forming crystals from a bighly caustic solution out of contact with atmospheric air, he was greatly surprised by the appearanceof an insect. Black flint burnt to redness and reduced to powder, was mixed with car bonate of potash, and exposed to a strong heat for fifteen minutes ; and the mixture was poured into a black-lead crucible in an air furnace. It was reduced to powder while warm, mixed with boiling water, kept boiling for some minutes, and then hydrochloric acid was added to supersatu ration. After being exposed to voltdic action for twenty-six days, a perfect inzect of the Acari tribe made its appearance and in the course of a few weeks about a hundred more. Th experiment was repeated in other chemical fluids with the ike results ; and Mr. Weeks of Sandwich, afterwards pro duced the Acari in ferrocyanuret of potassium. The Acarus of Mr. Crosse was found to contribute a new species of that genus, nearly approaching the Acari found in cheese and flour, or more nearly, Hermann's Acarus dimidiatus.
This discovery occasioned great excitement. The possibili y was denied, though Mr. Faraday is said to have stated in the same year that he had seen similar appearances in his own electrical experiments. Mr. Crosse was now accused of mpiety and aiming at creation, to which attacks he thus replied :
"As to the appearance of the Acari under long continued electrical action, I have neverin thought. word, or deed, given any one a right to suppose that I considered them as a crea tion or even as a fornation, from inorganic matter. To reate is to form a something out of a nothing. 'To annihilate is to reduce that something to a nothing. Both of these of course, can only be the attributes of the Almighty. In act, I can assure you most sacredly that I have neve Ireamed of any theory sufficient to account for their ap pearance. I confess that I was not a little surprised, and am so still, and quite as much as I was when the Acari made their first appearance. Again, I have never claimed any merit as attached to these experiments. It was a matter of chance; I was locking for silicious formations, and animal matter appeared insteqd.'
These Acari, if removed from their birthplace, lived and propagated; but uniformly died on the first recurrence of rost, and were entirely destroyed if they fell back into the luid whence they arose
One of Mr. Crosse's visitors thus describes the vast electri cal room at Fyne Court

Here was an immense number of jars and gallipots, conaining fluids on which electricity was operating for the pro duction of crystals. But you are startled in the midst of you observations by the smart crackling sound that attends the passage of the electrical spark; you hear also the rumbling distant thunder. The rain is already plashing in grea drop against the glass, and the sound of the passing sparks continues to startle your ear; you see at the window a huge
brass conductor, with a discharging rod near it passing to the
floor, and from the one knob to the other sparks are leaping with ivcreasing rapidity and noise, every one of which would kill twenty men at one blow, if they were linked together hand in hand and the spark sent through the circle. From this conductor wires pass off without the window, and the electric fluid is conducted harmlessly away. Mr. Crosse approached the instrument as boldly as if the flowing stream of fire were a harmless spark. Armed with his insulated rod, he sent it into his batteries; having charged them, he showed how wire was melted, dissipated in a moment, by its passage ; how metals-silver, gold, and tin-were inflamed and burnt like paper, only with most brilliant hues. He showed you a mimic aurora and a falling star and so proved to you the cause of those beautiful phenomena."

Mr. Crosse appeares to have produced in all "about 200 varieties of minerals, exactly resembling in all respects similar ones found in nature." He tried also a new plan of extracting gold from its ores by an electrical process, which succeeded, but was too expensive for common use. He was in the habit of saying that he could, like Archimedes, move the world "if he were able to construct a battery at once cheap, powerful, and durable." His process of extracting metals from their ores has been patented. Among his other useful applications of electricity are the purifying by its means of brackish or sea water, and the improving bad wine and brandy. He agreed with Mr. Quekett in thinking that it is by electrical action that silica and other mineral substances are carried into and assimilated by plants except fungi; and positive electricity he ascertained to be injurious to fungi, but favorable to everything else.
Mr. Crosse died in 1855. His widow has published a very interesting volume of Memorials of the ingenious experi-menter.-Timbs Curiosities of Science.

THE BALANCE.

The balance isman instrument so universally used that it eems strange that the principles of its construction should not be generally understood, yet such is the case. To satisfy ourselves that we are correct inthis statement, we have conversed with a large number of gran and others, and have only in a very few insta posted. Chemists, assayers, and others who have occasion to use very fine balances, are always acquainted with the sub-
ject; but we do not write with the view of giving such any ject ; but we do not write with the view of giving such any
information. Our intention is simply to be the means of information. Our i
popular instruction.

The center of gravity in a body is a point so situated that, if the body be suspended from it, the mass may be revolved about this point and will remain at rest wherever it is placed. The balance is a lever having its fulcrum above the center of gravity of the beam. When it is balanced the center of cravity lies on a line joining the point of support and the earth's center of attraction. If either end is depressed, the center of gravity describes an arc the radius of which is the distance between the point of support or fulcrum and the center of gravity in the beam. This center of gravity is thus raised or carried away from the earth's center of attraction, and consequently tends to retum to it as soon as the weight or other depressing force is removed.

In the engraving, F represents the point of support or ful crum, C , the center of gravity of the scale beam, and A B the arc of oscillation. The dotted line represents a line drawn from the fulcrum to the earth's center of attraction, and $\mathrm{M} \mathbf{N}$, the arc described by the pointer, \mathbf{P}. C, being the lowest point to which the center of gravity can attain, it will remain there unless some force acts upon it. The shorter the distance between F and C, the less will the center of gravity be raised in describing an, number of degrees of arc, and the less force will be required to move it. Hence the nearer the center of gravity in the beam lies to the fulcrum, the more delicate will be the action of the balance, all other things being equal. If the beam were suspended from a point coincident with its center of gravity, the latter would not be raised, however much the beam might oscillate; the beam would not then return to its original level, but would remain wherever it was placed. Such a balance would show differences in the weights of bodies, but any difference in weights attached to the ends of the beam, sufficiently great to overcome friction, would continue to move it until it assumed a perpendicular position. The only basis for the estimation of the difference would be the rapidity of this motion, and not the angle which the pointer, P , makes with the perpendicular, as is the case with the properly constructed balance.
If the point of support should be placed below the center, the beam would be reversed by any difference in weight sufficient to overcome friction. Friction is as much as possitle avoided by the use of knife edges for supports, and in very delicate balances these edges rest upon pieces of polished agate. A delicate balance with from one to 2,000 grains on each dish should be sensitive to a difference of from .001 to .0005 of a grain.

capewell's revolving carriage wheel fender

 and step.In turning an ordinary carriage short, the wheel is liable to cramp against the body of the wagon, endangering its overturn and wearing and defacing the vehicle. To prevent this is the design of the device exhibited in the engravings. It is a roller, A, turning in projections under one edge of an open work triangular frame, B , of metal which is secured to he under side of the carriage rail. The sides of the frame are of such an angle that the wheel, when backed toward the
wagon for turning around, shall engage the face of its tire squarely with the roller, thus effectually preventing cramping or friction. The construction of the roller is seen in Fig. 2 which is a longitudinal vertical section. It consists of alter

nate disks of iron, C , and rubber, D , the latter cushioned o compressed by nuts, E, at either end. As the rubber stands above the iron washer rims, it receives the pressure of the wheel and renders the action noiseless. The roller may be placed on eitherside of the frame, B , to suit either the right or left side of the carriage. Besides its use as a fender, it makes an elegant and handy step to the carriage.
Patented through the Scientific American Patent Agency September 17, 1867, by Geo J. Capewell, whom address, at West Cheshire, Conn.

$\mathfrak{C} 0 r r e s j u m d e n t e$.

The Editors are not responsible for the opinions expressed by their cor-
respondents

Provincial Protection to Inventors

Messrs. Editoris :-A question which interests many per sons in this Province, is the manner in which the Dominion will treat the Patent question. A Government measure was introduced at the recent session, passed the Commons, was amendedin the Senate in an important feature, and was con sequently withdrawn by the Government. The matter, there fore, stands open to the next session, some eight months hence; and meanwhile it is important that correct notions on the subject should be sent abroad.
Each Province has, at present, a different system. That of the late Province of Canada is, as you know, exclusive-giving no right to a Canadian, the assignee of a foreign inventor to obtain a patent in Canada. In New Brunswick, on the contrary, our system is most liberal. Here, any assignee of contrary, our system in most liberal. Here, any assignee of a foreign inventor can obtain a patent for the invention, sab-
ject to precisely the same regulations and under the same ject to precisely the same regulations and under the same
conditions which are applied in the case of New Brunswick ers patenting their own inventions. The fees, too, are mod erate, and the mode of application simple. Now, what we desire in respect to a patent law for the whole Dominion is, that it should copy the liberality and simplicity of our local Act. The present law of the Dominion should give its protec tion to the creations of genius, skill, and application, whether the possessor of these qualities lived on one side of the line or the other. We have always found fault with the United States Congress for not passing a copyright law, by which the intellect and the labors of British writers would be pro tected in the Republic. Not that it would have been of much service to us, for New Brunswick literature is not very exten sive; but because we consider it right, just, and politic What applies to literary creations, applies equally to inven tions and discoveries in the arts and sciences.
But beyond this, we think that the Dominion Patent Act should make patents already existing in each Province patents for and throughout the whole Dominion. Objections to this there may be, but we conceive that the reasons in its favor are overwhelming. It would make what is property in one Province, property throughout the Confederacy ; it would simplify the settlement of the patent law question; and it would prevent conflicts of jurisdiction, of local patent laws with the Dominion patentlaw, of local patents with Domin ion patents-which must otherwise arise. We cannot see that it would work injustice to any person, because, of course,
all existing rights would be protected in any legislation for the purpose.
Your experience in the matter of patents and patent laws, will enable you to give us advice and assistance in this mat ter. Although of very great importance, the subject of patent laws is little understood in New Brunswick. J. E. Woodstock, N. B.

Water Test for Bollers.

Messrs. Editors.-I have a second-hand steam boiler and am desirous of knowing whether it will stand inspection or not, and I have no way of ascer!aining except by sending to Chicago, a distance of one hundred milea, which would be n unnecessary expense in case of its not being strong enough o stand the test.
I propose to fill the boiler full of cold water, and then heat t until it expands sufficient to produce the desired pressure which I think will take place before the water becomes very warm and before any steam has generated. I conversed with several machinists and engineers in regard to this way of testing, all of whom seemed to think it would not answer, but they could not give any reasons for thinking so. I cannot consistently placemuch reliance on such groundless opinions, and therefore would like to get your opinion and ad vice on the matter before trying the experiment.
De Pue, Ill.
J. H. Hassler
[We cannot advise the plan proposed; we do not think it would work. Dalton says that $1,000,000$ parts of water at 32° Fah., becomes $1,046,600$ at 212° Fah.; 1 in 23.3 . Will not the shell of the boiler expand as much as the water and render nugatory the attempt to determine pressure? The boiler must be fitted with a force pump for feed, and it would be very easy to rig a contrivance to work it by hand so that you could apply the usual hydraulic test. If there is no steam gage to indicate pressure, the weight of the safety valve can be set to the point to which.the boiler is to be tested and then the pump used until it rises.-Eds.

Marine Aeronautics

Messrs. Editors :-In your last number I notice an article entitled "The Great Aeronautical Exhibition." One paragraph particularly attracted my attention, and I quote it:
"In this class we notice only the following, chiefly on ac "In this class we notice only the following, chiefly on ac-
ount of its absurdity. The expectation that a body floating in a current of air, and propelled by no other force, c~uld be guided by sails, is a folly which our readers will appreciate without further remark."
Probably the most of your readers concur in your opinion, that it is folly to suppose that a body floating along in a current of air or water, propelled only by the force of the cur rent itself, would exert any resisting force upon the fluid by which its direction could be changed. It is a fundamental principle of mechanics, that a body, moved by a single force in given direction, requires a second force, acting in another direction, to produce any change in its course. A ship pro pelled through the water by means of sails, can be guided by her sails alone, to some extent. The second force in this case is the resistance upon her keel. If the keel were movable upon a central pivot-proper strength and other difficulties not being considered-the ship might be guided by its keel so as to sail as close to the wind as it now does by the use of the rudder. Many of your readers are ac quainted with the old method of utilizing the force of river currents to propel ferry-boats across streams; the ends of the boat being connected by ropes to grooved pulleys running upon a rope stretched from one bank to the other. The end

of the boat lying in the direction the boat is required to move is hauled up stream by shortening the rope at that end, so that the boat makes an oblique angle with the direction of the current. The force of the current upon the side of the boat propels it across.
So far no means have been discovered of guiding vesselsnot locomotive-except by the resistance of one medium to the force of propulsion afforded by another. The difficulties of effecting locomotion in air-navigation are very great, for easons which I need not here mention
It occurred to me, some years since, that an application of the principles to which I have alluded, might be made to the guidance of balloontiover large b dies of water. Since first conceived the idea, I have made some experiments which have confirmed my first opinion, and as tbe subject of aero nautics is now attracting much attention, I have ventured to send you a drawing and a description of the apparatus which I have been experimenting with, representing it, however, as I should suppose it would appear when made upon a suitable scale for actual use. The sails are, however, probably too

