mined by a specific gravity test, weigbting the ice with platinum,and using mercurg as a means of making the test, that substance remaining fluic at low temperatures, and having no solvent power on ice. It would be easy to mate a proper allowance for the increased suecitic gravity of the mercury as the tem erature diminishes.
transportation of catrle --reid's patent cattle

## WAGONS.

Some years since, while we were standing in the depot of the New York Central Railroad, at Amsterdam, awaiting the arrival of an express train from the East, there passed the statinn two enormous trains from the West, each requiring two locomotives to draw them, and laden with live cattle for the New York market. Live cattle, did we say? We must qualify that statement, for, on either train, there were some dead,others in a dying state, while all were greatly distressed, as was evident by their violent panting and protruding tongues. Some were prostrate under the feet of the rest, powtrless to rise. The causes for this state of things was obvious. The weather was intensely hot, and the cattle crowded together as close as they could possibly stand, and not having been allowed to drink since they left Buffalo,were dying of thirst. We remarked, at the time, that it sepmed an easy task to proside water for cattle thus transported, but a fellow traveler remarked that, were a proper apparatus constructed, no railroad in this country would adopt it unless compelled to do it. We, ho wever, hoped, and still hope, that compelled to do it. We, bowever, hoped, and still hope, that
the greed of rallroad corporations will not prevent the univerthe greed of rallroad corporations will not prevent the univer-
sal adoption of any simple method for securing such a bumane sal adoption of any simple method for securing such a bumane
object.
Ourattention bas been called to a simple and effective mode Ourattention bas been called to a simple and effective mode
of supplying cattle with water while being transporced in of supplying cattle with water while being transported in
railway cars, invented by Wm. Reid, of Granton Harbor, near Edinburgh, Scotland, which seems admirably ad apted to the purpose. The cars are provided with troughs, to which water can be readily supplied while the trains are stopped for taking in water tor the use of the engine.
There is no doubt that many cattle become diseased by confinement without water during transportatiיn, and that their finement without water during transportati"n, and that their
meat, rendered more or less un wholesome by it, is sold and eaten, to the detriment of public health. The knuwledge of this fact will do more toward correcting the evil than an appeal to the humanity of individuals. If railroad corporations refuse to correct it, they should be compelled to do so by legislation.

## NEW MEXICO, ITs NATURAL WEALTH.

The Honorable W. F. M. Arny, ex-govern'r of New Mexico, has presented to the geological and mineral museum of the Unite 1 States Department of Agriculture, a collection of specimens of minerals, fossils. agricultural products, etc, from which an idea of the catural resources of that territory may be obtained.
Among there specimens are native copper from the Tijeris mountain, a short distance from Sanca Fe ; bitumin us shale from Placer mountain ; iron ore from the San Juan country; distance from Santa Fe ; limonite from the vicinity of Placer mountain; purple copper and native copper from the Naciamento mountains ; iron pyrites, drusic, quartz, felspathic trachyte, pumice, and trachyte from the San Juan. Indian country; argentiferous galena from Stuvenson's anine in Dona Anna county, native erpeer from Hanover mine near Gila river; marble from near Santa Fe ; argentiferous galena from Valencia county; dentritic manganese in felspar paste containing gold. from Placer mountain; gold beari"g quartz and native copper from the vicinity of Abiqui, Rio Arriba county; conglom rate containing gold from the Ute creek on Maxwell's ranch stated to be unsuroassed in richness, vari ous grades of wool, corals, and so forth.
Strikng as is this exhibit of mineral wealth, there is little doubt that much remains yet to be discovered. The rapid development of these resources is however interfered with by the depredations of Indians who render mining operations, except in places near centres of white population, extremely bazardous. Governor Arny asserts his belief that the mineral wealth of the mountann of New Mexico would pay twice our national debt, if miners could be permitted to develop it fight Indians, and that the Indians of New Mexic, can all be placed on reservations without a war, if Congress will make sulficient a apropriations to feed them, and furnish the neces sary machinery to enable them to make their own clothing and establish industrial schools, to be kept up at the expense of the Government till the Indians are made sustaining which, by faithtul agents, can be done in a few years."
With these Indians such a plan might prove successful, a they are said to be already partially civilized, but so far as our knowledge of Indian reservations extends they are gener ally constant bills of expense to the Government ; the Indi ans are not self-sustaining and the agents are far more in-
terested in making money for themselves, than in caring for the trusts imposed upin them. We have always held the opinion that a race who will not become civilized, and who at the same time resist the onward sweep of civilization, but that they deserve scarcely more sympathy than the othe savage beasts of the forest whose ferocity they not enly imitate, but surpass. We believe that although feeding way be cheaper-so tar as money goes-than fighting, the only effectual remedy for Indian outrages on our frontiers, is the strong hand. The only way to conquer the American savage
is to punish such outrages by almost total extermination of is to punish such outrages by almost total extermination of the tribes that perpetrate them. To exhibit mercy to these butchors is te waste powder.

## ON A PROBABLE CONNECTION BEIWEEN THE RESIST- ANCE OF SHIPS AND THEIK MEAN DEPTH OF IMANCE OF MERSION.

## By W. J. MACQiorn Rankine, Cee, LL D, F.R.S.

1. It was pointed out some time ago, that when a wave in water is raised by a fl ating solid b.dy which is propelled at a speed greater than the natural speed of the wave, the ridge of the wave assumes an ciblique position, and the wave ad vances nbliquely; so that while it travels at its own natural soeed in a direction perpendicular to its ridge line, it at the same time accompanies the motion of the solid body at a greater speed. The angle of obliquity of the advance of the wave is such that its cosme is the ratio of the natural speed of the wave to the speed of the solid body. It was at the same time pointed out that under those circumstances there is an additional breadth of wave raised in each second, expressed by the product of the speed of the solid body into the sine of the obliquity; or, in other words, by the third side of a right-angled triangle, of which the speed of the solid body is the hypothenuse, and the natural speed of the wav the base ; that in raising that additional breadth of wave pe second, energy is expended ; and thus that a rapidly increas ing additional term is introduced into the resistance to the motion of the solid body, so son as its speed exceeds th natural speed of the waves which it raises.
2. The waves taken into account in Mr. Scott Russell's theory of the resistance of ships, are waves whose speed de pends on their length alone; and that theory accounts for a rapid increase in the resistance of a ship, when her speed exceeds the natural speed of certain waves of lengths depending on her length.
3. In a paper read to the Royal Society in May, 1868, it was shown that for all waves whatsopver, there is a relation be tween the natural speed and the virtual depth of uniform disturbance, that is to say, the surface particles would have to extend in order to make a total volume ot disturbance of the water equal to the actual volume of disturbance. That relation is, that the speed of advance of the wave is that due to a fall of half the virtual depth. In a paper read to the Institution of Naval Architects in 1868, it was pointed out that every ship is probably accompanied by waves, whose natural speed depends on the virtual depth to which she disturbs the water, and that, consequentlo, when the speed of the ship exceeds that natural spred, there is probrbly an additiona term in the resistance dependi 9 on such excess.
4. The object of the present paper is to call the attention of the British Association, and especially of the committee on Sreamship Performance, to the prubable existrace of this bitherto neglected element in the resistance of ships; and to suggest that suitable observations and calculations should be made in order to discover its am unt and its laws. Among observations which $w$ uld be serviceable for that purpose may be mentioned the measurement of the angles of divergence of the wave ridges raised by various vessels at given spetds, and the determination of the figures of those ringes which are well known to be curved; and among results of calculation the mean depth of immersion, as found by divid ing the volume of displacement by the area of the plane of flotation; and that not only for the whole ship, but for he ore and after bodirs separately, for it is probable that the virtual depth of uoiform distutbance, if not equal to the mean depth of immersion, is connected with it by some definite elation.
Results of Observations.-In an appendix are given the re ults of the only three observations which I have hithert found it practicable ti make, of the speed of advance of the obliquely diverging waves rais + d by ships. The waves in each case were those which follo ${ }^{\infty}$ the stern of the vessel the vessels were all paddle steamers, but care was taken to bserve the positions of the wave ridges where they were be yond the rufluence of the paddle race. The virtual depth corresponding to the speed of advance of those waves is cal culated in each case, and it is found to agree very nearly with the mean depth of immersion. It is to be observed, however that the mean depth of immersion of one vessel only. viz., the Iona, has been measured from her plans. Foreach of the other vessels, a probable value of the mean depth of immer sion has been obtained, by assuming that ic bears the same proportion nearly to the total draft f water in theru as the in the Iona That assumption cannot be very far from the truth for the three vessels belong to the same class of torms, being of shallow draft, and very flat bottomed amidships, but hav ing very fine sharp ends. Few as those observations are they seem sufficient to prove the existence of waves whose speed of advance depends on the depth to which the vessel disturbs the water. The connection between those waves and the resistance remains as a subject for future investiga Glasgow University, 15th August, 1868.

APPENDIX.

1. Steam Vessel " Iona." - Speed of vessel at time of obser vation. 15 knots $=25.35 \mathrm{ft}$. per sec.; angle made by ridges of stern waves with course of vessel, $22 \frac{1^{\circ}}{}{ }^{\circ}$; sine of that angle, 0.383 ; product, being velocity of advance of stern waves $9 \cdot 71 \mathrm{ft}$. per sec, virtual depth corresp,nding to that velocity $9.71^{2} \div 322=293 \mathrm{ft}$; mean depth of imm+rsion of vessel a measured on her plans, 318 ft . N B -The draft of wate was 5 ft ., so the mean depth of immersion was 0.64 of the draft, nearly.
2. Granton and Burntisland Ferry Steamer.-Speed of ves sel at tume of olservation, $10 \mathrm{knots}=16.9 \mathrm{ft}$. per sec ; angle made by ridges of stern waves with course of vessel, $45^{\circ}$; sine of that angle; 0.7071 ; product, being velocity of ad vance o the stern waves, 1195 ft . per sec.; virtual depth corresponding
to that velocity; $11.95^{2} \div 822-4.44 \mathrm{ft}$.; draft of water of the
vessel, 6.67 ft ; probable mean depth of imm
supposition that it is 0.64 of the dra $\mathrm{ft}, 4.3 \mathrm{ft}$.
3 Steam Vessel "Chancellor"-Speed of vessel observation, 1264 knots $=21 \cdot 36 \mathrm{ft}$ per $\mathrm{sec} \cdot \mathrm{angle}$ made by ridges of stern waves with course of vessel, $22^{\circ}$; sine of that ridges of ste, 0.375 ; product, being velocity of advance of the stern waves, 801 ft . per sec.; virtual depth corresponding to that vel city, $8.01^{2} \div 322=2 \mathrm{ft}$.; draft of water of the vessel, $3 \cdot 5$ ft.; probable mean depth of immersion, on the supposition that it is 0.64 of the drait, 224 ft .


## CHEIICAL NOMENCLACURE.

[Continued from page 50.]
The combination of the different elementary substances takes place by a certain attractive power of their smaller par ticles (atoms or mnlecules), which is called chemical affinity. As may be expected a priori, it differs greatly in different substances, and even differs in the same two substances when the circumstances are changed. The principal moditying circumstance is heat.
Carbon and oxygen, at the common temperature, have no ffinity, that is to say, they will not combine. A piece of caron may lie for a century in oxygen gas without combination taking place, but when sufficient heat is applied the two sub. ta ces combine with great energy. However, the amount of heat necessary to. ca use this combination differs according to the form of carbon used. Thus, lamp-black requires much ess heat than charcoal, more heat will be required to ignite coke, more still for anthracite chal, yet more for da mond, and, as regards graphite, we can scarcely produce heat enough to ignite it. The comparative incombustible nature of the last named substance, renders it suitable for crucibles for melting brass and other metals or alloys. All these subitances are only carbon in different states, callel allotropic conditions. At the same time that the combustin commences to take place, it develops new heat in abundarice. hearing up the adacent parts to the temperature required for combination in heir turn. and so kee ing up the heat to cause the final combustion of any amount of carbin and osygen present. In the place of carbon, sulphur or any other so-called combustible substance may be suustituted.
Combustion, therefore, is nothing but a chemical combination of a so-called combustible substance (carbon, sulphur, ydrogen, ph sphorus, etc.), usually with the oxygen of the atmosphere ; all that is required to start it, is a sufficient rise of temprature, and any large conflagration gives a striking Illustration of the considerable development of heat, which is the resuit.
By the combustion of carbon, every six parts thereof will unite with sixteen of oxygen, when plenty of oxygen is present; by a limited supply of this last substance, it will only combine with eight rarts; and, as the symbol C stands for six parts of carbon and $\mathbf{O}$ for eight of oxygen, the product f this combustion is expressed in the first case by $\mathrm{CO}_{2}$, in the ast by CO ; and as the first possesses acid properties it is called carbonic acid, and the last possessing no such properies is called carbonic oxide; the lant being the generic name or all combinations with oxygen which possess no acid proprties.
The combustion of sulphur has for result, the combination of sixteen parts of sulphur with sixteen of oxygen; ormula, $\mathrm{SO}_{2}$, named sulphurous acid.
Selenium and tellurium combine after the same law and with similar results as sulohur, except that the respective umbers of combination are 40 and 64 , respectively with sixeen of oxygen ; formulæ, $\mathrm{Se}_{2}$ and $\mathrm{Te} \mathrm{O}_{2}$.
The combustion of hydrogen has for result a compound of one part of hydrogen (always by weight) with eight of oxycen, forming water ; formula, $\mathrm{H} O$.
The combustion of phospnorus forms phosphoric acid; formula, $\mathrm{P}_{5}$, which means thirty one parts of phosphorus and forty of oxygen.
The combustion of potassium forms potassa; formula, $\mathrm{K} \mathbf{O}$, which means thirty-nine parts of the metal and eight of

## oxygen.

Magnesium burning forms magnesia; formula, Mn O, or hirteen parts of magnesium and eight of oxygen.
Zinc burning forms oxide of zinc or zinc white; Zn O con taining tivirty-two parts of zinc and eight of oxpgen.
Or all the substances mentioned abive, there is none that has more affinity for oxygen than red hot carbon; for this reason carbon is used as the great reducing agent, and almost any oxidized substance mixed with carion and heated, will give its oxygen to the carbon, and carbonicacid will be formed. On this principle deprads the reduction of iron from its ores, the manufacture of potassiam, sodium, etc.; and it shows that also in chemistry the law of the strongest prevails, just as in all nature, not excenting the human race. In savage nations, brute strength only prevails, but among civilized people, the strength of mind and knowledge subdues the mere material brute forces, and illustrates the superiority of mind over matter.

