also a defnite amount in weight of that substance; thus, 0 stands not only for oxygen, which is the most common substance in nature, but it also stands for 8 parts of oxygen ; H stands not only for hydrogen (water generator), but also for 1 part of hydrogen; and the formula HO , therefore, means 1 part of hydrogen combined with 8 parts of oxygen, the most steam, according to the amount of heat it contains
When two or more substances have the same initials, a otl.er letter of the name is added to the less frequent one ; in the same way as we indicate the different States of our American Union, Mo. for Missouri, and Miss. for Mississipyi. Osmium, one of the rare noble metals, is indicated by Os , and Mer cury, after the Latin name Hydrargyrum, by Hg. Both sym bols standing respectively for 100 parts of the substance.

The above numbers represent the quantities in weight by which the different substances will mutually combine. As, for instance, 27 parts of iron will combine with exactly 16 parts of sulphur, and the symbol Fe. S., expresses not only the compound of iron with sulphur, but also the above proportion of quantities. These numbers bre called atomic weights or chemical equivalents.
Besides these forty elementary substances, there exist some thirty others, which, being very rare, are omitted here. The whole crust of our globe is made up of different combinations of these seventy elementary substances, of which, however, only fourteen or fifteen constitute the chief mass of the min eral and of the organic world. In regard to the last, the dif ferent products of the earth's crust, vegetable and animal,
they are chiefly made up of only three or four of these substances, with the incidental combination of the remaining ten.

THE WEST SIDE ELEVATED RAILWAY

On Friday last the members of the cily press were invited to inspect the working of the new elevated railway on Greenwich street. As has been before noted in our columns, the section now completed, running between the Battery and Greenwich street, was built as an experiment, to test the practicability of the plan. On Thursday, the Legislative Commissioners and Governor Fenton examined the railway, and expressed their entire approval of its mode of working.
The road is about one half mile in length, is fourteen feet in the clear above street level, and is supported by cast-iron pillars placed from twenty to forty feet apart. An endless wire cable of three quarters inch diameter, carrying with it a series of small trucks every fifty yards, is put in motion by steam power below ground, midway between the extreme stations. Motion is imparted to the car on loringing a pro-
jecting lip below the car floor in contact with the swiftly moving trucks, but by means of a series of leafed elliptic springs, having india-rubber buffers between each, there is far less shcck at starting than is experienced in ordinary horse-cars, being hardly perceptible. The car can be stoppod at any time by releasing the truck and applying the brate The rails are of the ordinary pattern used on steam roads, and their wheels flanged so that no apprebension need be felt of the cars leaving the track. To make assurance doubly sure, each end of the car is provided with an extra axle and guide wheels with safety flangts. The speed attained on Friday was from ten to fifteen miles per hour. The projectors propose making the wire-cable larger, so that the rate can be considerably increased ; other minor alterations and improvements, which the trials have suggested, will also be introduced.
Our city sadly needs increased traveling facilities within its limits. No more surface roads can be accommodated in our streets, and such as now exist are open to serious ob jections from which both the elevated and underground railways are free. Steam power can be safely applied on these, and increased speed be attained, a great consideration for those journeying morning and night from one end of the island to the other; besides, there is little liability on either road of travel being incommoded or stopped by track obstruclions. The friends of the underground road are organized and tunneling operations will soon begin, and with this sec tion of elevated road actually in successful operation, the
prospect surely brightens for a speedy improvement in city raveling accommodations.

Experiments with Dynamite

Dynamite, the new explosive agent, manufactured by Mr Alfred Nobel, of Hamburg, consists of porous silica, saturated with nitro glycerin to the extent of about 76 per cent, the compound forming a powder of reddish yellow color. It is in fact, nitro glycerin, $\mathrm{r} \in$ ndered safe to handle, without any diminution of its prodigious explosive force. As shown in the course of recent experiments, it is as safe as gunpowder against explosion by concussion. Nor does it, under ordinary circumstances, explode on the application of fire, but burn away quite quietly, leaving behind a whitish ash. To pro duce explosion by fire, the powder must be inclused in a bore or vessel, perfectly air-tight. The portion brought in contact with the flame will simply burn, but when the gases produced by such combustion have accumulated to a certain pressure the remainder will explode. Iu actual practice the explosive pressure is supplied by a sort of percussion cap placed in contact with the powder, and connected with an ordinary gunpowder fuze. The force exerted by exploding dynamite is said to be about three times greater than that of gun cotton, or some twelve times greater than that of gun powder. Whatever the exact proportion may be, the power of the new agent is unquestionably tremendous. A couple of tablespoonfuls laid quite loose on a thick beam proved sufficient, when fired, to break the timber right across, and project one of the fragments to a considerable distance. A charge of six pounds, exploded in a horizontal bore, brought down about 4000 cubic feet of whinstone rock. Four pounds, fired in a tough rock, produced results which, it is averred, could not have been obtained by any possible charge of gunpowder In another experiment four tenths of a pound of dynamite were placed in a small bore in the center of a mass of malle able iron, measuring twelve inches by ten. The charge wa not plugged in; but even without that advantage, the explosion sufficed to shiver the iron into half a dozen pieces Still more remarkable was the force exerted in a subsequent trial. A block of wrought iron, measuring nine inches by eight, was placed vertically in the ground, and a quantity of dynamite, covered only with loose rubbish, exploded on it upper surface. The result was to convert what had been convex surface into a concave one, the mass of iron being a the same time split in several places. A five-ounce cartridge laid on the top of a huge blockof whinstone, and covered with a little clay, served, by its explosion, to shiver the block into workable pieces. In addition to the blasting experiments, rial was made of the powder as a means of signaling at sea For this purpose it seemed highly recommendable-a one-lb cartridge, suspended by a cord, producing a report like tha of a 32 -pounder cannon.

OFFICLAI RETORT OF
Patents and Chams Issued by the United States Patent Office.
for the week ending june $30,1868$.
Reported oftcially for the Sceentifc American.
patents are eranted for seventeen fears, the following

of Canada and Nova Scotia pay $\$ 500$ on application.

Pamphlets containing the Patent Lawos and rull pariticulars of the mod of applying for Letters Patent, specifying size of model required, and muc other information useful to Inventors, may be had gratis by add
MUNN \& CO.. Publshers of the Scientific American. New York.
99, 293.-Machine for Clipping Horses' Hair.-Patrick
 n the manner and for the purpose above set forth and described. 4.
79,294 .-Hor AIR FURNACE.-James Albee (assignor to Mo-

N. thd he tre pot.
 79:296.-TREADLE FOR Sewing Machines.-A. Q. Allis,

 readie. n, and rack, p, as herein describea, tor the parpose specifined.
79, 977 , SPINNING MACHINER Y., Fobert Atherton and Geo
Singleton, Paterson, N. J. Antedated June 19, 1868.

 I claim 1st, The dume-shaped frame, A, in icombination with the dome, A
and in combination with a y mowngand reano maohinery, substantiall
as shown and described and for the purposes set or

 $79,700 .-B E D$ Spriva.-Henry Beyrodt, Louisville, Ky

 99304:- Cunitiv ATor.-A. R. Bloon, A. Hathaway, and V.R.

 79,305.-Crutch.-A. E. Bowen, Baltimore, Md.

 9,306. Wr RENCH.-Wm. Bradshaw and Charies Lyon, Del-
 79,307.-NAIL ExTracror.-J. D. Breathitt, Cooper county,
 pore suecitied.
7,308 .-Door Bell.-Asa T. Brooks, New Britain, Conn. I'claim, 18 t , in oscillating arm, k^{k}, and vibratory cam, u , secured andoscil-
 9ribed.-Railroad Rail.-R. M. Brooks, Griffin, Ga.
l clam the combination of the railroad rails, A and B, provided with cor-
ruated flanes. a a and b b, and fitung together, substantially as and for the 79,310.-WASH BoILER.-Stephen Buynitzky, St. Petersburg,
 boiler, for the purposes set torth. Matthew M. Carr (assignor to him-
79,311 - W AGON BoDY.-M
 79,312. Lis STove Grate.-Gardner Chilson, Boston, Mass.

 79,313.-Apparatus and Process for Making Steel.-T.

79,314.-MAKING STEEL DIRECT FROM THE ORE.-Thomas J.

 as set forth
$79,329 .-S k a t p .-S t a f f o r d ~ A . ~ D u ~ B o i s, ~ C h i c a g o, ~ I l l . ~$ tclaim, ss, , A skate made in two separate and distinct parts. one to be at
tacheal tot hel of the boot, and one to the sole thereof, substantially as
herein set forth. herein set forth.
r, and it oomthination witl) the plaies, L and F, of the skate, the flanges, M and
described.

 79,331.- Relay MAGNET.-Charles Durant (assignor to Geo.

 to

 tanalily adesirieed. E. R. Fery, New Haven, Conn.

 Ref,

 79,337.- Composition for Kalsomining Walls, etc.-N.A. I craim a kalsomine composed of the ingredients herein named, and com-
pounilea subsantially as specited. puanied subscantially as specited.
79,338 . $M_{A C H I N E}$
FOR Presing Hats.-Wm. E. George,

 as a nd for the purpose above sef forth and descrihed.
79 340.-MoDE OF REPAMING BARRELS.-Edmund W. Gill-
man, Hunter', Point, N. Y.
 ftantialy asand for the purpose set forth.
79,341.- Loncomotive STEAM ENGINE.-Anton Hacupel and

 substantially as described,
79,342.-A APPARATUS FOR Hopping Beer.-Wm. S. Haight,
Waterford, N Y.

 79, 844 .-Cultivator.-Major E. Hanover and David D.

 with the frame, C, and hounds, D, substantially as herein shown and de
scribe and or the purpose set forth.
3d. The combination and arrantement of the hounds, D, frame, C. lever

79,345.-PAPER SHEARS.-Alfred Hathaway, Charlestown,

 poie set rherth.
thth Thation of the lever, D. and denticulated shearing blade, E,
substantially as and for the parpose'set forth. 79,346.-HAMMER.- Peter C. Havely and Wm. W. Coggs-
hall,
Renselaervile. N. Y.
 ated harate, A, and removabue serewdiver,D, all constructed and arrang
tooperate in the manner as brenen sef forth.
79,347.- LAsP Hook. Daniel Hayes, Cambridge, Mass. I claim the application io iron hooks of a claspor bar, attached to said
hock as aforesaik, and appr ing at tacheat to the outside of oforesaid boor, in
the manner above set forth
79,348.-Combined Stovepipe, Oven, and Water Heater.

 or his purbesespeciaci Ie Crea Frezze.-Clarles Higley,

 79,306.-Cimenting and Boring Device.-John B. Jordan

 99,359.-Macmine for Dressing Milistones.-Azeel Lane,
行,

 79,375.-STIEAM Engine Cut-ofr.-Jas. McPherson, Brook-

 $70,766 .-T$ TIN SMITTHS STSAE.
 79.

 $79,399$. Car Brake.-David Myers Chicago, 111 .

 Tol

 79,398. Hard
 79,399. -- CCAFFPLD AND LADDER.-Robert Rowan, Parnas-

 79,403- Conpen

 $7,1045 .-$ Balancing Polishing Wiebls.-A.W. Stephenson,
 ${ }^{\text {ain }}$
 79,407 .-Bung for Cask.-A. A. Stimson, Boston, Mass,

 $79.409 .-\mathrm{CH}$ orr S . S . s . Stokes, Westboro Ohio.

 79.40.- Bracket for Shingle Roof--Peter B. Turner,

 parposes set torth.
W17.-MACHINe for Making Horseshoe Nails.-G. D.

Intirn

 79, San Franimiso, Cal.

 Thatice mimanafacureil

 9, Keene Nom inilind Mop AND Wrinerr.-John A. Wright,

 79,431. - Liow Water Alarm for Boilers.-Jearum At-

 30, The tubular piston rod, T; with the cock, U, substantially as set forth
79,432.-FLUID For ExCITING GALVANIC CEAINB.--Frands
 79,433.-COTTON PLANTER.-E. L. Barnett, El Dorado, Ark.
 79,434.-MaCHiNe For Forming Rings on Carboys and
 or any other s.
oa, The bettes.
and

 ord or tape ot curtains. substantially as set forth. H . Bechtel, Philadel-

 3d,Incombination with the tubular valve, D, the spindle, G, rod, I, and the
arrm.
79,43. and Bent, Portchester, N. Y. For the edges of feeding troughs or mangers,
I claim the metallic rol
ormed substantiall as specifed, tor preventing horses biting or cribbing 79,438.-Machine for Forming Bread Pans.--M. L. Best

 79,447 .-Tvoring Device for Sewivg Machine.-William H. Cole, Quincy, Mich.

 lents ag and forthe purposes herein specifed. Vind Ventilating Appa-

 79,454.- BeE HVVE.- William J. Elvin, North Madison, Ind.

 described.
d9,457.-CHIMNEY Cowl.-Austin E. Clement, Wapakonetta,
Ohio,

 ${ }_{79}^{\text {parpose }}$, stated. Row Lock. - Charles L. Dayton, North Buff alo N. Y.

 69.433.-THREE Horse Cllevis.-Jos. Fowler, Allegan, Mich

 degcribed. Manufature of Sugar.-Horace P. Gale, Wash-
 aampers and stop cockss, to produce the adyantages hereinset forth.
99,465 .-MEAT CHOPRER.- C . L. Gilpatric, Boston, Mass.
 ${ }_{79}^{\text {torth }}$, $46 .-$ Door KEY.- Francis Green, Troy, Pa.
 79,467. - GRAIN THRESER AND SEPARATOR.-George W.

 9,469.-Coffee Roaster.-Theodore Heerman's, Pleasant

 g9,471.-BEE HIVE.- SIS. S. S. Hooton, New Carlisle, Ind.

 79, STR - - COMPDOND

 79,475.-BALANCING POLISHING WHEELS.-Horace K. Jones,

 Difor the purposespecitied. - 1 .

 79,477.-WAshing Machine-G. H. Kidney, Cleveland,

 ,

 79,480 .-Indicator for Strebt Railway Car.-James

 peliier, Mest, The rollers or wheels, c, supporting the head block, and
roclund

 79,488 . P Low. - Hammond Marshall, Atlanta, assignor to

 79,M87.-MEDICINE DROPPER.-Patrick McElroy, Cambridge, Mass.
Masm abe for dropling medicine, or other liguld, constructed substan
tiall

 2djuate upo the lower section, as set forth. - Elisha Metz, Rochester,

 marposes set fortr.
$79,490-$ SHe
,
 ${ }^{2}$, The combination of the threading quide en enstructed substantially as

 70,493.-REVOLVING HOSE NOZZLE.-Hiram B. Morrison, Le

 79,494--CARIIAGE SHACLLE.-F. B. Morse, New Haven,

 79,495. - CABPAAEE WHEEL.-James Nevison and Thomas

 99,499.-Pukifyinia Wood Spirits.-Julius Pollock,Morrisa-

I Claim, 11tot A verilically adjustable separ ating rod or cut off, vibrating in

 79,501.-L L BBRICATToR. James Richey, Cincinnati, Ohio. An-

gidefors. Givide For Screws. - Norman Smith, Hart ord,

 79.5i3. - Straw Cotrter.-D. Sturgis, Byron, assignor to

 79,518.-Harvestrer-C. R. Tabor and J. O.Tabor, Salem,

 Rocrbed and remereanted.
 \%,
 79,524.-CLoothes Dryer.-J. R. Watkins, Maine Prairie,

 den Coni.

 R9,5ib-LAMP SiaxE-Gustav Wedekind, Philadelphia, Pa

隹

 zation

 79,533.-SDOER AND FELLY Convecrion -Geo. Allen, Win-

79,534.-Babs Jcmper and CradLe.-George H. Mellen,

REISSUES.

66,935.--Skate Fastener.--Dated July 23, 1867; reissue

 55,2017.-Ciar Mar Macine.-Dated May 29,186 ; reissue

 15,309.- WATER WHEL W. - Dated July 8, 1856 ; reissue 3,015 .

 ,

$\overline{\text { DESIGNS. }}$

3,072.-Soda Water Fountain.-Chas. W. Anderson, Cin, ofinnati, Ohilo. New Pat.-Samuel Crump (assignor to E. C. Hazard), 3,074.-SHow Cow. Case Frame.-F. A. Howell, New York city. 3,055- Soreen. - Calxin.L. Hubbard, New Haven, Conn., , assignor to "New Haven seam Heaning company", 3,077.-Botrle.--A. Legrand Aine, Fecamp, France.
, 1 . ,078.-BADGE.-Edward Moore, Portland, Me.
3. Cook's Sto
3,080-D Doors of a Coor's Stove.--Chas. J. Woolson, Cleveland, Ono.
3,081 New Tork GuN.--Spencer H. Brown and Chas. H. Willets, 3,082.-Scrow yo be Applied to Envelopes.--Maro S. 3, ©883. \quad--TRADE MARE.

3,084.-Handle of Spoon or Fore.--Augustus Conradt,

EXTENSION NOTICES.

Jobn J. Weeks, of Oyster Bay, N. Y., having petitioned for the extension of a patent granted to him the 26 th day of September. 1854. Which patent was arrendered end application made for reissue in four divisions, tor anim-
provementin harvesters of grain and grass, for seven years from the expira. ion of said patent, which takes place on tbe 26th day of September, 1868, it is ordered that the said petition be heard at the Patent Ofice on Monday, the th day of September next.
Joel F. Keeler, of Pittsbarg, Pa., baving petitioned for the extonsion of a patent granted to him the 26th day of September, 1854, for an improvement
in platform scales, for seven years from the expiration of said patent, which platform scales, for seven years from the expiration of said patent, which
takes place on the 26 th day of September, 1868, it is ordered that tbe said pe. Intion be heard at the Patent Offceon Monday, the ith day of September

Inventions Patented in England by Americans. Compiled from the "J ournal of the Commissioners ot Patenta." PROVIBIONAL PROTECTION FOR SIX ROMTES
1,250--Hzatidg and Vfentilating apparatus.-Jobn Johnson: Saco, Me 1,728.-REmoving Ink and Colors frem Papir, eto.-Josedh A. Veazie,
Boston, Mass. May 26,1868 . 1,732.- Rotary, Steam, and oterer Engines.-J. M. Boorman, Scarbor
 1,736.-Brerch-LIoading Fire-arms and Cartridges.-B. Burton, Brook
yii, n. Y. May 26,1868 .
 1,760.-Apparatub for Hopping Berr.-Wm. S. Haight, Waterford, N. Y.
Moy 28 , 1868 . 1,853 -Projectilms For Rifled cannon or ordn ANOE.-E. A. Dana
Brookline, Mass. June 5, 1863 .

MANOFACTORING, MINING, AND RAILROAD ITEMS.

The largest gold brick ever seen in Montana was lately on exhibition in a Tbe Superintendent of the Pennsylvania railway, investigating the relative onst of making high and moderate grades, has shown twat if two roads. mile, and the other level, and the demand for transportation on each mounts to $2,000,000$ of tons per annum, the difference in favor of the level oad is $\$ 600,000$, or the interest on $\$ 10,000,000$.
At the steel works of John Brown \& Co., at Sheffeld, Eng., is a machine forcutting iron rails cold. A circular saw, sixteen inches in diameter and nd actually does the work of cutting six steel ralls every hour. A feature mirable for the order and cleaniliness of tbe same mill, is a cemetery for the rolls not in use, where they are all bariedin special tombs provided for moved by the bydraulic cranes.
Protessor Hitchcock, of a mherst College, in a recent public lecture, said here was enough copper ore in Gardner's Mountain, New Hampshire, to sapply all the Onited States for two handred years, the metalliferous vein The mineral wealth of Algiers is ron mine Makta-el-Hadeel, near Bône, the mineral in some places crops an above the surface of the greand, and is worked in immense, crater-1like cut. ngs to a depth of one handred feet. About 200,000 tans of ore. yield.
The most expensive railway line in England, and probably the costliest ver constructed, is that of the London and Southeastern companv's, from haring Cross to se venoaks. 4 pon informed by an engineer in London that the Charing Crossconnectioni:a the oity, in length aboat two and a half miles, cost $\$ 5,000$ per yard forward, in cluding stations and two bridges across the Thames.
The large alum works in the province of Brandenbarg, Prusia, bas heen orchased by two enterprising New Englanders engaged in business in Ham.

Recent investigation has proved the fact that the lsland of Newfoundlani oossesses mineral treasures in large variety and abundance. Since the dis. rom St. Jobns across the project hasbeen revived of building araiway projectors of the road-among whom is our energetic countryman, Cyrus w. Held-have secared a tract of land twenty miles in width, and extending
over the whole length of the contemplated route, the land being wonderf ully icb in copper ore of the very best quality. The railroad will open up the enire inland country.and render it accessible for mining operations.
At a recent conversazione of the London Institute of Civil Engineers, a cu
ous process for manufactuing steel by friction was explained and com mented apon. By the aid of machinery pig iron is ground to powder by a rapidly moving catter. The great amount of friction generated produces a heat so intense that the iron is set on dre, and arter scinnliating fals down as resdish-brown dust, the combustion having caused the ridaance of be super-
fuous carbon. The dust is collected, put into a cracible, melted, and when cooled is found to formingots ot steel of superior quality.

In boring a well to obtain water in the town of Dax, Departmentor Landes By the a bed of rock salt was dscovered at the depth of one hundred feet by the ase of water, injected through a pipe, the perforation was continued containing nearly ninety-eight per cent of pure salt. A company has been formed to work these remarkable deposits.

NEW PUBLICATIONS.

Engraved Portrait of General Grant
Many of our readers are doabtless familiarwith Marshall's celebrated en qualsed praise of critics both in Earope and ourown country. The Bame artist hasproduced, from his own oll painting, a very flne engraving of Gcn,
Grant, wbich has received the indorsement of his family. As a superb work of artitequalsthat of Lincoln, and is wortby of the highest commendation It is published by Ticknor \& Filds, No. 63 Bleeckerstreet, New York, and is sold by subscription only. We are asked to state that agents are wanted

The Mechanic's Tool Book. By W. B. Harrison. D. Van Nostrand, 192 Broadway, New York city.
The author and compler of this manual very justly says that "no two me.
chanics work alike," and it needs bat little observation to verify its trubh. In many shops, particalarly the jobbing machine shop, a readiness to adapt with celerity the tools or appliances on hand, or to contrive plans for an exeasily found. To enable the apprentice to learn and thejourneyman acocom mand the use of such appliances is tbe intention of thisvolnme. As a prac,
tical mechanic we tbink the writer has succeeded in imparting information valuable because given bya practical man, and useful becanse well arranged valuable because given b
and prot usely illustrated.

