ventriloquism.

All have heard and read of the art of ventrilnquism. How it came to receive such an inappropriate name would be an interesting inquiry, but foreign to our present purpose Nothing in the derivation of the word gives the least clue to the means by which the effect is produced, or the true nat ur of the effect itself. The word is derived from the Latin venter,
the belly, and loquor, to speak. The Germans have it das the belly, and loquor, to speak. The Germans have it das
Bauchreden, belly-speaking. The old idea that the voice came from the belly has been solong exploded that a mor philosophical name ought to have been adopted ere this
The analogles between light and sound are so remarkable that the most eminent modern scientists make great use of them for purposes of illustration in the lecture room ; ye much as we have read upon the subject of sound and ligh we have never seen these analogies $ъ$ pplied to the elucidation of the phenomena of ventriloquism. We
sucl an application in the present article.
suclı an apulication in the present article.
Ventriloquism bears the eame relation to
Ventriloquism bears the eame relation to other phenomena
of scund that perspective does to optical of sound that perspective does to optical phenomena. The art of perspective cunsists in portraying upon a flat surface the appearance of objects at a dis'ance from it, so that the same effect shall be produced upon the eye by the ,icture as would be produced by the objectsthemselves In order to do this, the form, tints, and shadows are reproduced, not as they really are, but as they are modified by position and distance Or it may be said to consist in making and arranging a group of objects so that when vieved at a given distance they shal produce the rame optical effect produced by another set of ob jects arranged in different posi+ionsand at different distances
Ventriloquism consists in making and arranging soundsso that when heard at a given distance, they shall produce the same tffect upon the ear that another set of sounds prod
arranged in differ nt positions and at different distances
It was formerly supposed that some peculiar contormation of the vocal organs was necessary to the ventril lquist, but such is not the case. The means by which sounds can be im itated, are not solely confined to voico. In an article entitled - Possibility of Speech to those hitherto Considered Mutes," published on page 389, Vol. XVI'I., of the SCIENTIFIC AMERICAN, we gave an account of a case in which the larynx was entirely closed, breathing being performed by means of a tracheotomy tube inserted in the windpipe, audible speech not being prevented, although voice, properly speaking, was not possible. Nevertheless the tones produced by the vibrations of the vocal chords may be modified so greatly in pitch and quality, that many sounds differing widely from the tones used in speech and ip singing may be imitated.
A good illustration of the action of the vocal chorls may be obtained in the followieg manner. Take a short hollow tube, glass or metal, or even a piece of elder with the pith punched out will do Cut it off smoothly, and stretcha piece of elastic rubber over it winding it with a cord to keep it stretched. Now cut with a sharp knife a slit length wise in the rubber slip, so that it shall traverse the entire internal diameter of the tubs. Blow through the opposite end, and a sound will be produced by the vibrations of the rubber. The tighter the rubber is drawn the higher will be the pitch of the sound emitted. The larynx is composed of five cartilages, the upper one being attached to a bone shaped like the letter U , called the hyoid bone. Tbis organ may be distinct ly felt from the outside, and it constitutes the prominence called "Adam's apple." It has two bands of ligamentous tissue-vocal chords-the edges of which are tightened and brought nearer togrther at will wy a set of beautiful and delicate muscles. These bands are illustrated by the slitted rubber above described, the tube upon which it is stretched rep. resenting the windpipe. The forcing of air from the lungs sets these bands into vibration. The sounds thus produced are varied in pitch by the tightening or slack-ning of the vocal chords, and otherwise modified by the shape of the cavity of the mouth.
Sounds from a distance are of course weakened, and they also have another quali'y which may be compared to the indistivetness of outline in objects seen at a distance. Ae the colirs of objects are partially obscured by the color of the medium \{brongh which they are viexed, so sounds coming from remnte places are partially obscured by the sounds whtch rervade even the stillest atmosphere. In proportion as the fine ear of the vevtriloquist can appreciate these modifications will be his success in imitating distant sounds. For as to see correctly is the first essential to success in drawing, so is hearing correctly the first essential in ventriloquism.
There are many sounds which cannot be imitated by voice merely, such as the singing of birds, the strident noise of a raw, the whistling of a plane, etc. Such and similar unmusical sounds are imitated by means of the teeth, the lips or the soft parts of the mouth Thus the noise of a saw is like that pruduced by hawking, only much prolonged, and modified by the cheeks; singing of hirds may be imitaed by whistling through the teeth. The foaming of soda water by breathing with open lips into a tumbler, etc. To persons having a fine ear this amusing art is not difficult, but we ob ject to the name applied to it. It ought to be called sound painting.

New Galvanic Excting Liquid.

M. Delamier in a communication to the Academy of Sci ence, states that the followiag mixture forms an exciting diengraging no deleterious fumes or gas. Dissulve twenty arts by wrigbt of protosulphate of iron in thirty six parts of water. Then stir in seven parts of a solution of sulphur c acid (equal parte) ; then ip the same manner add one part of diluted nitric acid (equal parts).

mandfacture of whire lead.

White lead, or cabonate of lead, is extensively used in the ris. As a pigment, when pure and mised with linseed oil it produces a beau iful white. It is also the base and vebicle for colors used in painting. Cements for metals are composed mainly of it, and in the preparation of vulcanized rub ber and liquid gutta percha it enters largely. In meit ine it is employed m sed with linseed oil as an ointment for burns, scalds, ulcers, and excoriations. Of all the different preparaIns of lead the carbonate is the most poisonous to the
man system, inducing what is know as the painter's colic in those engaged in iis manufacture and in painters. This terse engaged in is manufacture and in painters.
terrible disease, even if not fatal, frequently produces local paralysis, and the victim becomes a permanent cripple.
The method of manufacture is simple. The material, usually 1 n pigs, of the purest quality, is melted in a fixed kettle and then rus into very thin sheets. When made by hand, the process of casting these sheets requires considerable skill.
The operator holds in his left band, by a suitable bandle, a snrt of shovel of sheet brass, the sides turned up, and dipping up a small quantity of the melted metal, he desterously throws it over the surface of ehovel, when it almost instantly cools in a thin sheet, the superfluous portion of the metal running back into the kettle. A number of these sheets are loos-ly coiled, forming a sort of cylinder to be submitted to the after action of the acid.
In large concerns, however, this band casting has been superseded by a method very much suneri ir, the in vention of
Mr. Augustus Graham, of Brooklyn, N Y. A series of mulds, Corrtsponding to the shovel just men ioned, and connected to an endless chain, are successively presented to a current of melted lead, formiog sheets in the shape of grates, called "buckles" trom their resemblance to the" large shoe and knee buckles worn in furmer timps These buckles are discharg $\stackrel{\mathrm{d}}{\mathrm{d}}$ buckles worn in former timps These buckes are discharg
at the further end of the apron and placed in earthen pots, their edges resting on inward projecting ledges about three inches from the bottoms of the pots Each pot contains a small quantity of acetic acid, not however reaching the lead buckles. The pots have holes near the top and they are set on a floor covered with tan, the boles of the pots opposite each other to insurp a free passage, from one to the other, of b arde ovtr which is sprend another layer of \tan and on this another layer of pots, and so on to the hight of perbaps twenty feet. The whole is covered with a thick layer of twent
tan.
Then

Then the process of decomposition begins. The tan fer ments, generating heat, which causes the vinegar to evapo rate and its vapors to circulate among the lead. This goes on for several weeks and the white carbonate falls down in
snowg heaps. When the process is supposed to be comple snowy heaps. When the process is supposed to be comple the carbonaction of the acid ceases, the pile is taken whic have not been reouced, called "blue lead," are cleansed of their white.coating and returned to the melting pot.

The carbonate or white lead in the form of powder is then ashed in tanks with water. These tanks are placed bigb enough to draw off the lead paste from their bottoms to im-
mense pans called dryiny kilns, which have false bottoms. oe tween which and the true bottoms steam is admitted to hasten the ϵ vaporation of the water. When dry the powdered
lead may be packed realy for market, but usually it is ground in oil in which form it is generally sold.
It is seldom, however, that it is offered pure ; sulphate of bargtes being extensively used to adult rate it. This substance is nearly as heavy as white lead, and is perfectly white but not so brilliant. It has not the body of white lead, but is not so easily affected in color by noxi us gases, white lead being soon discolored by sulphureted hydrogen gas.

the mandfacture of straw board.

The manufacture of straw board is a growing industry in this country. Notwithstanding it is comparatively nodern, its increase has been so great, that it has nearly trebled the vrice of straw during a period of twenty gears. dlthough based upon the same gentral principles as paper making, it differs from the methods employed for fine pavers, in several important particulars, some of the processes bring
and others not required in the latter being necessary. The first process c msists in boiling the straw with quick lime. This is done in a wooden digester which takes steam from a boiler. The stra wis packed in layers with the lime be theen them, and the whole boiled for from ten to twelve hours according to circumstances. The rationale of this process is based upon the nature o the material. Scraw is crow. posed of a tube of wo dy fiber and cellular tissue, having up n its outer surface a cuticle comp sed of silicates of potas. sa and soda with some tree silica. The wondy fiber a,socontains some silica. To the silicious cuticle the atraw owes in great part its strength. The some cuticle also covers the leaves of the different grains and grasses, and gives them the sharp cutting edge of ten observed in 'the coarser varieties The boiling process is therefore chemical in its effect. The reaction which takes place is the combination of the lime and the silica, which leaves the straw in a soft and pulpy state. The mass is now ground by a machine similar in principle to that used for grinding the ordinary paper pulp, namely: a revolving cylinder upon which knives are fixed which play between a series of fixad knives on a bed plate. The ftraw until it is reduced to a uniform pulp.
The entire mass is now dra wn into a vat, which cnatains water and is kept constantly agitated by 2 series of revolving arma, A wire g ge cylindtr in so adjusted that it will re--
volve partially beneath the surface of the fluid mass. The
pulp adheres to the gauze, and is carried around to anocher cylinder around which an endless belt of felt runs. The lat. ter cylinder presses upon the gauze and by this means the pulp is made to adhere to the felt, and condensed so as to give it enough consistency to be taken up by another cylinder called a forming cylinder. This cylinder is une of a pair made of polished metal, and by them the pulp is strongly c mpressed. The pulp is wou around the former until the proper thickness is reached ; this is deterained by an indi cator. Along the forming cylinder there is a groove planed out, through which the operator now rapidly passes a wooden knife thus severing the soft board; and at the same time he unwinds the sheet and removes it. These sheets are cut so as to form other sizes, and then dried which completes the process. Woolen raga are sometimes ground and mixed with the straw pulp. This makes a muct darker colored and heavier board, which is worth considerably more than the pure straw board.
The boards as thus manufuctured are applicable to a great variety ot usetul purposes, among which bookbinding, button making, and paper box manu'acture are most prominent.

WEALTHAND ITS SOURCE.---A GRACEFUL RECOGNITION.
It may be fashionable to decry the decadence of the age, he facilities of gettiog rich by the circumstance of our latest (and may it be our last) war, and tw barp u on the selfishness of war contractors, and capitalists, but while such men as George W. Childs, and many others we might name exist, they, by their acts, give the lie to these unfounded calumnies on the present generation. It is but a shirt time ago that we noticed the generous act of Mr. Ctilds, in providing each of his employés with a li'e insurance policy, and now we find the same geverous spirit manifes ed in providing a resting place for the remains of the merabers of the Philadelphia Typographical Society, in the donation of a plot, in the Woodlands Cemetery, Philadelphia, comorising an area of two thousand superficial feet inclosed with a marole wall, and having a banasome marble gateway.
On Saturday, Oct. 17th. this plot was dedicated by proper ceremonials, and accepted, in a series of reeolutions, by the Philadelphia Typographical Society. Among the distinguishe guestsand sueak-rs, who took part in the cerem mies, were H n Ellis Lewis, late Chief Justice of the Supreme Court of Pennsylvania, who is the oldest member of the New York Typugraphical Society, and one of the oldest practical printers in the United Siates ; Hon Morton McMichael, Mayor of Philadelphia, the oldest newspaper publisher in the city; Henry C. Carey. LL D., the oldest book pablisher; Louis A. Goney, the oldest magazine publisber ; Col. John W. Forney; Wililiam Presotsts Suith, of Baltimore; Anthony J. Dresel, F. J. Dreer, Joseph Harrison, J B Lip.incont, and others.

mill on Coouperation.

John Stuart Mill, the celebrated political economist, has ritten a letter to the Illustrated Wetkly News, upon co-operatinn. He says
"I am quite of the opinion that the various forms of co-op eration (among which the one must widely applicable at pres. ent to production, as distinguished from distribution, is what you term the system of small per centage partnerships) are the real and onty thorough means of healing the feud be-
tween capitalists and laborers, and while tending to supertween capitalists and laborers, and while tending to supercede trade uLions, are meanwhile a natural and gradually increasing corrective of their operation. I look also with hope to the ultimate working of the foreign comoination.
"The operatives are now fully alive to this part of the case, and are beginning to try how tar the combination principle among lab.rers for wages admits of its becoming international. as it has already become national, instead of only local, and general, instead of being confined to each trade, withou ${ }^{+}$help from other trades. The final experiment has thus commenced, the result of which will fix the limit of what the trade union princt, ρ le can do. And the larger view of questions which these considtrations open up, and which is already visibly enlightning the minds of the more adanced work people, will dispose them more and more to lork for the just improvement of their condition, rather in be omil,g their own capitalists, or allying themselves on fair unditions with the owners of capital, than in their present uncomfortable and oten dieastrans relations with them."

Double 4 ropenters,

We find in a daily cotemporary-al ways enterprising and interesting, and generally correct - the following item of "

The latest marine contrivance is the double propeller bout being intro ured by the French Transatlantic Cım. pany. Instead of a single screw resting on the keel of the with there are two screws placed one on each side of the Stern with the rudder between. It 18 claimed that the new arrange-
ment will increase speed, work more easly, produce less ment will increase speed, work more enslly, produce less
strain and wear on the vessel, and give a new impulse to the movement by which propellers are slowly crowding sidewheels from the ocean."
It would not be inappropriate to advise our cotemporary, and its thousands of readers, to take the Scientific American, and learn that double propellers have bean used for years. Terms of subscription, three dollars per year in ad-

When Mr. Darwiu aa at ral ara - w, he ound beds of mussels and limpets at a hight of 1300 tre atove the level of the sea. and he expresses his conviction tha these bets of shells had been raised to their present elex a ed position by a serles of such earthquakes as those which have beta expars.
enced in recent times.

American Ralway Master Mechanics Association.
A convention of Railway Master Mechanics was held at Cleveland, Ohio, Sept 30, at which time an organization was ormed, aud the above title adopted The following offcers is, Cincinnati and La Farette Railar; Vice president M N E. Cbapman, of the Clevtland and Pittsburg Railway Secretary, Mr. Frederick Grinnell, of the Atlantic and Great Western; Treasurer, Mr. S. S. Hayes, of the Illinois Central Western; Treasurer, Mr. S. S. Hayes, of the Illinois Central
Railway. A constitution was alopted and signed by the gentlemen present, a large number of railroads being represented. A Committee on Order of Business was appointed, which reported the following subjects for discussion

1. Are steel plates preferable to iron in the construction of locomotive koilers, and if so will the difference in strength, durability, and safety, justify the excess of cost of steel as compared with the cost of the best iron?
2 d , What should be the thickness of steel or iron plates when used in the construction of the outside shell of a fortyeight inch boiler? Also the best and strongest mode of riv. eting and bracing the same?
3d, Wbat water space is deemed best upon the sides and ends of a furnace, b ith for wood and coal burning engines? 4th, How does the durability of steel for furnaces and flue heets compare with that of copper or best iron.
5th, What space should there be between the flues so as to obtain the greatest absorption of heat?
6th, What size flues and what length will give the best re sults in wood and coal burning engines?
7th, What is the experience of the different master mechanics as to the wear and tear of steel tires now in use on their respective roads?
8th, What are the views of this convention on the subject o packing for cylinder and stuffing boxes?
9tb, What are best modes of preventing the formation of lime and other incrustations in boilers?
10th, What is the opinion of this convention as to the present system of safety valves, levers and fixtures upon locomotive and other boilers-is it the safest and best?
11th, Would not the adoption of a "lock up valve," that could not be interfered with by the engineer, tend to the prevention of explosions now so frequent?
Tbe following committees were appointed'to report upon these subjects at the next meeting:
On the articles 1 st to 6 ch , inclusive, Messrs. Hayes, Jauriet, and Anderson ; article 7th, Philbrick, Eddy, and Perry ; article 8th, Brown, Chapman, and Smith; article 9th, Dripps, Tomne, and Ray; article 10th and 11th, Stone, Young and Wells.
On motion a committee of three-Messrs. Kinsey, Cooper, and Congdon-was appointed on valves anti-Iriction, size, etc. Messrs. Losey, Callen, and Little, were appointed a commit tee on the explosion of boilers.
After the transaction of some minor business, the meeting adjourned, to meet at the shops of the Pennsylvania Central Railway at Pittsburgh, Pa , on the second Wednesday of September, 1869

Adulterations in Vinegar

The Prairie Frarmer, has the following on adulterations in vinegar: Since the great increase in the price of high wines. on account of the heavy tax imposed by the Government, there has been a disposition, on the part of vinegar manufacturers, to produce the requisite degree of acidity by means of a cheaper substance than acetic acid, which forms tbe acidity of all pure vinegar, and which can only be produced by tbe oxidation of alcohol. Sulphuric, nitric, and hydrochloric aciss are all en.pioged for this purpose, but in the great ma jority of cases. the former is used, on account of its extreme cheapness and its intense sourness.
This acid may be detected, even in extremely small quan ti'jes, by taking a portion of the suspected vinegar, placing it in a clear glass vessel, and dropping into it a few drops of a solution of the chloride of barium, or the nitrate of barita If the vinegar remans clear after the introduction of this substance, it is sufficient proof that it contains no sulphuric acid. If, on the other hand, the liquid presents a cloudy ap. pearance, it is on account of the formation of the sulphate of barita, which will remain insoluble, whatever acid may be af erwards added.
The detection of nitric acid is not so easy. It may be discovered, however, by first adding to the vinegar placed in a wine glass, a few drops of sulphuric acid, waitıng a few minutes for the mixture to cool, and then dropping in a crys tal of the sulphate of iron, or copperas. If nitric acid is present, a brown ring will form around this substance, in the bottom of the glass.
To detect hydrocbloric or muriatic acid, we have only to bring the suspected vinegar to a moderace heat, and to hold over it a glass rud or shaving of wo d, moistened in aqua ammonia. If this acid be present, it will form white fumes as the two substances come in contact, forming, as they do, chlorde of ammonium, or sal-ammoniac.
Ordinarily, however, it will only be necessary to test for sulphuric acid; but this should always be done before using vinegar, as tbis acid is very injurious to the health, and ex ceedingly liable to destroy substances placed in it to be preserved, as pickles. A few cents' worth of the substance we have recommended under this head, is sufficient to test all the vinegar wbich wou'd be used in a family for many years. The cheapness of sulpburic acid is so great that vinegar may be made from at-or, rather, a subetance that passes by the aame of vinegar-for only a cent or two per gallon. That it is so made, is evident from the fact that carboys of sulphuric acid are $t \cdot$ be found in most of the manufactories of "pure cider vinegar," in this as in other cities.

The first mill in America for making sewing silks and wists by water was built by Rodney Hanks, in Mansfield about fifty-eight years since. The first silk made by ma In 1814 in the United States was made in 1829, in Mansfield ($\$ 814$ silk rose to $\$ 30$ pound. The crnsus of 1810 give us the value of the silk manufacture and raw silk of Massa chusetts and Connecticut for that year - $\$ 29,121$. In Wind bam County, Connecricut, the value of these products in 1825
was $\$ 54,090$. In 1831 Mansfield produced 84,000 worth of silk.

Can Any One Beat This
Old Saybrook, Conn., Sept. 26, 1868.
Messrs. Wheeler \& Wilson
Gentlemen:-I wish to say that I have in my family a Wheeler \& Wilson Sewing Machine," that bas been in almost daily use for the past ten (10) years, and not a thing has ever been done to it in way of repairing; not a screw loose, or any part of it out of order in all that time. It has been used in making coats, vests, and pants, of the thickest of woolen goods, beside doing all kinds of family sewing, and now, this day, the best machine for work I ever saw.
Can any one beat this?
Gilbert Pratt.
Any one who can beat this (and we think many can), wi Messrs. Wheeler \& Wilson, 625 Broadway, New York.

OFFICIAI REPORT OF
 Patents and Claims

Issued by the United States Patent Office.

FOR THE WEEK ENDING OCTOBER 20, 1868

patents are granted for seventeen fears, the following being a schedule of fees:-
 L appeal locommansioner of of Yatenti

On fling application for Desigd (three and a half s
On Hling aplication for Desinn (even years)
On fing apoication for Desien (fourreen vears).
of Canada and Nova Scotia pay $\$ 500$ on application
Fampnletscontaining the Patent Laws ana rull particuiars of tne mod of appty ng or Letters Patent, spec fy ng s ze of model requr red. and much
other nformatton useful to Inventors, may be had gratis by address no other nf ormation use fu to Inventors, may be had gratis by addr
M UNN \& CO., Publishers of the Sc entitc Amer can. New Fork.

83,124.-Car-Cotplivg.-Geotge S. Acker, Kalamazoo, as-

 Cleveland, Ohio.
We clain. 1 .t. An ink.clevatino elastic air sack, constructpd wich a perfo.
ated corking ena. which is of thicker material than the body of the sack,

83, 12\%. Revenue Stamp FOR Liquor Barrels.- George
W. Bishop, Baltimore, Md. Antedated October 6, 1888.

 parbuers pecifed. 8,128 . GRooving Machine. - William H. Bond, and
 the purpose herein described. Lock.-Edward W. Brettell, Eliza

 scribed. -Saw Framp.- Beauman Butler, and Charles F

described. 32 - Hose, and Machine for Making Hose.- George

 83,133.-Feeding Mechanism for Sewing Machines.-J

83,134.-Snap Hook.-Edward A. Cooper. Buffalo, N. Y
 ranged and secured together in the manner degcribed.
$83,135 .-$ VENTING Core.-George U.Cressey, Philadelphia, Pa
 83.136.-Boat Detaching Apparatus.-Thomas L Cuthbert, Cbarleston county, S. U., assignor to himself, Nathaniel Levin, ani
E\&Tard

83,137.-Luck for Trunks. Pianos, etc. -C. N. Cutter (as

 83.138.- TuACK LIF' TER.-Charles De Bergue. Westminster,
Grrat Brituln.

 83,140.-Nozzle for Cans.-Frederick W. Devoe, New

 I clo. int, The knob or rrigger, N , in combination with the vase,for the
or claim, int

 83,143.-PAPER COTING MACHINE. - Spencer Ellsworth,
Lacon, ill.

 83,145 .-W Wshing Machine. - Robert E. Ferguson, Chicago,
 pressed trom tre clothes hy the wrmger, all consti ucted and operatial
art fir the purposes specified.
83,146 . COMBINED SKIRT AND Hose Supporter.-Maria J

 83,149.-P PLASTIC Composition.-Hannah U. Gaskin, Union Vale. N I.
Iclam, plastic composition of flour or starch, treated substantially
as descrived, in $n \rightarrow$ moination with glue, resin, zum, or other equalvalent subsance, as described.
zad The new article if plastic manuf, cture, substantially as described.
83,150 . KkiN Holder. Lorenzo D. Gillett. Rochester, and
 83,151.-Sked Planter.-John M. Gitchell, Haverhill, as

 83,153.-Billiahd Table. - Karl Gudenoge, San Francisco,

 83.154-Combined Plow and Harrow.-Jacob Haessel St, Louis. MoAaclainger ine arrangent of the harrows, D, r.ith the plow, A B, in the
manner and described. 83,155-Corn Harvester.-John D. Hampshire, Paper

 stantially as and for the purboe se terth.
83,156. A OGER HANDLE -T. C. Hendry (assignor to himself

 83,157. - Fastening for Check Hooks and Terrets.-A.

 as and for the purpose set forlh.
83,159.-Rallinoad Axle.-George H. Hoagland, Port Jer-

83,160.-Toy.-.John L. Holt, Providence R. I.

