mined by a specific gravity test, weighting the ice with pla tinum, and using mercurs as a means of making the test, that substance remaining fluid at low temperatures, and having no solvent power on ice. It would be easy to mate a proper allowance for the increased sipecitic gravity of the mercury as the tem.erature diminishes.

TRANSPORTATION OF CATITLE---RELD'S PATENT CATTLE

WAGONS

Some years since, while we were standing in the depot o the New York Central Railroad, at Amsterdam, awaiting the arrival of an express tran from the East, there passed the statinn two enormous trains from the West, each requiring two locomntives to draw them, and laden with live cattle for the New York market. Live cattle, did we say? We must qualify that statement, for, on either train, there were some dead,others in a dying state, while all were greatly distressed, as was evident by their violent panting and protruding tongues. Some were prostrate under the feet of the rest, powerless to rise. The causes for this state of things was obvious. The weather was intensely hot, and the cattle crowded together as close as they could possibly stand, and not having been allowed to drink since they left Buffalo, were dying of thirst. We remarked, at the time, that it sepmed an easy task to proside water for cattle thus transported, but a fellow traveler remarked that, were a proper apparatus constructed, no railroad in this country would adopt it unless compelled to do it. We, bowever, hoped, and still hope, that compelled to do it. We, bowever, hoped, and still hope, that
the greed of rallroad corporations will not prevent the univerthe greed of rallroad corporations will not prevent the univer-
sal adoption of any simple method for securing such a bumane sal adoption of any simple method for securing such a bumane
object.
Ourattention bas been called to a simple and effective mode Our attention bas been called to a simple and effective mode
of supplying cattle with water while being transporced in rail way cars, invented by Wm. Reid, of Granton Harbor, near Edinburgh, Scotland, which seems admirably adapted to the purpose. The cars are provided with troughs, to which water can be readily supplied while the trains are stopped for taking in water tor the use of the engine.
There is no doubt that many cattle become diseased by confinement without water during transportatinn, and that their meat, rendered more or less unwholesome by it, is sold and eaten, to the detriment of public health. The kn ω wledge of this fact will do more toward correcting the evil than an appeal to the humanity of individuals. If railroad corporations refuse to correct it, they should be compelled to do so by legislation.

NEW MEXICO, ITS NATURAL WEALTH.

The Honorable W. F. M. Arny, ex-governor of New Mexico, has presented to the geological and mineral museum of the Unite I States Department of Agriculture, a collection of specimens of minerals, fossils, agricultural products, etc, from which an idea of the catural resources of that territory may be obtained.
Among there specimens are native copper from the Tijeris mountain, a short distance from Santa Fe ; bitumin us shale from Placer mountain ; iron ore from the San Juan country; distance from Santa Fe ; limonite from the vicinity of Placer mountain; purple copper and native copper from the Naciamento mountains ; iron pyrites, drusic, quartz, felspathic trachyte, pumice, and trachyte from the San Juan. Indian country; argentiferous galena from Stevenson's anine in Dona Anna county, native er peer from Hanover mine near Gila river; marble from nearSanta Fe ; argentiferous galena from Valencia county; dentritic manganese in felspar paste containing gold. from Placer mountain; gold bearing quaria
and native copper from the vicinity of a biqui, Rio Arriba and native copper from the vicinity of Abiqui, Rio Arriba
county; conglom rate containing gold from the Ute creek on Maxwell's ranch stated to be unsurvassed in richness, various grades of wool, corals, and so forth.
Strikng as is this exhibit of mineral wealth, there is little doubt that much remains yet to be discovered. The rapid development of these resources is however interfered with by the depredations of Indians who render mining operations, except in places near centres of white population, extremely bazardous. Governor Arny asserts his belief that the mineral wealth of the mountanns of New Mexico would pay twice our national debt, if miners could be permitted to develop it fight Indians, and that the Indians of New Mexic, can all be placed on reservations without a war, if Congress will make sulficient a popropriations to feed them, and furnish the neces sary machinery to enable them to make their own clothing and establish industrial schools, to be kept up at the expense of the Government till the Indians are made sustaining which, by faithtul agents, can be done in a few years."
With these Indians such a plan might prove successful, as they are said to be already partially civilized, but so far as our knowledge of Indian reservations extends they are gener ans are not self-sustaining and the agents are far more interested in making money for themselves, than in caring for the trusts imposed upn them. We have always held the opinion that a race who will not become civilized, and who at the same time resist the onward sweep of civilization, must not only be inevitably swept before it to extinction, but that they deserve scarcely more sympathy than the other eavage beasts of the forest whose ferocity they not enly imi cheaper-so tar as money goes-than fighting, the only ef-cheaper-so tar as noney goes-than fighting, the only ef-
fectual remedy for Indian outrages on our frontiers, is the strong hand. The only way to conquer the American savage is to punish such outrages by almost total extermination of the tribes that perpetrate them. To exhibit mercy to these butchers is to waste powder.

ON a probable connection berween the regist- ance of ships and theik mean depth of imANCE OF MERSION

By w. J. Magqtorn rantine, ce., Ll D. F.R.s.

1. It was pointed out some time ago, that when a wave in water is raised by a fl ating solid b.dy which is propelled at a speed greater than the natural speed of the wave, the
ridge of the wave assumes an cblique position, and the wave ridge of the wave assumes an cblique position, and the wave
advances nbliquely; so that while it travels at its own natuadvances nbliquely; so that while it travels at its own natu-
ral speed in a direction perpendicular to its ridge line, it at the same time accompanies the motion of the solid body at greater speed. The angle of obliquity of the advance of the wave is such that its cosme is the ratio of the natural speed of the wave to the speed of the solid body. It was at the same time pointed out that under those circumstances there is an additional breadth of wave raised in each second, ex pressed by the product of the speed of the solid body into the sine of the obliquity; or, in other words, by the third side of a right-angled triangle, of which the speed of the solid body is the hypothenuse, and the natural speed of the wav the base ; that in raising that addational breadth of wave per second, energy is expended ; and thus that a rapidly increasing additional term is introduced into the resistance to the motion of the solid body, so so, n as its speed exceeds the natural speed of the waves which it raises.
2. The waves taken into account in Mr. Scott Russell's theory of the resistance of ships, are waves whose speed de pends on their length alone; and that theory accounts for a rapid increase in the resistance of a ship, when her speed ex ceeds the natural speed of certain waves of lengths depending on her length.
3. In a paper read to the Royal Society in May, 1868, it was hown that for all waves whatsopver, there io a relation be twepn the natural speed and the virtual depth of uniform disturbance, that is to say, the surface particles would have to extend in order to make a total volume ol disturbance of the water equal to the actual volume of disturbance. That relation is, that the speed of advance of the wave is that due to fall of half the virtual depth. In a paper read to the Institution of Naval Architects in 1868, it was pointed out that every ship is probably accompanied by waves, whose natural speed depends on the virtual depth to which she disurbs the water, and that, consequently, when the speed of the ship exceeds that natural spued, there is probsbly an additiona term in the resistance dependi g on such excess.
4. The object of the present paper is to call the attention of the British Association, and especially of the committee on Sreamship Performance, to the prubable existrnce of this bitherto neglected element in the resistance of ships; and to suggest that suitable observations and calculations should be mad↔ in order to discover its am unt and its laws. Among observations which w uld be serviceable for that purpose may lee mentioned the measurement of the angles of diverg ence of the wave ridges raised by various vessels at given sueeds, and the determination of the figures of those riliges which are well known to be curved; and amng results of calculation the mean depth of immersion, as found by divid ing the volume of displacement by the area of the plane o flotation; and that not only for the whole ship, but for he ore and after bodi-s separately, for it is probable that the irtual depth of uoiform distutbance, if not equal to the mean depth of immersion, is connected with it by some definite relation.
Results of Observations.-In an appendix are given the re alts of the only three observations which I have hithert found it practicable t, make, of the speed of advance of the obliquely diverging waves raised by ships. The waves in each case were those which follo o the stern of the vessel he vessels were all paddle steamers, but care was taken to bserve the positions of the wave ridges where they were be yond the wufluence of the paddle race. The virtual depth corresponding to the sweed of advance of those waves is cal culated in each case, and it is found to agree very nearly with the mean depth of immersion. It is to be observed, however,
that the mean depth of immersion of one vessel only. viz., the that the mean depth of immersion of one vessel only. viz, the
Iona, has been measured from her plans. For each of the Iona, has been measured from her plans. For each of the
ther vessels, a probable value of the mean depth of immer sion has been obtained, by assuming that it bears the same proportion nearly to the total draft of water in thetu as the in the Iona That assumption cannot be very far from the trutb, for the three vessels belong to the same class of torms, being of shallow draft, and very flat bottomed amidships, but hav ing very fine sharp ends. Few as those observations are hey seem sufficient to prove the existence of waves whose speed of advance depends on the depth to which the vesse disturbs the water. The connection between those waves and the resistance remains as a subject for future investigaGlasgow University, 15th August, 1868.
appendix.
5. Steam Vessel " Iona."-Speed of vessel at time of obser vation. $15 \mathrm{knots}=25.35 \mathrm{ft}$. per sec.; angle made by ridges of stern waves with course of vessei, $22 \frac{1}{8}$; sine of that angle, 0.383 ; product, being velocity of advance of stern waves,
0.71 ft . per sec: virtual depth corresp.nding to that velocity .71 tt . per sec, ; virtual depth corresp.nding to that velocity measured on her plans, 318 ft . N B -The draft of wate was 5 ft , so the mean depth of immersion was 0.64 of the dratt, D tarly.
6. Granton and Burntisland Ferry Steamer.-Speed of ves sel at ume of olservation, $10 \mathrm{kn} \mathrm{\prime ts}=16.9 \mathrm{ft}$. per sec; angle made by ridges of stern waves with course of vessel, 45°; ;ne of that angle; 0.7071 ; product, being velocity of advance of the stern waves, 1195 ft . per sec.; virtual depth corresponding - that velocity; $11 \cdot 05^{2} \div 822 \sim 444 \mathrm{ft}$; draft of water of the
vessel, 6.67 ft ; probable mean depth of immersion on the
supposition that it is 0.64 of the draft, 4.3 ft . 3 Steam Vessel "Chancellor."-Speed of vessel at time of observation, 1264 knots $=2136 \mathrm{ft}$. per sec.; angle made by ridges of stern waves with course of vessel, 22°; sine of that angle, 0.375 ; product, being velocity of advance of the stern waves, 801 ft . per sec.; virtual depth corresponding to that vel city, $8.01^{2} \div 322=2 \mathrm{ft}$.; draft of water of the versel, 3.5 ft.; probable mean depth of immersion, on the supposition that it is 0.64 of the draft, 224 ft .
table of virtual deptis corresponding to different

CHEMICAL NOMENCLACURE.

[Continued from page 50.]
The combination of the different elementary substances takes place by a certain attractive power of their smaller par ticles (atoms or molecules), which is called chemical affinity. As may be expected a priori, it differs greatly in different substances, and even differs in the same two substances when the circumstances are changed. The principal moditying circumstance is heat.
Carbon and oxygen, at the common temperature, have no ffinity, that is to say, they will not combine. A piece of caron may lie for a century in oxygen gas without combination aking place, but when sufficient heat is applied the two sub tances combine with great energy. However, the amount of heat necessary to. cause this combination differs according to the form of carbon used. Thus, lamp-black requires much ess heat than charcoal, more heat will be required to ignite coke, more still for anthracite chal, yet more for dia mond, and, as regards graphite, we can scarcely produce heat enough to ignite it. The comparative incombustible nature of the last named substance, renders it suitable for crucibles for melting rass and other metals or alloys. All these substances are only carbon in different states, callel allotropic conditions. At the same time that the combustinn commences to take place, it develops new heat in abundarice. hearing up the adacent parts to the temperature required for combination in heir turn. and so kee ing up the heat to cause the final combustion of any amount of carbin and osygon present. In the place of carbon, sulphur or any other so-called combustible ubstance may be suustituted.
Combustion, therefore, is nothing but a chemical combination of a so-called combustible substance (carbon, sulphur, hydrogen, ph sphorus, etc.), usually with the oxygen of the atmosphere ; all that is required to start it, is a sufficient rise of tempracure, and any large conflagration gives a striking llustration of the considerable development of heat, which is the resuit.
By the combustion of carbon, every six parts thereof will unite with sixteen of oxygen, when plenty of oxygen is present; by a limited supply of this last substance, it will only combine with eight rarts; and, as the symbol C stands or six parts of carbon and 0 for eight of oxygen, the product f this combustion is expressed in the first case by CO_{2}, in the ast by CO; and as the first possesses acid properties it is alled carbonic acid, and the last possessing no such properties is called carbonic oxide; the la at being the generic name for all combinations with oxygen which possess no acid proprties.
The combustion of sulphur has for result, the combination of sixteen parts of sulphur with sixteen of oxygen; ormula, SO_{2}, named sulphurous acid.
Selenium and tellurium combine after the same law and with similar results as sulobur. except that the respective numbers of combination are 40 and 64 , respectively with sixeen of oxygen ; formulæ, Se_{2} and $\mathrm{Te} \mathrm{O}_{2}$.
The combustion of hydrogen has for result a compound of one part of hydrogen (always by weight) with eight of oxygen, forming water ; formula, H 0 .
The combustion of phospnorus forms phosphoric acid; rormula, $\mathrm{P} \mathrm{O}_{5}$, which means thirty one parts of phosphorus and forty of oxygen.
The combustion of potassium forms potassa; formula, K 0 , which means thirty-nine parts of the metal and eight of oxygen.

Magnesium burning forms magnesia; formula, Mn 0 , or hirteen parts of magnesium and eight of oxygen.
Zinc burning forms oxide of zinc or zinc white; Zn O con taining tairty-two parts of zinc and eight of oxygen.
O^{+}all the substances mentioned abive, there is none that has more affinity for oxygen than red hot carbon; for this reason carbon is used as the great reducing agent, and almost any oxidized substance mixed with carzon and heated, will give its oxygen to the carbon, and carbonicacid will be formed. On this principle deprads the reduction of iron from its ores, the manufacture of potassiam, sodium, etc.; and it shows that also in chemistry the law of the strongest prevails, just as in all nature, not excenting the human race. In savage nations, brute strength only prevails, but among civilized people, the strength of mind and knowledge subdues the mere material brute forces, and illustrates the superiority of mind over matter.

The Great Chaudiere Dam on the Ottawa.
The Ottawa Timesgives an account of the great Chaudiere dam on the Uttawa river, which was forma!ly opened Oct. 16th. It states that it has been ascertained that for years past the water in the Ottawa during the autumn months has been gradually decreasing in volume, and never before has it been so low as this season. The cause will doubtless remain a mystery until the end of time. In fact so low had the water fallen, that for a time apprehensions were entertained thet the great mills and factories at this place would be compelled to shut down in consequence. This would have been alm s s a calamity, had the necessity for it arisen, as many thousands derive their livelihood from.their constant operation. However, human ingenuity came to the rescue, and provided a certain and lasting remedy.
An arrangement had been effected sometime since between the mill-owners here and the Government, that the former might construct a dam in the bed of the river, just above the Chaudiere Falls, for the purpose of raisingthe water in the rear, with a view to augmenting the supply in the ponds and "flooms" connected with the mills. Then arose the difficulty
about drowning the adjacent country on both sides. This was provided against by the removal of an island, in the immediate vicinity of the dam, to low water level, so as to adwit of its escape when high. This part of the work has been so managed, that the obstruction caused by the dam in low water will be aqualed by i^{t} s facility for escaping during high water-there b+ing an exact quantity of high water struction removed to equal that put in to affect the low
It was no ordinary undertaking to control the impetuous waters of the great Otta wa, and subject their powers to the manipulation of man-to obey his will, and to be obedient to
his wishes and desires; but with all old Otta wa's greatness it his wishes and desires; but with all old Ottawa's g reatness it
has been brought down to usefulness, and comvelled to exercise a certain amount of industry betore taking its departure for its final home in the bosom of the Atlantic.
'The entire length of the dam is nearly 400 feet, built of fromed beams strongly bolted, and securely fastened to the solid rock in the bed of the river. Its width at the base is 74 fret and 62 feet at the top, with a secure bed of stone presented to the current. The island which was removed was about two acres in extent, and stood about 5 feet 6 inches above the water level. This furnished $9,0.0$ yards of stone which were used in filling in the dam.

The New Metals.

The Boston Journal of Chemistry says:-We presume but comparatively few of our readers have had opportunities of examining the new metals brought to light by spectrum an alysis. The two mont remarkable, casium and rubidium, ar strikingly like the metal potassium ; and so greedy are they for oxygen, it is necessary to keep them constantly immersed in pure naphtha. The expense of eliminating these rare and sparsely dissemina'ed metals is so great, their cost is marvel ously high. A specimen ot rubidium in our possession cost us at the rate of more than seven thousand dollars a pound or one dollar the grain. These two new alkaline metals were discovered by Bunsen, a few years ago, while experimenting upon some mineral waters with the spectroscope. By no other method of analysis could they bave been diecovered. In examining the waters, he olverved some bright lines be had not sern in any other alka'ies which he had investigated. He felt certain that these lines indicated a new metal or metals, just as Anams and Leverrier, from the perturbations of the planet Uranus, were convinced of the existence of Neptune. The amount present in the substance examined could not exceed the one thousandth part of a grain; hence, the quantity held in the water was infinitesimal. To obtain a manageable quantity, Bunsen evaporated forty tuns of the Durkheim Spring water, and from this vast amount obtained of cæsium only 105 grains of the chloride, and of rubidium 135 grains! How few know anything of the magnitude of the labors of chemists engaged in research. Since the dis covery of the new metals, in the spring water of Durkheim. they have been found in many other springs, in mica, and other old plutonic silicates; also, in the ashes of beetroot, tobacco, coffee, and grapes. The mineral lepidolite contains considerable rubidium, and most of the specimens in the hands of chemists were obtained from that mineral. We can$\mathrm{h} \not \mathrm{nd} \mathrm{d}$ of chemists were obtained from that mineral. We can-
not predict for the new alkaline metals any very great pracnot predict for the
tical use in the arts.
The other new and interestinge metals which we find in our collection are lithium, thallium, and indium. The first of these is of white color, and fuses at 180°. It is the lightest metal known, being almost as light as cork. Before spectrum analysis was discovered, it was supposed the lithium salts were very rare ; but the wonderful spectroscope reveals their presence in almost all waters, in milk, tohacco.and even in human blood. A very strange plant is the tobacco plant. How singular, that atoms of the rarest and most remarkable of all the metals-cæsium, rubidium, and lithium-should be found in this pungent weed! When volatile lithium compounds are heated in flame, they impart to it a most magnificent crimson tinge; nothing in ordinary pyrotechny can compare with it. If one six-thousandth part of a grain of lithium be present in a body, the spectroscope shows $i^{\text {t, }}$ when it is vola tilized, or burned.

Sumac.

Considerable inquiry having been recently made for information upon the suriject 0^{+}sumac, the commerce in which seems to be growing in this country, the following frow the New York Mercantile Journal will be of interest:
"The sumacs belong to the Rhus genus of the order of Ancardiacee of plants. Gray, the botanist, makes six varieties cardiacee of plants. Gray, the botanist, makes six varieties
of sumac found in America from Virginia nortlrward ; namely,
the Staghorn sumac, Smooth sumac, Dwarf sumac, Poison sumac, Poison ivy, and the Fragrant sumac. The sumacs have a resinous, milky, acrid sap, and several varieties are poisinous. Several kinds, among which are the most common sumac, contain tannin and yellow coloring matter, and are considerably used for tanning light colored leathers and in dyeing. It is also used in calico printing for producing yellow, grey, or black or brownish yellow, according to the mordant used in the operation. A number of varieties grow in different parts of Europe, which are used for the purposes above specified. The culcivation of this tree for its marketable products has largely increased in some parts of the United States during the past four or five years The parts of the tree which are gathered are the leaves, the peduncles, young branches, and panicles, of which considerable quantiies are exported."
The Richmond Enquiror says: "Large quantities are gathered in the counties of Eastern Virginia, and sent to Richmond, Alexandria and Fredericksburg for sale. It is dried and packed in bags, and sells readily for from $\$ 1.75$ to $\$ 2$ per 100 pounds. It grows spontaneously, and the crop of next year is improved by breaking off the growth of the present year."
The mordants used in dyeing with this substance are either tin, acetate of iron, or sulphate of zinc. The first gives yel low, the second grey or black, according to strength, and the third brownish yellow.

A Challenge from a Lady.

 New York, Oct. 20, 1868.
Messrs. Wheeler \& Wilson, No. 625 Br Bad way:

Gentlemen:-Referring to the challenge of Mr. Pratt, whose Wheeler \& Wilson Sewing Machine has been in use ten years without repairing, I beg to state that I have used my Wheeler \& Wilson Sewing Machine, in family sewing, fourteen years, without even the most triffling repairs, and it is now in so good condision that I would notexchange it for your latest number (now upward of 350,000). One needle erved me more than a year for fine sewing.
Can any one beat this
Mrs. Anne Warner.
Any one who can give a better report than this will be en titled to one of our new tucking gages.

Wheeler \& Wilson Manufaturing Co.
Cimlian Agricultural Exposition.-With reference to the Agricultural Exp sition to be opened at Santiago, in Chili, South America, on the 1st of April next-the particulare of which a opeared in our issue of the 22d July-we have to state that the Chilian Minister expresses the hope that manu'acturers thr ugghout the country are preparing the contributions they intend to exhibit. We learn that liberal and extensive preparations are being made by that Govern. ment for the accommodation of all.

OFFICIAL REPORT OF

Patexts and Clanms

Ussued by the United States Patent Office. FOR THE WEEK ENDING OCTOBER $27,1868$. Reported offctally ror the Sclentific American.
Patents are grante

In addition to which there are some small revenue-stamp taxes................... Reside
(T) PampAletscontaining the Patent Lavos and full particulars of the mod
af apply:ngfor Letters Patent, spec.fy.ng s:ze or modelrequ.red, and much other nformation useful to Inventors, may be had gratts by addr
$M O N N$ \& CO.. Plblishers of the Sc.entifc American. Neeo York.

83,355.-Harvester Rake - Philip Ammerman, Cynthiana,
 83,35i. - SUu AR PAN DERRICK. Joseph D. Ayers, East
Greensbor,ugh, assign n to J. O. Cutter, and William Wallace Gors,

 scribed
ali, also, the pigment made from the sulpharets of zinc and lead, as a new
ariclof manustature.
83,358. A UTOMATIC CAR Coupling.-Wilson Bragg, Con I, claim the combination of the chain, E, sliding block, C , and coapling pin
F, unbstantialy a a and for the purposes, peecifled. 83,359.-Hot AIr Register.-Thomas W. Brown, Reading,

 I Yorkcito ding Perambolator.-Andrew Christi in, New

 or the purpose set forth.
 83,367. -FROTT JAR.-EA ward M. Davis (assignor to Henry

 cription upon it, substaatially as and for the purDoses described
$83,368-$ ATTACHING STRINGS TO TAGS.-Benjamin L . Dennison, Boston, Mass.
I chim, 1st, rie conbination of the metalluc clasp, a, with the string and
abel card, substantially as and for the purp 1ses described.
 83. 393 - Combined Hinge and Fastener -Leonard Felker
 scribe. anu set furth
83, í'0.-FERD WATER HEATER FOR STEAM GENERATORS.-
R. R. Fenner (aseignor so himself and Eli Hatherstadt). Ur.ana, Cli.
 10, t forth. 83,371 .-SCREW TAP.-Walter K. Foster, Cambridgeport

 88, 374 .- V ULCANIZED INDIA-RObBER Beltivg, -Dennis C

 83.375 . -Spinning Machine.-John Goulding, Worcester

 $83,37 \mathrm{~h}$.-Bolt-heading Machine.-Robert Gracey, Pitts-

 passage of harefabefore described, as to form an en losed space for the
ng toi fo with trawn. ing tool is withdrawn.
83,378.-INDEX.-Henty H. Hall, Boston. Mass.
Iclaim the witbin-described index or rabular guide to i id I claim the witbin-described indeex or rabular zuide to i, , dexes, consisting,
ot che combnation of letters and figares, substantialiy as and for the pur-8os,379.- I I RONiNG TABLE.-L. Harrington, Saugatuck, Mich.
 purpose set forth.
$8 j, 380$. Chnck-valve for Sttamand other Enainery. -

 des,ribed and Buck LA.-Henry Herbert, Jersey City, N. J Iclam the self-fastening buckle, conisting of a frame and two sloted 83,3 32 .- Hot BLAST APPARATVs FOR PODDLING AND OTHER
 83, purpose sidecifed. Luray, ha block, A, jawa, B B, and screws. c c . When constructed ancl ar-
anged as described, ana for the purpose set forth.
 83,385.-Elevator.-Amos B. Hunt. Matteson, Mich

 83.387.-SHoclder Brace and Suspender. - Ebenezer

