Scientifit
 Amorian

RIUNN \& COMPANY, Editors and Proprietors.
published weekly at
NO. 37 PARK ROW (PARK bUILDING), NEW YORK.
o. D. MUNN, S. i. Wales. A. e. beach.

-Contents:

caveats.

Whenever an inventor is engaged in working out a new improvement, and is fearful that some other party may get ahead of him in applying for a patent, it is desirable, under such circumstances, to file a caveat, which is good for one year, and during that time will operate to prevent the issue of a patent to other parties. The nature of a caveat is fully explained in our pamphlet, which we mail free of charge.

european patents.

More than three-fourths of all the patents taken by American citizens in Europe have been secured through the Scien tific American Patent Agency. Inventors should be carefu to put their cases in the hands of responsible agents, as in England for example, the first introducer can take the patent and the rightful inventor has no remedy. We have recently issued a new edition of our Synopsis of European Patent Laws.

COMPARISON AND RELATION THE ONLY CRITERION

The "mechanical eye," so valuable in mechanical opera tions, is educated wholly by the comparison of one object with another; it has no absolute virtue, or power of determining the real dimensions of any object. If it were so there would be small necessity for accurate rules and gages, by which the eye determines any dimensions. Let the most experienced mechanic be shown a piece of say three-quarters inch iron, in connection with other pieces of iron of one inch, and one and a quarter, and of three quarters and less, and he may find no difficulty in determining by hiseye the diameter of either one of these pieces, it being considered, of course, that the diam eter of some one or more of these pieces are known. Yet let this piece of three-quarters inch iron be shown in connection with bars of from two inches diameter to six inches, and it would puzzle the most educated eye to determine whether th three quarter inch iron was of that size or whether it was seven-eighths or eleven-sixteenths of an inch in diameter The reason is that the eye is insensibly misled or diverted from the object to be viewed, or rather is so occupied by the surroundings that an accurate estimate is impossible.
So distance, as all know, interferes with the exact action of the educated eye. No two mechanics, however skillful will agree, for instance, on the exact size of a cross on a church steeple. Why? because there is no object near by which the relative hight or size of the cross may be gaged.
Yet even when there are means of comparing relativ dimensions, it is sometimes difficult to determine size and position. In no case is this seen more plainly than in the work of the proof-reader who wishes to know if a letter i turned. Take the letters $\mathbf{S}, \mathrm{s}, \mathrm{X}, \mathrm{Z}$, and the figures 3 and 8 To the ordinary sight, the lower and upper half of these are identical in form and size; but let the reader reverse themturn the page upside down-and he will see at once that there is a difference, so great that even the careless reader will be discrepancy exists or to point out the remedy. The proof reader, however, has educated his eye to such a nicety in as certaining and comparing forms in the relations of contiguous objects that what would escape the notice of others arrests his attention, and he sees at once the trouble withou the necessity of reversing the page for the purpose.
There is no fallacy so fallacious, no saying less an axiom,
than that one may depend upon the evidence of ${ }^{*}$ his senses, especially the one of vision. To use this correctly the eye must be educated, and not only educated, but confined to the observation of a certain set of objects to acquire the skill which is the offspring of discrimination. The astronomer is not a chemist, who can detect the presence of the minutest portion of a foreign element in the substance he examines by the microscope. The sea-going man, used to peering through long distances. would be as much out of his sphere in the watchmaker's shop as a girl would be with the cares of a
country on her brain. His eyes are as uneducated to the microscopic niceties of the watchmakers art, as is the woman' brain to the responsibilities of government.

SELF-EDUCATION.

All men of distinction are self-educated men in one sense The early possession of what are commonly termed educa tional "advantages," is of little value unless those who en oy them have in themselves the elements without which such advantages are worthless. Given these elements and the " advantages" are not indispensable, although valuable Circumstances have much to do in developing taste for study which is the common characteristic of all thoroughly educa ted men. Many a young man who now looks upon the study of books as a dry and irksome task, would, if his attention were fixed upon some subject adapted to his tastes and mod erate acquirements, entirely change his views. Without un derating the value of proper instruction, the fact that so many men have been able to achieve scientific eminence withou it, is sufficient encouragement to such as are perforce de prived of it. To such, and there are not a few among the youth of this country, we offer a few suggestions as to th best course for self-training.
In higher institutions of learning it is usual to say on reads Latin or Greek, or mathematics or mechanics, rather than he studies this or the other subject. The word read is here a synonym for study. That is right ; to read properly is to study in its highest sense. It is a much more difficult thing to read than most people think. For the most part that which is called reading is mere skimming. It occupies an idle hour by placing a variety of images before the mind in rapid succession, like a kaleidoscope, but like the images of that amusing toy, each is forgotten as a new one is presented ; and after all is done nothing remains but a dim re collection of a jumble of colors. Nothing definite, nothing valuable is retained. But, says one, I read for amusement, and so long as I get that, I wish nothing more. To him we reply that our suggestions are not to him, at least until his tastes are radically changed. Only this much we will say to
him ; he greatly mistakes if he supposes that even the highest degree of amusemes if he supposestha in such readin We affirm that when a youth has acquired the power to ead his own language in the full meaning of the term, he is nine-tenths educated. We care not if he has never looked into a work on mathematics, or conjugated a Greek verb. He may know little or nothing of the sciences, but he has acquired the power to know any tbing that any other mind can now, because he has mastered the means by which all knowledge is accessible to him-his mother tongue. Not obtained such a critical knowledge of its etymology as he will
obtain by a classical course of reading, or of the niceties of obtain by a classical course of reading, or of the niceties of
grammatical construction; but mastered it in that he holds the keys that will unlock all the storehouses of learning. He s a mental gymnast who, although he has never attempted to raise the heavy weights of knowledge and science, need have no fear that he. will fail in his attempts when he es ays it.
Young men who are desirous to educate themselves, should select elementary treatises at first; such as treat of their subjects in a familiar manner. Having thus selected, they should set about reading them with the stern determination, not to let a single page, or line, or word, pass uncomprehended. Geographical names should be properly pronounced and the places they indicate carefully located, not on a map merely, but in the mind. Allusions to men and events should be at once followed by research into the histories of the men and he events themselves. The writer of this article once, upon commencing to peruse a volume found before he had got over he first page, that he must read up two or three biographies, nd several other collateral matters before he could go on in telligently. Such occurrences will frequently happen, but the labor involved must not be shirked ; if labor at first, it will soon become pleasure.
The habit of fixed attention is also of the utmost importance. A wandering mind is essentially a weak mind. If anything is unworthy attention, renounce it altogether, do not acquire that bad habit of at once half listening, and half pondering, so common and so enervating to mental vigor. Remember always, that to get is not so important as the power to get. Strive to obtain strength of mind rather than many ill-digested facts. Don't swallow facts whole any more than you would your food. Chew and digest. Overloading is as
bad for the mind as for the stomach, therefore avoid cramming. Seek to learn the general principles of science rather than the bare details ; the details will come upon application of the principles. Cultivate the habit of closely observing everything you see. Every natural thing is worthy the closest nspection. Works of art and neechanical construction are good studies whether meritorious or otherwise. If good, seek to know the elements of their worth ; if bad, criticise their faults. If your tastes incline to any partic:ular field of study, et them run. Don't seek to stop them. You will succeed best in that field. Above all, avoid the pernicious habits of listlessness and day-dreaming, and remember that the chief
attribute of genius, if there is anything can be called genius,
the disposition to study anywhere and everywhere, with or without book, to think not hap-hazard, but to think fixedly and connectedly upon what you will. You can study while you are working at a vise, or at the lathe, or pegging a shoe but it must be thought that is subject to your will ; kept within prescribed bounds, or it becomes the day-dreaming which we have cautioned you against.
Lastly, while we do not condemn indiscriminately the readng of works of fiction, we assert that until you have ripened and improved your tastes by a different class of literature, you can not be judges of what is good or bad in fiction ; so that if you read such works at all, you should do it under the direction of some one who is competentto advise you what is meritorious and what is to be avoided.
"GOLD! GOLD: HARD TO GET AND HEAVY TO HOLD."
The above line was written at a time when the sources of gold were less numerous than at present, when fewer men were employed in digging it-when the supply was very much less than now. Notwithstanding, gold is harder to get now than in Hood's time, and still harder to keep when got. The reason for the firmness in the price of gold seems to be universal topic, just now, among papers devoted to finance. Very little light is thrown upon the subject by the essays which we have perused. The fact that the supply has largey increased, is urged to show that present rates are too high The collateral fact, that gold is used up very slowly, at best, by wear, losses at sea, etc., is also strongly urged to prove y wear, losses at sea, etc., is also strongly urged to prove
that there must be a Jarge increase in the amount of gold in that there m irculation.
The gold fields of California, Australia, Colorado, Idaho, and Montana, have been successively developed during the last twenty years, and have poured an enormous amount of gold into the general current. Since 1850, one billion of dollars' worth of gold has been mined, yet the relative value of gold to other precious metals remains essentially un changed.
It was predicted, ten years ago, that the price of gold must become permanently depreciated by the large increase in production. To-day that prediction remains unfulfilled; yet to day the prediction is as confidently reasserted, as it was ten years ago. The quite general distribution of gold, in moun tain ranges everywhere, is an admitted fact. At present, it is only profitable to mine for it under circumstances of com paratively little difficulty, so that many large deposits remain unmolested. New deposits are constantly coming to light so that the supply annually increases rather than diminishes. Accounts reach us of mines of extraordinary richness in South ern Africa. The mines of Italy are just beginning to pay while the mines of Frontino and Bolivia seem to give speci mens of remarkable richness.
Are, then, the predictions of which we have spoken about to be realized? We think not. We believe that, in 1878 gold will be found to have still maintained its relative value in spite of the large amount that may reasonably be expected o be taken out before that time.
Briefiy, our reasons for this opinion are these: First, gold is a commodity as much as iron, and is subject to the same laws of supply and demand. Second, the demand has increased, in the past, and, we are confident,will increase in the future as fast or faster than the supply. The uses of gold in the arts are increasing in number and extent. Compare the number of gold watches, the amount of gold employed in jewelry, dentistry, gilding, bookbinding, etc., with the same, twenty years ago, and it will at once be evident that the de mand has increased withou tresort to statistics. The population of the world is increasing, and, more important still in its e fects upon a demand for gold, is the rapid march of civiliza tion, and the consequent spread of a taste for general ornament, in which gold is so largely used.
Here we bave elements of increased demand to compensate for increased supply. Those who only think of gold as currency must of course be misled, in their opinions upon this sulbject. There is probably far more gold in this country today applied to ornamental uses than exists in coin. Nearly all above the lowest walks of life have more or less of it upon their persons and in their houses. So long as this is the case, so long as population continues to increase at its present rate, and civilization advances, so long will gold maintain its standard of value, if indeed it does not rise above it.

EXPANSION OF ICE.

A discussion upon the expansion or contraction of ice by he action of cold is exciting much interest in England, both on account of subject itself, and the high authorities which are parties in the discussion. Prof. Tyndall takes the ground that it expands. Other eminent philosophers dispute his accuracy of the experiment from which Dr. Tyndall draws his conclusions. The experiment is as follows: Around nicely fitted blocks of ice he places bands of cast iron; upon
submitting the whole to the action of a freezing mixture the bands soon burst with a loud report. Those who doubt the correctness of Dr. Tyndall's conclusion, argue that the experiment does not prove that ice expands, as the contraction of the iron is sufficient to account for the bursting of the bands. They further confirm their opinions by the fact that the ice which forms upon the surface of the British American Lakes, often to a thickness of several inches during a single cold night,will, upon the recurrence of severe cold,crack open widely. This is thought toindicate contraction instead of expansion. It certainlyseems that the experiment of bursting iron rings by rerefrigeration is not altogether conclusive of the expansion of ice, still although it may be defective,we are inclined to the opinion that ice does expand as the temperature diminishes. If such should be the case,it appears to us that it would easily be deter-
mined by a specific gravity test, weighting the ice with pla tinum, and using mercurs as a means of making the test, that substance remaining fluid at low temperatures, and having no solvent power on ice. It would be easy to mate a proper allowance for the increased suecitic gravity of the mercury as the tem erature diminishes.
transportation of catrle --reld's patent cattle WAGONS.
Some years since, while we were standing in the depot o the New York Central Railroad, at Amsterdam, awaiting the arrival of an express train from the East, there passed the station two enormous trains from the West, each requiring two locomotives to draw them, and laden with live cattle for the New York market. Live cattle, did we say? We must qualify that statement, for, on either train, there were some dead,others in a dying state, while all were greatly distressed, as was evident by their violent panting and protruding tongues. Some were prostrate under the feet of the rest, powtrless to rise. The causes for this state of things was obvious. The weather was intensely hot, and the cattle crowded together as close as they could possibly stand, and not having been allowed to drink since they left Buffalo,were dying of thirst. We remarked, at the time, that it sepmed an easy task to proside water for cattle thus transported, but a fellow traveler remarked that, were a proper apparatus constructed, no railroad in this country would adopt it unless compelled to do it. We, bowever, hoped, and still hope, that compelled to do it. We, bowever, hoped, and still hope, that
the greed of rallroad corporations will not prevent the univerthe greed of rallroad corporations will not prevent the univer-
sal adoption of any simple method for securing such a bumane sal adoption of any simple method for securing such a bumane
object.
Ourattention bas been called to a simple and effective mode Ourattention bas been called to a simple and effective mode
of supplying cattle with water while being transporced in of supplying cattle with water while being transporced in
railway cars, invented by Wm. Reid, of Granton Harbor, near Edinburgh, Scotland, which seems admirably ad apted to the purpose. The cars are provided with troughs, to which water can be readily supplied while the trains are stopped for taking in water tor the use of the engine.
There is no doubt that many cattle become diseased by confinement without water during transportatiיn, and that their meat, rendered more or less un wholesome by it, is sold and eaten, to the detriment of public health. The knvwledge of this fact will do more toward correcting the evil than an appeal to the humanity of individuals. If railroad corporations refuse to correct it, they should be compelled to do so by legislation.

NEW MEXICO, ITS NATURAL WEALTH.

The Honorable W. F. M. Arny, ex-govern'r of New Mexico, has presented to the geological and mineral museum of the Unitel States Department of Agriculture, a collection of specimens of minerals, fossils. agricultural products, etc, from which an idea of the catural resources of that territory may be obtained.
Among there specimens are native copper from the Tijeris mountain, a short distance from Santa Fe ; bitumin us shale from Placer mountain ; iron ore from the San Juan country; distance from Santa Fe ; limonite from the vicinity of Placer mountain; purple copper and native copper from the Naciamento mountains ; iron pyrites, drusic, quartz, felspathic trachyte, pumice, and trachyte from the San Juan. Indian country; argentiferous galena from Stuvenson's anine in Dona Anna county, native erper from Hanover mine near Gila river; marble from near Santa Fe ; argentiferous galena from Valencia county; dentritic manganese in felspar paste containing gold. from Placer mountain; gold beari"g quartz and native copper from the vicinity of Abiqui, Rio Arriba county; conglomrrate containing gold from the Ute creek on Maxwell's ranch stated to be unsuroassed in richness, vari ous grades of wool, corals, and so forth.
Strikng as is this exhibit of mineral wealth, there is little doubt that much remains yet to be discovered. The rapid development of these resources is however interfered with by the depredations of Indians who render mining operations, except in places near centres of white population, extremoly bazardous. Governor Arny asserts his belief that the mineral wealth of the mountanns of New Mexico would pay twice our national debt, if miners could be permitted to develop it fight Indians, and that the Indians of New Mexic, can all be placed on reservations without a war, if Congress will make sulficient a apropriations to feed them, and furnish the neces sary machinery to enable them to make their own clothing and establish industrial schools, to be kept up at the expense of the Government till the Indians are made sustaining which, by faithtul agents, can be done in a few years."
With these Indians such a plan might prove successful, a they are said to be already partially civilized, but so far as our knowledge of Indian reservations extends they are generally constant bills of expense to the Government; the Indi-
ans are not self-sustaining and the agents are far more inans are not self-sustaining and the agents are far more in-
terested in making money for themselves, than in caring for the trusts imposed upin them. We have always held the opinion that a race who will not become civilized, and who at the same time resist the onward sweep of civilization, but that they deserve scarcely more sympathy than the othe savage beasts of the forest whose ferocity they not enly imitate, but surpass. We believe that although feeding way be cheaper-so tar as money goes-than fighting, the only effectual remedy for Indian outrages on our frontiers, is the strong hand. The only way to conquer the American savage is to punish such outrages by almost total extermination of the tribes that perpetrate them. To exhibit mercy to these butchors is te waste powder.

ON A PROBABLE CONNECTION BETWEEN THE RESIST- ANCE OF SHIPS AND THEIR MEAN DEPTR OF IMANCE OF SHIPS AND THEIR MEAN DEPTH OF IM-

 MERSION.
By w. J. Macotorn Rankine, Ce, Ll D, F.R.S.

1. It was pointed out some time ago, that when a wave in water is raised by a fl ating solid b.dy which is propelled at a speed greater than the natural speed of the wave, the ridge of the wave assumes an coblique position, and the wave
ad vances nbliquely; so that while it travels at its own natuad vances nbliquely; so that while it travels at its own natu-
ral speed in a direction perpendicular to its ridge line, it at the same time accompanies the motion of the solid body at greater speed. The angle of obliquity of the advance of the wave is such that its cosme is the ratio of the natural speed of the wave to the speed of the solid body. It was at the same time pointed ou ${ }^{\dagger}$ that under those circumstances there is an additional breadth of wave raised in each second, ex pressed by the product of the speed of the solid body into the sine of the obliquity; or, in otber words, by the third side of a right-angled triangle, of which the speed of the solid body is the hypothenuse, and the natural speed of the wav the base ; that in raising that additional breadth of wave pe second, energy is expended ; and thus that a rapidly increasing additional term is introduced into the resistance to the motion of the solid body, so son as its speed exceeds th natural speed of the waves which it raises.
2. The waves taken into account in Mr. Scott Russell's theory of the resistance of ships, are waves whose speed de pends on their length alone; and that theory accounts for a rapid increase in the resistance of a ship, when her speed exceeds the natural speed of certain waves of lengths depending on her length.
3. In a paper read to the Royal Society in May, 1868, it wa shown that for all waves whatsopver, there is a relation be tween the natural speed and the virtual depth of uniform disturbance, that is to say, the surface particles would have to extend in order to make a total volume ot disturbance of the water equal to the actual volume of disturbance. That relation is, that the speed of advance of the wave is that due to a fall of half the virtual depth. In a paper read to the Institution of Naval Architects in 1868, it was pointed out that every ship is probably accompanied by waves, whose natural speed depends on the virtual depth to which she disturbs the water, and that, consequently, when the speed of the ship exceeds that natural spred, there is probably an additiona term in the resistance dependi 9 on such excess.
4. The object of the present paper is to call the attention of the British Association, and especially of the committee on Sreamship Performance, to the prubable existrace of this bitherto neglected element in the resistance of ships ; and to suggest that suitable observations and calculations should be made in order to discover its am unt and its laws. Among observations which w uld be serviceable for that purpose may be mentioned the measurement of the angles of divergence of the wave ridges raised by various vessels at given speeds, and the determination of the figures of those ringes which are well known to be curved; and among results of calculation the mean depth of immersion, as found by divid ing the volume of displacement by the area of the plane of flotation; and that not only for the whole ship, but for he ore and after bodirs separately, for it is probable that the virtual depth of uoiform distutbance, if not equal to the mean depth of immersion, is connected with it by some definite elation.
Results of Observations.-In an appendix are given the re alts of the only three observations which I have hithert found it practicable ti make, of the speed of advance of the obliquely diverging waves raisrd by ships. The waves in each case were those which follo ${ }^{\infty}$ the stern of the vessel he vessels were all paddle steamers, but care was taken to bserve the positions of the wave ridges where they were be ond the rufluence of the paddle race. The virtual depth corresponding to the speed of advance of those waves is cal culated in each case, and it is found to agree very nearly with the mean depth of immersion. It is to be observed, however that the mean depth of immersion of one vessel only. viz., the Iona, has been measured from her plans. Foreach of the other vessels, a probable value of the mean depth of immer sion has been obtained, by assuming that ic bears the same proportion nearly to the total draft f water in theru as the in the Iona That assumption cannot be very far from the trutb for the three vessels belong to the same class of torms, being of shallow draft, and very flat bottomed amidships, but hav ing very fine sharp ends. Few as those observations are they seem sufficient to prove the existence of waves whose speed of advance depends on the depth to which the vessel disturbs the water. The connection between those waves and the resistance remains as a subject for future investiga Glasgow University, 15th August, 1868.

APPENDIX.

1. Steam Vessel "Iona."-Speed of vessel at time of obser vation. 15 knots $=2535 \mathrm{ft}$. per sec.; angle made by ridges of stern waves with course of vessel, $22 \frac{1}{8}^{\circ}$; sine of that angle, 0.383 ; product, being velocity of advance of stern waves 9.71 ft . per sec; virtual depth corresp,nding to that velocity $9 \cdot 71^{2} \div 32 \cdot 2=293 \mathrm{ft}$; mean depth of imm+rsion of vessel a measured on her plans, 318 ft . N B -The draft of wate was 5 ft ., so the mean depth of immersion was 0.64 of the draft, ntarly.
2. Granton and Burntisland Ferry Steamer.-Speed of ves sel at tume of olservation, $10 \mathrm{knots}=16.9 \mathrm{ft}$. per sec ; angle made by ridges of stern waves with course of vessel, 45°; sine of that angle; 0.7071 ; product, being velocity of ad vance o the stern waves, 1195 ft . per sec.; virtual depth corresponding
to that velocity; $11.95^{2} \div 822-4.44 \mathrm{ft}$.; draft of water of the
vessel, 6.67 ft ; probable mean depth of imm
supposition that it is 0.64 of the draft, 4.3 ft .
3 Steam Vesse "Chancellor"-Speed of vesel observation, $1264 \mathrm{knots}=21.36 \mathrm{ft}$ per $\mathrm{sec} \cdot \mathrm{angl}$ made by ridges of stern waves with course of vessel, 22°; sine of that ridges of stern waves with course of vessel, 22 ; sine of that waves, 801 ft . per sec.; virtual depth corresponding to that vel city, $8.01^{2} \div 322=2 \mathrm{ft}$.; draft of water of the vessel, $3 \cdot 5$ ft.; probable mean depth of immersion, on the supposition that it is 0.64 of the drait, 224 ft .
table of virtual deptis corresponding to different

CHEMICAL NOMENCLA CURE.

[Continued from page 50.]
The combination of the different elementary substances takes place by a certain attractive power of their smaller par ticles (atoms or mnlecules), which is called chemical uffinity. As may be expected a priori, it differs greatly in different substances, and even differs in the same two substances when the circumstances are changed. The principal moditying circumstance is heat.
Carbon and oxygen, at the common temperature, have no ffinity, that is to say, they will not combine. A piece of caron may lie for a century in oxygen gas without combination taking place, but when sufficient heat is applied the two sub tances combine with great energy. However, the amount of heat necessary to. ca use this combination differs according to the form of carbon used. Thus, lamp-black requires much less heat than charcoal, more heat will be required to ignite coke, more still for anthracite cral, yet more for dia mond, and, as regards graphite, we can scarcely produce heat enough to gnite it. The comparative incombustible nature of the last named substance, renders it suitable for crucibles for melting brass and other metals or alloys. All these subitances are only carbon in different states, callel allotropic conditions. At the same time that the combusti•n commences to take place, it develops new heat in abundarice. hearing up the adjacent parts to the temperature required for combination in heir turn. and so kee sing up the heat to cause the final combustion of any amount of carbin and osygen present. In the place of carbon, sulphur or any other so-called combustible substance may be suustituted.
Combustion, therefore, is nothing but a chemical combination of a so-called combustible substance (carbon, sulphur, ydrogen, ph sphorus, etc.), usually with the oxygen of the atmosphere ; all that is required to start it, is a sufficient rise of temprature, and any large conflagration gives a striking Illustration of the considerable development of heat, which is the resuit.
By the combustion of carbon, every six parts thereof will unite with sixteen of oxygen, when plenty of oxygen is present; by a limited supply of this last substance, it will only combine with eight parts; and, as the symbol C stands for six parts of carbon and \mathbf{O} for eight of oxygen, the product of this combustion is expressed in the first case by CO_{2}, in the ast by CO ; and as the first possesses acid properties it is called carbonic acid, and the last possessing no such properies is called carbonic oxide; the lant being the generic name or all combinations with oxygen which possess no acid proprties.
The combustion of sulphur has for result, the combination of sixteen parts of sulphur with sixteen of oxygen; ormula, SO_{2}, named sulphurous acid.
Selenium and tellurium combine after the same law and with similar results as sulphur, except that the respective umbers of combination are 40 and 64 , respectively with sixeen of oxygen ; formulæ, $\mathrm{Se} \mathrm{O}_{2}$ and $\mathrm{Te} \mathrm{O}_{2}$.
The combustion of hydrogen has for result a compound of one part of hydrogen (always by weight) with eight of oxycen, forming water ; formula, H 0 .
The combustion of phospnorus forms phosphoric acid; ormula, $\mathrm{P} \mathrm{O}_{5}$, which means thirty one parts of phosphorus and forty of oxygen.
The combustion of potassium forms potassa; formula, K O, which means thirty-nine parts of the metal and eight of

xygen.

Magnesium burning forms magnesia; formula, Mn O, or hirteen parts of magnesium and eight of oxygen.
Zinc burning forms oxide of zinc or zinc white; Zn O con aining tivirty-two parts of zinc and eight of oxygen.
O_{r} all the substances mentioned abive, there is none that has more affinity for oxygen than red hot carbon; for this reason carbon is used as the great reducing agent, and almost any oxidized substance mixed with carion and heated, will give its oxygen to the carbon, and carbonicacid will be formed. On this principle deprads the reduction of iron from its ores, the manufacture of potassiam, sodium, etc.; and it shows that also in chemistry the law of the strongest prevails, just as in all nature, not excenting the human race. In savage nations, brute strength only prevails, but among civilized people, the strength of mind and knowledge subdues the mere material brute forces, and illustrates the superiority of mind over matter.

