also a defnite amount in weight of that substance; thus, 0 stands not only for oxygen, which is the most common substance in nature, but it also stands for 8 parts of oxygen ; H stands not only for hydrogen (water generator), but also for 1 part of hydrogen; and the formula HO , therefore, means 1 part of hydrogen combined with 8 parts of oxygen, the most steam, according to the amount of heat it contains
When two or more substances have the same initials, an otl.er letter of thename is added to the less frequent one; in the same way as we indicate the different States of our American Union, Mo. for Missouri, and Miss. for Mississipyi. Osmium, one of the rare noble metals, is indicated by Os , and Mer cury, after the Latin name Hydrargyrum, by Hg. Both sym bols standing respectively for 100 parts of the substance.
sg. stands for Argentnm (silver). 108 parts.

The above numbers represent the quantities in weight by which the different substances will mutually combine. As, for instance, 27 parts of iron will combine with exactly 16 parts of sulphur, and the symbol Fe. S., expresses not only the compound of iron with sulphur, but also the above proportion of quantities. These numbers bre called atomic weights or chemical equivalents.
Besides these forty elementary substances, there exist some thirty others, which, being very rare, are omitted here. The whole crust of our globe is made up of different combinations of these seventy elementary substances, of which, however, only fourteen or fifteen constitute the chief mass of the min eral and of the organic world. In regard to the last, the different products of the earth's crust, vegetable and animal, they are chiefly made up of only three or four of these substances, with the incidental combination of the remaining ten.

THE WEST SIDE ELEVATED RAILWAY

On Friday last the members of the cily press were invited to inspect the working of the new elevated railway on Greenwich street. As has been before noted in our columns, the section now completed, running between the Battery and Greenwich street, was built as an experiment, to test the practicability of the plan. On Thursday, the Legislative Commissioners and Governor Fenton examined the railway, and expressed their entire approval of its mode of working.
The road is about one half mile in length, is fourteen feet in the clear above street level, and is supported by cast-iron pillars placed from twenty to forty feet apart. An endless wire cable of three quarters inch diameter, carrying with it a series of small trucks every fifty yards, is put in motion by steam power below ground, midway between the extreme stations. Motion is imparted to the car on loringing a pro-
jecting lip below the car floor in contact with the swiftly moving trucks, but by means of a series of leafed elliptic springs, having india-rubber buffers between each, there is far less shcck at starting than is experienced in ordinary horse-cars, being hardly perceptible. The car can be stoppod at any time by releasing the truck and applying the brate The rails are of the ordinary pattern used on steam roads, and their wheels flanged so that no apprebension need be felt of the cars leaving the track. To make assurance doubly sure, each end of the car is provided with an extra axle and guide wheels with safety flanges. The speed attained on Friday was from ten to fifteen miles per hour. The projectors propose making the wire-cable larger, so that the rate can be considerably increased; other minor alterations and improvements, which the trials have suggested, will also be introduced.
Our city sadly needs increased traveling facilities within its limits. No more surface roads can be accommodated in our streets, and such as now exist are open to serious ob jections from which both the elevated and underground railways are free. Steam power can be safely applied on these and increased speed be attained, a great consideration for those journeying morning and night from one end of the island to the other; besides, there is little liability on either road of travel being incommoded or stopped by track obstructions. The friends of the underground road are organized and tunneling operations will soon begin, and with this section of elevated road actually in successful operation, the
prospect surely brightens for a speedy improvement in city raveling accommodations.

Experiments with Dynamite

Dynamite, the new explosive agent, manufactured by Mr Alfred Nobel, of Hamburg, consists of porous silica, saturated with nitro glycerin to the extent of about 76 per cent, the ompound forming a powder of reddish yellow color. It is, in fact, nitro glycerin, $\mathrm{r} \in$ ndered safe to handle, without an iminution of its prodigious explosive force. As shown in the course of recent experiments, it is as safe as gunpowder against explosion by concussion. Nor does it, under ordinary circumstances, explode on the application of fire, but burn away quite quietly, leaving behind a whitish ash. To pro duce explosion by fire, the powder must be inclosed in a bore or vessel, perfectly air-tight. The portion brought in contact with the flame will simply burn, but when the gases produced by such combustion have accumulated to a certain pressure the remainder will explode. Iu actual practice the explosive pressure is supplied by a sort of percussion cap placed in contact with the powder, and connected with an ordinary gunpowder fuze. The force exerted by exploding dynamite is said to be about three times greater than that of gun cotton, or some twelve times greater than that of gun powder. Whatever the exact proportion may be, the power of the new agent is unquestionably tremendous. A couple of tablespoonfuls laid quite loose on a thick beam proved sufficient, when fired, to break the timber right across, and project one of the fragments to a considerable distance. A charge of six pounds, exploded in a horizontal bore, brought down about 4000 cubic feet of whinstone rock. Four pounds, fired in a tough rock, produced results which, it is averred, could not have been obtained by any possible charge of gunpowder In another experiment four tenths of a pound of dynamite were placed in a small bore in the center of a mass of malle able iron, measuring twelve inches by ten. The charge wa not plugged in; but even without that advantage, the ex plosion sufficed to shiver the iron into half a dozen pieces. Still more remarkable was the force exerted in a subsequen trial. A block of wrought iron, measuring nine inches by eight, was placed vertically in the ground, and a quantity of dynamite, covered only with loose rubbish, exploded on it upper surface. The result was to convert what had been convex surface into a concave one, the mass of iron being at the same time split in several places. A five-ounce cartridge laid on the top of a huge blockof whinstone, and covered with a little clay, served, by its explosion, to shiver the block into workable pieces. In addition to the blasting experiments, rial was made of the powder as a means of signaling at sea For this purpose it seemed highly recommendable-a one-lb cartridge, suspended by a cord, producing a report like tha of a 32 -pounder cannon.

OFFICLAI RETORT OF
Patents and Chams Issued by the United States Patent Office.
for the week ending june 30, 1868.
Reported oftcially for the Scientifc American.
patents are eranted for seventeen years, the following on fling each Caveat.

Canada and Nova Scotia pay $\$ 500$ on application.

Panphlets containing the Patent Lavos and full particulars of the mod of applying for Letters Patent, specifying size of model required, and muc other information useful to Inventors, may be had gratis by add
MUNN \& CO.. Publshers of the Scientific American. New York.
99, 293.-Machine for Clipping Horses' Hair.-Patric
 n the manner and for the purpose above set forthe and described. d.
79,294 . Hor AIR FRNACE. James Albee (assignor to Mo-

Also, the arrangement of the evaporating pan and its throat with the fue, Wiclains, Allen's Grove, Wis.
 79:296.- Treadle for Sewing Machines.-A. Q. Allis I clatm the arrangement upon the frame, A, of the spring, F, on shatt b
the ratnet wheel, c , pawl. d, and gear wheels, e gel gie2
 79, 297. - SpINNING MACHINER Y.- Kobert Atherion and Geo
Singleton, Puterson, N. J. Antedated June 19, 1868.
 manner eescribedand for the purpoee set forth.

 sth, The guiding cone, K, substantially as and for the purposes bereinbe are shown and descrit. and of the cone and hopper, substantially as and for
9enh Tue ard 10 h, cinstructing and destering wheel, i, with a curspal opening, k. and chan-
 $12 t h$, The bevel whel, f, on the axle, x , and connected with an indepen-
eutrachet disk, f, substaitially as and for the purp oses hereinbef ore sho wn
nd described. 13th, Tre hollow pulley, H , with its bevel wheel, G, within it, in comnina-
ion with arrain sowing mactine, substantially as and for the purpose stown
ind deecribed.
 roning the grain' or plaster, substantially as and tor the purpose shownand 79,R09.-Bed Spriva.-Henry Beyrodt, Louisville, Ky
 9, Bolair.-Gilading and Ornamenting Glass Signs.-J. B.
 9.304.-CU1, LTVATOR.-A. R. Blood, A. Hathaway, and V. R. Beach, Independence. lowa.
We claim. The Ievero, J. strips, a a bar, L, and pivoter framp. I, when
Il are arrangut aud operating substantially in the manner and for the pur-
 79,305.-Crutch.-A. E. Bowen, Baltimore, Md.
Iclaim, 1st, A nadjustabie crutch, constructed in the manner and for the
 9,306 .-W RENCH.-Wm. Bradshaw and Charles Lyon, Delphi, Ind. .the opeu-backed jaw, E, in combination with the links, b, and
We claim the
hanss, cubstantially as described for the purpose sjecitied. 79,307.-Nail Exitractor.-J. D. Breathitt, Cooper county,
 79,308 .-Door Bell.-Asa T. Brooks, New Britain, Conn.

 79,309.-RAilroad Rail.-R. M. Brooks, Griffin, Ga.
I clam the combination of the raiiroad rails, A and B, provided with cor-
ugated fanges.a a and b b, and fitting together, substantially as and for the 79,310.-WASH BoILER.-Stephen Buynitzky, St. Petersburg, Inussia. loose plate. C, provided with the guides, E , or their equivalents,
substantially as describeo, to ne placed on the top of the cloctes in the wası boiler, for the purposes set torth. Matthew M. Carr (assignor to him-
 79,312.-Stove Grate.-Gardner Chilson, Boston, Mass.

 with such arm and the grite, constructed and dispused relatively to each
other, substant:ally as specifiec.
79,313.-ApParatus and Process for Making Steel.-T.

 he same, C.
13, 1 , The
orth.
$14 t$,

