SUNLIGHT AND MOONLIGHT.

The following interesting report of a lecture by Prof. Morton, at the Academy of Music, Philadelpbia, we copy from our esteemed cotemporary, the Philadelphia Photographer: Assuming that his hearers were asquainted with the gener al laws governing the emission and reffection of light. Prof. Morton proceeded to explain the difference between regular and diffusedreflection, illustrating this point by an original and singularly pleasing experiment. A large mirror was set midway in the stage, facing the audience, who could see themselves reflected on its ample surface. Over this mirror an assistant, at a signal, let fall a delicate white veil, when at once there appeared, as if just within the surface of the glass, a phantom-like figure, which was then seemingly wrapped up in the veil, as that was rolled together, and appeared to fall with the falling tissue, as it was dropped to the floor. The appearance of this experiment was most beauti ful and excited much attention. The lecturer then explained the method of its arrangement, in which a lantern, with a glass photographic picture placed at one fide, and throwing an image
tant part.
tant part.
Various illustrations projectel on the screen, from photo graphs of statues and mirrors, and landscapes with still water reflecting the adjacent objects, were then used.
To give such things due effect iu such a building, is no easy task. The front of the stage is fifty feet in width, and the most distant of the audience more than one hundred feet from that point. An immense screen and powerful illumination are therefore necessary. The screen employed was of wet muslin, forty feet square, lowered into its place at the moment when required. To cover and illuminate brilliantly such a surface (sixteen hundred square feet), no ordinary lantern would suffice, and, accordingly, Professor Morton Las had one constructed by Mr. Zentmayer, with condensers eight inches in diameter, and of three-inch focus, with which pictures of corresponding size are used. Thus, an objective of tow power may be empioyed and loss of light avoided, as also a larger ignited surface of lime utilized with out injury, on account of the corresponding increase of size in all parts. Most of the pictures used on this occasion were
made by Mr. O H. Willard, photographer, who also operated the lantern, and whose ski l was equally well illustrated bs the pictures produced and the style of their projection. Some of the transparencies were, however, made by Mr. O.G. Mason, of New York, from, Mr. Rutherfurd's negatives, and others again, by Mr. J. C. Browne, of Philadelphia, all gentlemen whose skill is well known to our readers.
After the illustrations of reflection above mentioned, came a series of moon photographs, intermixed with copies of lunar maps, and a number of admirable imaginary viewz of lunar scenery, from drawings prepared by Mr. James Hamilton, our eminent artist, who is so widely known by his marine pieces, and who can produce more apparent motion and c,m-
motion on canvas than any one living, we believe. These views were of the than any one livh, one of the lunar volcano, Copernicus, and its vicinity.
The direct lunar photographs by Mr. Rutherfurd, were also most effective. Thus, we beheld, to our great delight a moon, round and full-orbed, as bright as the original lumi-
nary, but rolling on to the screen as a globe of thirty-five nary, but rolling on to the screen as a globe of thirty-five
feet in diameter, her mountains and volcanic cones, and exfeet in diameter, her mountains and volcanic cones, and ex-
tended plains distinctly visible. And this was not a mere tended plains distinctly visible. And this was not a mere
picture sklfully paiated, but a veritable reflection of that orb. The moon's own face photographed by powerful lenses, and magnified by Mr. Rutherfurd, whose skill in this department is unrivaled.
The lecturer described and named the various plains, and peaks, and hilly ranges, as though he had just returned from an exploring expedition to these Rocky Mountain regions. We had the Ocean of Tempeste, and Seas of Showers, of Se renity, of Vapors, and of Clonds (still called seas, though now known to be arid land wastes), defined and designated, while
the heights of the peaks, the depths of valleys and volcanic the heights of the peaks, the depths of valleys and volcanic
craters, were indicated as clearly as those of any earthly elevations or depressions accessible to the foot of the sur-

veyor

The planet Mars appeared, not as a brilliant speck or point of light, but as a vast round silver shield, with the marks of seas and continents distinctly traced. Another photograph, taken an hour later, and lo! the aspect of the planet had altered. A great snow-storm had been sweeping over it. Its majestic mountains and plains had been draped in a wind ing.sheet of frozen rain, and the dark wastes had become
white, and the deep seas alone retained their original sombre whe. Think of a snow storm in a distant planet, watched, hue. Think of a snow-storm in a distant planet, watched,
and followed, and fixed on glass plates, and presented to an and followed, and fixed an glass plates, and presented to an
audience sitting comortably in the opera-house of the city audience sitting
of Philadelphia.

The magnetic telegraph can tell us what is happening in distant parts of our globe, but here is a messenger who comes to us, and tells us what is happening in the planet Mars, more than thirty-five millions of miles away! The storm signal is hoisted on the coast of England, and mariners know that a tempest is up and at work on the broad Atlantic, and may sonn be looked for, howling along the chalk cliffs of the island, and tbundering into its bays; but the telescope, and the photographer with his baths and plates, here reveal how a tornado of sleet and snow is sweeping across the plains and oceans of the planet Mars.
Attention was next directed to the sun. His spots were, by means of photographic art, shown to be gigantic rents made in the robe of fiery cloud masses which compass the erb ; just as wild cyclones or great rotary storms might tear
and rift the rain clouds which cover our sky, twirling them
round and making temipast circles, with radii of thousands of miles. The rotary motion of these sun-storms could be distinctly traced in the several photographs made at different periods of their progress, and the laws which regulated their motion investigated and determined.
To illustrate the effect of such a temperature as that shown to exist in the sun upon some familiar elements, and to ex plain why these should occur as vapor in his atmosphere, the lecturer placed himself with a powerful oxyhydrogen blowpipe upon a platform secured to one of the stage straps, and was raised t a considerable height, from which point, by burning a thick rope of steel wire in the jet, he caused to pour down a broad sheet of scintillating sparks and minute rolled toward boiling iron, which spread over the floor and rolled toward the footlights with an effect never to be for gotten by one witnessing it.
The fixed stars as suns of other systems were next noticed and in connection with some of the peculiarities which they exhibit, the subject of persistence of vision was introduced and illustrated by several beautiful experiments, among which the most remarkable was a larga wheel, five feet in diameter, carrying six eissler tubes of great size, through which, while in motion, flashes of electric light were passed from an induction coil, made by Mr. Ritehie, of Boston, probably the most powerful in the world, having produced parks twenty inches in length), belonging to the University of Pennsylvania. This apparatus produced the appearance of a star with countless colored, vibrating and ever-changing
rays.
The final and perhaps most impressive expernt of the
lecture was, however, that illustrating the thar acter of white light and the difference betw
The drop curtain was lowered for a few motaents, to allow of some scenic changes, and during this time the lecturer explained the subject in hand to the audience, and by aid of wo large groups of chromatic burners, fed with spray of chemical solutions, produced lights of contrasting colors on The te sides,
The curtain then rising displayed a brilliant palace sceve, illuminated hy several limp lights, judicibusly placed. At a signal there then marched in a troup of brilliantly costumed masks (consisting of students of the University, who had vol unteered for the occasion), bearing banners with appropriate colored devices.
The effect of this march was most striking, the tramp of the advancing columns, the rushing flutter of the banners crowding the stage, and the blaze of gaudy colors in the bright white light. formed a spectacle as pleasing as it was novel and unexpected. The masks having grouped them selves around the stage, at a signal the white light wa turned off, and from six large sets of chromatic burners a
flood of yellow light was emitted. Instantly the brilliant array became a troup of ghastly phantoms. clad in gray, and berring banners with black and white devices.
The amount of yellow light was so great as to illuminate the entire house and reduce the audience to a concourse of sombre-clad spectres. The lights were then changed several times. This experiment was by far the most impressive thing we have ever seen, and by the precision with which verything was managed, reflects great credit on all con cerned in its production
mandfacture of malleable iron in scotland.
In No. 1, of the current volume, wa gave a condensed ac count, from the Ironmonger, of Cast Iron Working in Scotland. We herewith give, from the same source, a description of the manufacture of malleable iron, as conducted in that countrg,
The conversion of pig-iron into malleable by the "puddling", process was commenced in Scotland about forty years ago when a nnmber of workmen from England and Wales were brought into Lanarkshire for the purpose of instructing th Scotch iron workers. The first attempts. however, to establis 1 1836 ranch of trade, were not successful, and it was not unti 1836 that it was fairly started. There are now nearly 400
puddling furnaces and 50 rolling mills in operation, which, in 1867, produced 143,000 tuns of malleable iron, val ued at 181000,600.
the puddling process.
The places in winich the process is carried on are nearly all constructed on the same plan. The mill consists of a vast oof supported on iron pillars, so that the sides are quite open ides pudaling furnaces are huiltat intervals along one or two sides of the mill; and the floor, which is paved with iron
plates, is crowded with machiuery, a powerful sream engine occupying the centre. The work of the pudders is probably The eeverest kind of labor voluntarily undertaken by men The puddling furnace is a compact structure of fire-brick cased in irno. In consists of three parts-the fireplace, the hearth, and the flue. The fireplace is on the left hand side, and is separated from the hearth, which occupies the central place
by a low wall or ridge. To the right of the hearth is the flue the entrance to which slopes downward from the hearth, so that when a fire is lighted in the fireplace, the flame is drawn close over the hearth in its passage to the flue. Each furnace requires two men to work it. One of these is the puddle who bas all the responsibility, and the other his aseistant who performs the portions of the work in which only slight skill is required. The quantity of pig-iron operated upon at a time is about four hundred weight, and is celled a charge One charge is got out of the furnace every two hours, and the
work goes on night and day, from one week's end to the work goes on night and day, from one week's end to the
other, Sunday excepted-the men taking the night and day shifts by turns. After a charge is withdrawn, the furnace undergoes some slight preparation before another is put in.

A coating of "bull dog"-a material prepared from the slag of the furnace-is laid upon the herth, to fortify it against th:e intense heat. The.pig iron. which has previously been broken in to pieces of convenient size, is thenthrown in, and the doors of the furnace are closed and sealed up with cinders. Intense heat is then generated. In about a quarter of an hour after the furnace has been sealed, the iron shows signs of melting, and an aperture in the hearth door about six incles square is opened. The puddler looks in at the opeuing, and determines whether it is time to disturb the iron. So soon as he sees the finer angles of the iron begin to melt, he thrusts in a s'out rod of malleable iron, and moves the lumps of metal about, so that the entire mass may be equally heated. The puddler's assistant takes a turn at this part of the work; and during its progress the heat is occasionally moderated by means of the "damper," or by dasbing small quantities of water upon the iron. At frequent intervals, the puddling bar is withdrawn and cooled by being dipped into water. The iron dissolves gradually on the hearth, and after a time begins to heave and bubble, innumerable jets of flame bursting forth all over its surface. The desired chemical change is now going on. The hot air from the furnace sweeps over the irin and carries off a grea part of the carbon, sulphur, phosphorus, and silicon contained in the pig iron. Care must be taken to prevent the meta rom becoming too fluid; and as soon as it attains a pasty consistency the heat is moderated. Meantime, the puddler
uses his rod vigorously ; and as the metil now begins to uses his rod vigorously; and as the met4l now begins to
"dry," the labor of moving it about is increased. The metal at length seems to curdle and become granular. As it then ceases to give off carbonic oxide, the heat of the furnace is again raised, and the particles of metal begin to adhere together. From this point the chief puddler undertakes and coulpletes the operation. As the metal agglutinates, it becomas very difficult to move. The pudder has to exert himself to the atmost ; and he dare not relax his efforts for a single minute Ise all the previous labor would be worse than lost. Though he perspiration trickles from his face and arms, and oozes brough his scanty clothing, he must toil on. His eye is ever removed from watchung the contents of the furnace: and the expression of anxiety on his face indicates that the operation has reached a critical point. When the metal has at tained a certain degree of consistency, the puddler divides it into five or six heaps. He then works each heap into a ball" or "bloom." The door of the hearth is opened, and ne after the other the balls are drawn out with a large pair of tongs and dragged over the floor to the "shingling" hammer. As the balls are drawn from the furnace they have spongy appearence, and slag and other impurities trickle from them. The operation we have described occupies, on n average, about two hours, and the quantity of unrefiped pig.iron required to make a tun of puddled iron may be stated t from 23 to 23 cm
shingling and rolling.
It is the puddler's duty to convey the "balls" from the arnace, and to place them one by one on the anvil of the shingling" hammer. Before the invention of the steam hammer, a somewbat clumsy contrivance was used for squeezing the slag out of the puddled iron, and beating it into shape. Nowthe steam hammer is every where e noloyed for that purpose. When a puddler lays a "ball" on the anvil, he waits to see the result of the first blow, and from it he is enabled to judge of the quality of his work. The shingler" then steps forward and takes charge of the ball." His feet and legs are encased in iron armour, his body is covered by a stout leather ap"on, and he wears a
mask of the same material. One stroke of the hammer makes apparent the use for this warlike attire, for it kends out in every direction jets of liquid fire, which patter aqainst the legs of the workmen, and would inflict fearful injuries were they to come in contact with the skin. The manipulation of the ball under the hammer is severe work, and requires great expertness. The "shingler" uses a pair of ongs about four feet in length, and with these seizes the ball and turns it on the anvil every time the hammer scends. He so manages that it assumes the shape of a rick, and the operation occupies only two or three minutes. The "slingler" passes the metal, yet at white heat, to the rollers," who pass it through a series of grooves in a pair of solid iron cylinders. By this means it is drawn into bars f the required size.
The iron produced by the above process is called " puddled bar," and it has to go through another oparation before it is uited for even the commoner purposes of the blacksmith. norder to produce what is known in the trade as "common ron, the puddled bars are cut up into short lengths, and a number of these are laid in a heap of sufficient size to make bar of any stated dimensions. Ther are then placed in a re-heating furnace," and exposed to a free circulation of heat. In about half an hour the iron becomes heated t, what is known as the welding point, and is then remored nd passed through the cylinders as before. When the rolling is c mpleted, the bars are taken away by boys, and ut to the desired length by means of a circular saw, which passes through the metal with astonishing rapidity and with hideous noise. The bars are then straightened on an iron blate, stamped with the maker's name, and allowed to cool. From the moment the iron is taken out of the re-heating fur nace until the bars are ready for the market, the utmost ex pedition is required on the part of the workman; and their operations, especially when witnessed at night, form one of the most interesting sights connected with the manufacture of iron. When a finer quality of iron is required, another welding and rolling are given to it. These repeated heat ings however, entail a considerable loss of material-equal,
we believe, to eight or ten per cent for each heat. In making
the best quality of malleable iron, it is usual to refine the pig-iron betore putting it into the puddling furnace. The refining is done in a furnace especially constrncted for the purpose, and the process consists in fusing the iron with coise, and thus ridding it of a large proportion of its impuri ties.

Comaspudeme.

The Eations are not responsible for the opinions expmessed by their cor

The Microscope.

Messis. Fitons :-The microscone has revealed in nearly evey department of ecience, much that before its invention and present high degree of perfection, was entirely concealed from the most careful observer. It has opened new fields of thoughit, has disclosed new truths, and bas unlocked many of nature's mysteries. Its revelations of the character ingrom and of the marvelousstructure of animal organism re erand and imposing. Information s. valuable should be rendered more popular and generally uszful ; and is it not important to consider the best means of acenmplishing this di sirable result, and of creating a taste and love for the investigation of nature by this valuable instrument? While the present mode of study, each individual pursuing his own investigations or giving individual instruction, is wel adapted for the few it is not applicable to large classes. It is evident that could the microscopic representations be of such character as to admit a simultaneous view by all present their usefulness would be greatly enhanced.
What means are there, then, of exhibiting to audiences the results obtained by the microscope? Photography has recently come to the aid of the educator and has emabled him to faithfully represent many natural objects and phenomena It has enabled the microscopist also, to a certain extent, to make his observations more public The stereopticon, which bas of late years become indispensable to the lecturer on scientific subjecte, has developed a new use of photography as it has been made to enlarge the photographic views, and has adapted them directly to ciass illustration. It is an aid also to the microscopist, but as it mainly exhibits the external appearances, and the microscope reveals mot only these, but the more mirinte and delicate internal structure, it is inade chate to faithfully show the full capabilitics and manifold uses of this noble instrument.
Something more is needed. The earnest educator is not content to stGp here but desires a more satisfactory arrange ment to illustrate micrescopic objects, something that will not only enlarge the views, but will enable an audience to see them simultaneously. Can not some of your numerous incentors devise ai instrument to be attached to the stere ontirn, to subserve this important purpose by prajecting upen a screen a greatly magnificd image of any transparent specimen which has been prepared for the microscope, in the came.
Phitadelphia, Pa .
J. G. M.

Opaque Glue,

Messrs. Editors:-I see, page 39, a recipe of a correpondent for making opaque glue, which is as injurious to the glue as the bone dust prooosed for that purpose in a for n:er number. Bone dust bring gritty and not uniting with the glue, spoils it entirely. I find by analyzing a specimen of very white opaque glue of excellent quality, that the white substance is nothing but carbonate of lime very finely divided, probably introduced in the form of the so-called Paris white, I find in trying the mixture of this substance with glue, that it has two effects beneficial to the manufacturer: first, in giving a dark colered glue a lighter shade and thus presenting an appearance of a higher priced article, and, second, in add ng to the weight of the glue by the addition of a substance only alout one tenth of its value. The beauty of this adul teration is that the sticking qualities-which are of course the only ones the consumer cares for-are not in the least de eriorated, but on the contrary seem improved.
P. H. Vander Weyde, M. D.

New York city

Western Archacology.

Messas. Editors :-Your reference in No. 1, current vol me, to the researches of Dr. W. De Hass, in the rich mound field in lllinois demands a more lengthy notice. "whese ex plorations are the most important and extensive yet made in the West. They promise results of the ntmost value to the scinnce of archroology. Dr. De Hass has prosecuted these re searches with great zeal and industry. His present field of operation is one of the most extensive in the United States. It incloses several groups of mounds numbering in all ove 200 , arranged with system, care, and judgment. The mound have been regarded by some scientific men as naturai, but these investigations have determined beyond a doubt thei rtificial character.
The relics of art discovered are mumerous and interesting rid $\cdot \mathrm{mbrace}$ a great varisty of stone implements, weapons, and ornaments. Among them are seme of an agricultural type, unlike any simular implements discovered in this country or Europe. Thitse prove that the original occupants of the fiue alluvial opposite St. Louis were agricultural as well as hunters and fishermen. These implements, of which quite a number have been secured from mounds and other ancient depositories, and the adjacent plains, are of flint. Two tynes prevail, one from five to fifteen iuchee in length and three to
four inches in breadth; the other shaped like cur domestic hoe. These are well and artistically made. The cuiting edges of all show fine polish by attrition in the soil. One of them which I have examined is of a fine varicty of quar'z almost a pproaching chalcedony.
These early inhabitants of the West had attained great
proficiency in working stone. The fictile art also flourished proficiency in working stone. The fictile art also flourished in much perfection, among them. They manufactured a great varitty of u
sun-dried. is very extensive, and is a valuable acquisition to the archeological collections of this country.

Agricultural Maehinery for South America.
Messis. Editors.-Our farmers in this part of the world are not catisfied with either the Sickle Cradle, Reaping machine, or Header; but they want a machine which will thrash, winnow, and bag the grain at one operation.
We have some of Mr. Fowler's agricultural machinery here; some of them are on the two engine arrangement, each having the power of self-propulsion. They move over the headlands one on either side of the land under operation; the plow being pulled alternately back and forth by the engines which are 14 -horse power each. I am told there are similar machines used in Australia but worked by horses. We want, in this case, a machine which can be worked by sucb engines as above mentioned.
I thinno land could be imagined more suitable for the use of agricultural machinery than this country. The sur face is slightly undulated with hardly a break to interrupt the rapid progress of the implement. The climate is also very favorable to produce abundant wheat crops. But the greatest adcantage perhaps we have here is that the berry gets quite seasoned in the fields, so that it can go at once into the elevator without the risk of heating.
I presuine that taking into consideration what has been said about our farmers, the eogines, the machines in Austraia, the climate, the formation of surface, and the seasoning of the berry, you will have a v ϵ ry clear idea of what we re ire here
It you can inform me through your valuable paper or therwise, of any similar machine already invented, or pre ent the idea to your invertors for consideration, you would coufer upon us here a favor and onen a market for your man-

Thus. Thomas.

urers
 Rosario, Argentine Republic,

Scuth America.

Boller Foaming.

Megsrs. Editors:-Please find inclosed our subscription or renewal. We find your paper of invaluable service, and do not think wo can toc highly appreciate its known merits, containing, as it does, many valuable suggestions of no small mportance to our business. We beg to lay before you one of ur troubles, in the hope and belief you may aid us.
We have two boilers hotizontally set, having each two fifteen-inch flues and connected by a steam cylinder or cross pipe about fifteen feet from the front of the boiler. From the center of this, or from a point over the space between the boilers, rises a pipe with a safety valve attached and a branch pipe leading steam to an engine cylinder twelve by twentyour inches making eighty revolutions, placed eighty feet from the boiler, and having a very regular motion.
From the end of the cross pipe over the boilers leads a steam pipe of the same diameter as the other-two and a half nches, to a steam cylinder of the same dimensions, twelve by wenty-four inches--placed ninety feet from the boiler, and making one hundred and fifty revolutions per minnte. The steam or leading pipe in both cases being boxed and packed with sawdust to prevent radiation of the heat and condensa tion of the steam.
These are the conditions; now for the facts. The first engine works water occasionally, three or four times a day but stopping the engine will stop this trouble for some time but the other-that at ninety feet distance-works wate from the boilcrs in such quantities as to make the engine almost useless and this whether the water is high or low in the boilers. Water comes out freely from the exhanst pipe even when the lower gage barely shows onater in the boiler, and water blows out also from the safety valve in large quantitios even when the upper gage cocks are perfectly dry. We have always used water from one source, an open well,
the water of which is also nsed for drinking purposes; it ppears to be clear spring water.
[From the statements given above we should judge t] at the water was changeable, as the overflow is intermittent. Anther point for consideration is that the steam is talsen off from the boiler at about over the first bridge wall, the loot est point, or where stram is made most rapidly; hence the water is carried up with the steam mechanically. If the ross connection or steam drum was placed immediately over the front end of the boiler or some eight feet further back than its present position, we think the condition of the steam would le improved and no water would be carried off with it. A float of wood or metal suspended in the bniler would probably be effectual in preventing foaming. It should be some two inches less in diameter than the diameter of the boiler at the water line. It should be secured by wires directly within the connections, the wires being of sufficient length to allow it, to tloat on the surface of the water on the line of the lower gage cock.-Eds.

How to get the Right Shape

Messns. Editors :-Many years ago I used to run a cast ron plow that "wouldn't scour" throngh the mucky soil of
 for cleaning aff at the end of each furcors, and I found the $\mathrm{m} \cdot$ ldboard encurnbered with a coating of dirt varyingr in thickness, but assuming curvilnear concave and conver lines tbat were always the same in the same soil. The thought occurred to me, that if the plow had been shaped like this clod of dirt upon it, it would have scoured, and saved me the trouble of carrying the "spatula"
Let the plow maker make any kind of rough plow ; take it o the kind of soil alapted to his market, and muna furrow; then mold his patterns from this, with tle dirt enand I think he will "get a fit"
C. B.

Lyons, Iowa.
Trenton, N. J., Box 136, July 90, 1869.
Messas. Editors :-I am a youns. unmaried man, active, nergetic, used to business, with good refiererces, etc., and a cash capital of about $\$ 10,000$.
I would be glad of an opportunity to purchase whole or part interest in a really good thing. If, therefore, you ever give me a list of your patents, and such information as I may ask for, I shall be obliged to yon, and shall be ready to make a fair offer, if anything suits. Yours, etc.,

Wm. H. IItinet:
[The proprietors of this paper don't engage in the sale of patents, therefore the above writer cannot be accoumodated at this office. We presume, homever, that some one of our 35,000 subscrihers has a patent he is willing to part wit' for ten thnusand dollars.--Eds.

How to Engineer a Claim througha Conaress.

 The Washington correspnudent of the Cincinnati Times says "A nother widow lady has been pressing lee claims before Congross, and has also been successful. Her name is Martha M. Jones. and the is the administratrix of Samuel J. J.ines her husband, who obtained a patent some years agn tor at improvement in zinc paint. which pateni his widow desires to have extended. She is possossed of intomitable persever ance, is grond-lookingr, intelligent, and highly educated. She stated her own case to the House Committee on Patonis, and the bill she was interested in paseed thia House and went to the Senate. She knew if it was not: :Hmeded to guickly, it would goover to the next socui in and perhaps might rot be actel upon for a year or two. Consequently, on Wednestay afternoon, she took a position in the marble room, and send ing her card to various Senators. succeeded in gaining, a: interview with each one, for as one woula come out to con verse with her she would request him to send out another, and in this way she stated her case to all personally. She was a lady of winning ways, and worked upon the suscentibilities of the grave and dignified Senators till she succeeterl in gainiog all in her favor except Senator Willey of \mathbf{W} rst Virpinia, who stoutly opposed the hill. He was alone ic lis glory, however, for when the voite came to he taken he was the only one opposed, while all the rest were in favor of the bill, which of course passed, and the lady went on her way rejoicing. In the course of the debate Senator Willey 'twitted' his fellow Senatora for bring captivated with the intelligence and vivasity of the lady who had so eloguently pleaded her owv case, which little piece of sarcasm caused quite a laugh amones the 'the grave and dignified' legisla tors, all of whom 'ackunwledged the corn,' and Reverdy Johnson trank!y admittrd that he felt a great almiration for the lady. The most amusing nari; of the deloate was Sunator Willey's effort to prove inconsistency umon the laty in her statements before the Patent Conmittee, of which Willey is a member. In her written statcument she set forth that her beloved husland, Samuel Jones, was deeply distreseril in mind one night, aixd could not sleep. About midnight he jumped up, exclaiming. 'I have it! I've got it!' meaning he had art: w! the problem of his invention. She meaning he had ars. "e! the problem of his invention. Shebegred him to come to bed, but he walked the floor all begrged him to come to bed, but he walked the floor all
night, and in the morning made a practical test of his invennight, and in the morning made a practical test of his inven-
tion, which succeeded even beyond his expectations. This mas all v.ry pretty, but Senator Willey iusisted upon it there was a material civernpancy in the statement, inasmuch as the Samuel Jon-s aformad had applied for and obtained a patent in England for the same invertion two years before this afferting incident occurred. It was no use talking, how ever, against the appeals of a good-looking and interesting widow; so the worthy senator had all the opposition to himself, and came off 'second hest.'

Telegrapii Linfs.-In the report upon the Universal Ex position of Paris, prepared by M. Neumann, in the name of the Austrian Commission, it is shown that the telegraphic lines of the whole world have a total length of 47.255 geograpical miles. There are in Europe 8, (000 telegraph offices, and 4,000 in the other continents. No less than $1,000,000$ hundred weights of metal have been used for the conducting wires, and the expenses of establishing ail the lines are estimated at nearly $\$ 42,000,000$.

Aurora Works tie Telegrapil-During the recent displays of the mageetic srorm, or Aurora Boreaiis, which was an object of worder and admiration, the telegraph operators at Valparaiso and Fort Wayne. Indiana, curious to test its effect in working telegraph lines, disconnected the hatteries from the live and put in ground wires, when they go magnetism sufficient to work the instruments quite well enabling them to communicate with each other

There will be another concession of pricps for diapatches ver the Atlantic cable after the 1st of September. The rate of Great Britain, and New England and New York

