Improvement in Cooling Mill Stones and Flour.
Every miller knows how desirable it is to deposit the flour or meal as it comes from the stones in a perfectly cool condition, and that one of his principal annoyances is the heating of the stones. The inventor of the device herewith illus trated intended to subserve these two purposes, says that practical tests show a saving over the or dinary mode of elevating of about on pound of flour on each bushel ground.
A represents a mill stone and hoop, be neath which is a scroll, B, containing a fan blower, the blades of which, instead of form ing a gradual curve, turn at right angles, this form being considered preferable. From the stone a discharge pipe, C , leads to the eye or center of the fan, conveying the flour The spout or pipe, D, js double, or divided longitudinally by a partition shown in the space broken away. The portion, E, leads from the periphery of the fan or blower to the chamber, F, the upper portion of the tube being shortened to permit the escape of surplus air. The flour or meal is forced upward through the pipe, E, from the fan, and is discharged at G, directly into the bolt, conveyer, or hopper boy. The chamber, F is made of any suitable size and is covered, or partially so, on its sides with gauze or muslin. From this chamber a return spout, H , leads to the fan and through it the sur plus air is returned, and also many particles of flour which would otherwise be lost. The fan being revolved rapidly receives its supply of air through the spout, C, from between the stone and hoop, drawing all the heated air away, thus keeping the stone ccol and dry, and preventing the formation and accumulation of dough around the hoop. The flour, 000 z as disabarped from the stone, falls into a current of cool air which prevents evaporation. For simply elevating grain only the fan and spout, E, are used.

This apparatus was paterted May 5. 1868, by James Raney, assignor to himself, L. Raney, and B. Raney, either of whom may be addressed for rights or further information at New Castle, Pa.

Learning to Telegraph.

According to the Telegraph, the institutions known as Tele craph Colleges are unmitigated humbugs. They purport to teach the art of telegraphing so that any young man or woman can become efficient in three months, obtain a good situation, large salary, \&c. Fees payable in advance. Our contemporary remarks:

We wish to impress upon the minds of those who desire to become telegraphers, that only upon telegraph lines, and in the practical daily practice of an office, can they become qualified for telegraphic positions.

Another fact is sedulously kept out of sight by the proprietors of these colleges, which is patent to every practical telegrapher, that is, that probably less than fifty per cent. of those who seek to learn telegraphy, even in the regular and proper manner, become good, reliable operators. The profession requires a quickness of perception and a certain amount of mechanical skill and facility of manipulation which is not generally possessed. Very few become good, practical telegraphers, unless they commence the study of the art before they reach their twentieth year. For those of over that age to endeavor to do so, is, in a majority of cases, pure waste of time. We do not mean to say that instances are unknown of persons more advanced becoming first-rate telegraph operators, but they are so few as not to offer en couragement to such to seek admission into the telegraphic ranks.
We have heretofore pointed out the deflciencies in scientific knowledge of a large proportion of the practical telegraph ers. This we should be glad to see corrected, and we should regard any means of education in this particular afforded to telegraphers, and a disposition to avail themselves of such facilities by operators generally, with favor and gratification."

New Bronewick Hematite Iron

We have received some specimens of white fibrous iron from hematite ore mined in New Brunswick. It is of ex treme hardness, capable of scratching glass, and of remarkable purity. It is also exceedingly tough, Robert Mushet o Coleford,, England, stating that he has twisted nail-rod cold, made from it, which exhibited a toughness equal to the bes Llondross or Tevoitdale iron. Charles Sanderson says he is
using the iron as samples. He is the well knownsteel maker erate heat and is well suited for file making-" The Pembroke Iron Works, Pembroke, Me., is using it with great success or ax iron and all edge tools. We understand the deposits of this ore in the vicintty of Woodstoct New Brunswick

RANEY'S PaTENT PNEUMATIC ELEVATOR practically inexhaustible. It has been largely and success-
fully tested in the casting of chilled car wheels, both in England and in this country, and in the former country by John Brown \& Co., of Sheffield, for armor plates. We give an an alysis of the ore.
Peroxide of iron..
Protoxice of iron.
Alumina ${ }^{\text {Onide mañanese. }}$
Peroxide
Lime
Mazneisis

Sulpharic acid
Snobphoric ac
Since
Carbonicacid
 To tal $\frac{11: 781}{100.000}$

FOOTE'S PATENT PORCELAIN LINED ICE PITCHER.

Considerable has been said about the chemical action o different drinking waters on the metal of which the interior

wall of ice. pitchers is composed, their being productive of oxides inimical to health, etc. It is well known, however, that the porcelain lining of iron lettles and the glaze on our
table ware is unaffected by ordinary acids. Acting on these acts the inventor of the pitcher showin in the engraving has succeeded in coating the inner wall of metallic ice pitchers with a liquid enamel, fused and attached to the métal by heat, in one smoth, complete coating without seam. Prof. Hayes "it orn, coating without jurious. A quart of acidulated well water was boiled in one of these pitchers without percep. tible action upon the enamel, and water to which caustic alkali had been added was afterward boiled in it with a similar result. When submitted to sudden changes of temperature the enamel did not crack or separate from the ron, and sharp strokes with pieces of ice ailed to make any impression upon it."
It will be readily understood that the pitcher may be made of any form desired. Its reedom from unpleasant odor, as well as its perfect cleanliness and certain safety, seems to give this improved pitcher a deserved com mendation.
It was patented through the Scientific American Patent Agency June 30, 1868, and assigned to the Meriden Britannia Company, est Meriden, Conn., by whom they are nianufactured, to whom all orders should be addressed, D. C. Wilcox, Secretary. The cormmendatory letter of Prof. Hayes may be found in full on the last page of this paper.

FUTURE PROSPECTS OF MACHINE MANO

 FACTURING IN RUUSSIA.If we take the map of Russia, and set one leg of a pair of compasses upon the spot occupied by the town of Kharkoff, setting the compasses to a radius of 370 miles, then this radius will reach to the extreme northern end of the the rich agricultural government (or province) of Orel, inclosing at the same time the equally rich government of Koursk
Sweeping around to the northeast we cut off part of the government of Tula, the Russian Shefield, as also part of Tambov, inclosing the whole of the government of Voronej, with its rich stores of corn and oil. To the northeast we cut into the borders of the government of Kaluga, inclose the whole of the government of Poltava with a great part of that of Tcher nigon, and join up to the borders of the govern ment of Kiev. In a right line south from our starting point we, with the same radius, cut into the sanclbanks in the Sea of Asoph near the port of Berdiansk (for the removal of which said sandbanks, by the way, the future factory may heve to provide dredgers, so they may as well be included in the cir cle), while at the same time we include the government of Tausidia, along with that of Ekaterinoslav with its coal bearing strata. Sweeping to the southeast, we incloss the whole of the territory of the Cossacks of the Don, with its vast beds fanthraciteand iron ore. The same radius takes us in this direction across to the opposite shore of the sea of Asoph fronting Taganrog and Rostov. To the southwest we come again upon the greater part of the government of Tausidia with the greater part of that of K herson, sweeping to within wenty miles of the ancient town of Kiev.
For enterprising men with capital this is an immense field for labor ; and commercial energy might eaeily square this circle, even by means of a circumscribed square to enlarge the area. The principal railways (not merely projected, but actually being constructed) cutting into this circle are, first the main line direct from St. Petersburg to the Sea of Asonh passing through two coal fields in its course, namely, the northern or Kaluga. Tula and the southern or Donetz basin (The Donetz is a river falling into the Don after a course of about 270 or 280 British miles, and forming a sort of border to the coal field ; its repeated attempts to cutinto the hard strata of the coal basin induced geologists to call the coal dis trict by its name, the Donetski Kpaj). This main line of rail way after leaving Moscow passes through the towns of Tula Orel, Koursk, Kharhoff, and many towns of smaller cote, and will end, after passing through the whole of the southern future mining district, at Taganrog and Rostov
From this main line there will be numerous branches to different places, the names of which are as yet unknown to fame, but which, in consequence of their stores of minera wealth, are capable of becoming great industrial centers. Communication with Europe, through Poland, will be se cured by the line from Kiev joining. into the main line a Koursk. The main line will also communicate with the Black Sea, by means of the line from Kharkoff through Pol tava and other important towns, to Kiev and Odessa. In like manner, by the extension of the Riga-Dinaburg-Vitebsk rail way to Orel, the south of Russia will be put into communica

