VENTRILOQUISM.

All bave heard and read of the art of ventrilnquism. How it came to receive such an inappropriate name would be an interesting inquiry, but foreign to our present purpose Nothing in the derivation of the word gives the least clue to the means by which the effect is produced, or the true nature of the effect itself. The word is derived from the Latin venter,
the belly, and loquor, to speak. The Germans have it das the belly, and loquor, to speak. The Germans have it das
Bauchreden, belly-speaking. The old idea that the voice came from the belly has been solong exploded that a mor philosophical name ought to have been adopted ere this
The analogles between light and sound are so remarkable that the most eminent modern scientists make great use of them for purposes of illustration in the lecture room ; ye much as we have read upon the subject of sound and ligh we have never seen these analogies $ъ$ pplied to the elucidation of the phenomena of ventriloquism. We
sucl an application in the present article.
suclı an apulication in the present article.
Ventriloquism bears the eame relation to
Ventriloquism bears the eame relation to other phenomena
of scund that perspective does to optical of sound that perspective does to optical phenomena. The art of perspective cunsists in portraying upon a flat surface the appearance of objects at a dis'ance from it, so that the same effect shall be produced upon the eye by the ,icture as would be produced by the objects themselves In order to do this, the form, tints, and shadows are reproduced, not as they really are, but as they are modified by position and distance Or it may be said to consist in making and arranging a group of objects so that when vieved at a given distance they shal produce the rame optical effect produced by another set of ob jects arranged in different posi+ionsand at different distances
Ventriloquism consists in making and arranging soundsso that when heard at a given distance, they shall produce the
same tffect upon the ear that another set of sounds produce same tffect upon the ear that another set of sounds prod
arranged in differ nt positions and at different distances
It was formerly supposed that some peculiar contormation of the vocal organs was necessary to the ventril lquist, but such is not the case. The means by which sounds can be im itated, are not solely confined to voico. In an article entitled -Possibility of Speech to those bitherto Considered Mutes," published on page 389, Vol. XVI'I., of the Scientific Amer. ICAN, we gave an account of a case in which the larynx was entirely closed, breathing being performed by means of a tracheotomy tube inserted in the windpipe, audible speech not being prevented, although voice, properly speaking, was not possible. Nevertheless the tones produced by the vibrations of the vocal chords may be modified so greatly in pitch and quality, that many sounds differing widely from the tones used in speech and ip singing may be imitated.
A good illustration ot the action of the vocal chorls may be obtained in the followieg manner. Take a short hollow tube, glass or metal, or even a piece of elder with the pith punched out will do Cut it off smoothly, and stretcha piece of elastic rubber over it winding it with a cord to keep it stretched. Now cut with a sharp knife a slit length wise in the rubber slip, so that it shall traverse the entire internal diameter of the tubs. Blow through the opposite end, and a sound will be produced by the vibrations of the rubber. The tighter the rubber is drawn the higher will be the pitch of the sound emitted. The larynx is composed of five cartilages, the upper one being attached to a bone shaped like the letter U , called the hyoid bone. Tbis organ may be distinct ly felt from the outside, and it constitutes the prominence called "Adam's apple." It has two bands of ligamentous tissue-vocal chords-the edges of which are tightened and brought nearer togrther at will wy a set of beautiful and delicate muscles. These bands are illustrated by the slitted rubber above described, the tube upon which it is stretched rep. resenting the windpipe. The forcing of air from the lungs sets these bands into vibration. The sounds thus produced are varied in pitch by the tightening or slack-ning of the vocal chords, and otherwise modified by the shape of the cavity of the mouth.
Sounds from a distance are of course weakened, and they also have another quali'y which may be compared to the indistivetness of outline in objects seen at a distance. Ae the colirs of objects are partially obscured by the color of the medium \{brongh which they are viexed, so sounds coming from remnte places are partially obscured by the sounds whtch rervade even the stillest atmosphere. In proportion as the fine ear of the vevtriloquist can appreciate these modifications will be his success in imitating distant sounds. For as to eee correctly is the first essential to success in drawing, so is hearing correctly the first essential in ventriloquism.
There are many sounds which cannot be imitated by voice merely, such as the singing of birds, the strident noise of a raw, the whistling of a plane, etc. Such and similar unmusical sounds are imitated by means of the teeth, the lips or the soft parts of the mouth Thus the noise of a saw is like that pruduced by hawking, only much prolonged, and modified by the cheeks; singing of hirds may be imitated by whistling through the teeth. The foaming of soda water by breathing with open lips into a tumbler, etc. To persons having a fine ear this amusing art is not difficult, but we ob ject to the name applied to it. It ought to be called sound painting.

New Galvanic Excting Liquid.

M. Delamier in a communication to the Academy of Sci ence, states that the followiag mixture forms an exciting diengraging no deleterious fumes or gas. Dissulve twenty arts by wrigbt of protosulphate of iron in thirty six parts of water. Then stir in seveu parts of a solution of sulphur c acid (equal parte) ; then ip the same manner add one part of diluted nitric acid (equal parts).

mandfacture of whire lead.

White lead, or cabonate of lead, is extensively used in the ris. As a pigment, when pure and mised with linseed oil t produces a beau iful white. It is also the base and vebicle for colors used in painting. Cements for metals are composed mainly of it, and in the preparation of vulcanized rub ber and liquid gutta percha it enters largely. In meit ine it is employed m sed wich linseed oil as an ointment for burns, scalds, ulcers, and excoriations. Of all the different preparaIns of lead the carbonate is the most poisonous to the
man system, inducing what is know as the painter's colic in those engaged in iis manufacture and in painters. This terse engaged in is manufacture and in painters.
terrible disease, even if not fatal, frequently produces local paralysis, and the victim becomes a permanent cripple.
The method of manufacture is simple. The material, usually 1 n pigs, of the purest quality, is melted in a fixed kettle and then rus into very thin sheets. When made by hand, the process of casting these sheets requires considerable skill.
The operator holds in his left band, by a suitable bandle, a snrt of shovel of sheet brass, the sides turned up, and dipping up a small quantity of the melted metal, he desterously throws it over the surface of ehovel, when it almost instantly cools in a thin sheet, the superfluous portion of the metal running back into the kettle. A number of these sheets are loos-ly coiled, forming a sort of cylinder to be submitted to the after action of the acid.
In large concerns, however, this band casting has been superseded by a method very much suneri ir, the in vention of
Mr. Augustus Graham, of Brooklyn, N Y. A series of mulds, Corrtsponding to the shovel just men ioned, and connected to an endless chain, are successively presented to a current of melted lead, formiog sheets in the shape of grates, called "buckles" trom their resemblance to the "arge shoe and knee buckles worn in furmer timps These buckles are discharg $\stackrel{\mathrm{d}}{\mathrm{d}}$ buckles worn in former timps These buckes are discharg
at the further end of the apron and placed in earthen pots, their edges resting on inward projecting ledges about three inches from the bottoms of the pots Each pot contains a small quantity of acetic acid, not however reaching the lead buckles. The pots have holes near the top and they are set on a floor covered with tan, the boles of the pots opposite each other to insurp a free passage, from one to the other, of b arde ovtr which is sprend another layer of \tan and on this another layer of pots, and so on to the hight of perbaps twenty feet. The whole is covered with a thick layer of twent
tan.
Then

Then the process of decomposition begins. The tan fer ments, generating heat, which causes the vinegar to evapo rate and its vapors to circulate among the lead. This goes on for several weeks and the white carbonate falls down in
snowg heaps. When the process is supposed to be comple snowy heaps. When the process is supposed to be comple the carbonaction of the acid ceases, the pile is taken whic have not been reouced, called "blue lead," are cleansed of their white.coating and returned to the melting pot.

The carbonate or white lead in the form of powder is then ashed in tanks with water. These tanks are placed higb enough to draw off the lead paste from their bottoms to im-
mense pans called dryiny kilns, which have false bottoms. oe tween which and the true bottoms steam is admitted to has ten the ϵ vaporation of the water. When dry the powdered
lead may be packed realy for market, but usually it is ground in oil in which form it is generally sold.
It is seldom, however, that it is offered pure; sulphate of bargtes being extensively used to adult rate it. This substance is nearly as heavy as white lead, and is perfectly white but not so brilliant. It has not the body of white lead, but is not so easily affected in color by noxi us gases, white lead being soon discolored by sulphureted hydrogen gas.

the mandfacture of straw board.

The manufacture of straw board is a growing industry in this country. Notwithstanding it is comparatively nodern, its increase has been so great, that it has nearly trebled the vrice of straw during a period of twenty gears. dlthough based upon the same gentral principles as paper making, it differs from the methods employed for fine pavers, in several important particulars, some of the processes bring
and others not required in the latter being necessary, The first process c msists in boiling the straw with quick lime. This is done in a woocien digester which takes steam from a boiler. The stra wis packed in la yers with the lime be t een them, and the whole boiled for from ten to twelve hours according to circumstances. The rationale of this process is based upon the nature ot the material. Scraw is cros. posed of a tube of wo dy fiber and cellular tissue, having up n its outer surface a cuticle comp sed of silicates of potas. sa and soda with some tree silica. The wondy fiber a,socontains some silica. To the silicious cuticle the atraw owes in great part its strength. The some cuticle also covers the leaves of the different grains and grasses, and gives them the sharp cutting edge of ten observed in "the coarser varieties The boiling process is therefore chemical in its effect. The
reaction which takes place is the reaction which takes place is the combination of the lime and the silica, which leaves the straw in a soft and pulpy state. The mass is now ground by a machine nimilar in principle to that used for grinding the ordinary paper pulp, namely: a revolving cylinder upon which knives are fixed which play between a series of fired knives on a bed place. The atraw until it is reduced to a uniform pulp.
The entire mass is now dra wn into a vat, which conatains water and is kept constantly agitated by a series of revolving arma, A wire g ge cylindtr in so adjusted that it will re--
volve partially beneath the surface of the fluid mass. The
pulp adheres to the gauze, and is carried around to anocher cylinder around which an endless belt of felt runs. The lat. ter cylinder presses upon the gauze and by this means the pulp is made to adhere to the felt, and condensed so as to give it enough consistency to be taken up by another cylinder called a forming cylinder. This cylinder is une of a pair made of polished metal, and by them the pulp is strongly c mpressed. The pulp is wound around the former until the proper thickness is reached ; this is determined by an indi cator. Along the forming cylinder there is a groove planed out, through which the operator now rapidly passes a wooden knife thus severing the soft board; and at the same time he unwinds the sheet and removes it. These sheets are cut so as to form other sizes, and then dried which completes the process. Woolen raga are sometimes ground and mixed with the straw pulp. This makes a muct darker colored and heavier board, which is worth considerably more than the pure straw board.
The boards as thus manufuctured are applicable to a great variety ot usetul purposes, among which bookbinding, button making, and paper box manu'acture are most prominent.

WEALTHAND ITS SOURCE.---A GRACEFUL RECOGNITION.
It may be fashionable to decry the decadence of the age, he facilities of gettiog rich by the circumstance of our latest (and may it be our last) war, and tw barp u on the selfishness of war contractors, and capitalists, but while such men as George W. Childs, and many others we might name exist, they, by their acts, give the lie to these unfounded calumnies on the present generation. It is but a shirt time ago that we noticed the generous act of Mr. Childs, in providing each of his employés with a li'e insurance policy, and now we find the same geverous spirit manifes ed in providing a resting place for the remains of the merabers of the Philadelphia Typographical Society, in the donation of a plot, in the Woodlands Cemetery, Philadelphia, comorising an area of two thousand superficial feet inclosed with a marole wall, and having a banasome marble gateway.
On Saturday, Oct. 17th. this plot was dedicated by proper ceremonials, and accepted, in a series of reeolutions, by the Philadelphia Typographical Society. Among the distinguishe guestsand sueak-rs, who took part in the cerem mies, were Hon Ellis Lewis, late Chief Justice of the Supreme Court of Pennsylvania, who is the oldest member of the New York Typographical Society, and one of the oldest practical printers in the United Siates ; Hon Morton McMichael, Mayor of Philadelphia, the oldest newspaper publisher in the city; Henry C. Carey. LL D., the oldest book pablisher ; Louis A. Goney, the oldest magazine publisber ; Col. John W. Forney; Wililiam Presotsts Suith, of Baltimore; Anthony J. Dresel, F. J. Dreer, Joseph Harrison, J B Lip.incont, and others.

mill on Coouperation.

John Stuart Mill, the celebrated political economist, has ritten a letter to the Illustrated Wetkly News, upon co-operatinn. He says
"I am quite of the opinion that the various forms of co-op eration (among which the one must widely applicable at pres. ent to production, as distinguished from distribution, is what you term the system of small per centage partnerships) are the real and onty thorough means of healing the feud be-
tween capitalists and laborers, and while tending to supertween capitalists and laborers, and while tending to supercede trade uLions, are meanwhile a natural and gradually increasing corrective of their operation. I look also with hope to the ultimate working of the foreign comoination.
"The operatives are now fully alive to this part of the case, nd are beginning to try how tar the combination principle among laburers for wages admits of its becoming international. as it has already become national, instead of only local, and general, instead of being confined to each trade, withou ${ }^{+}$help from other trades. The final experiment has thus commenced, the result of which will fix the limit of what the trade union princt, ρ le can do. And the larger view of questions which these considrrations open up, and which is already visibly enlightning the minds of the more adanced work people, will dispose them more and more to lork or the just improvement of their condition, rather in be comil,g their own capitalists, or allying themselves on fair unditions with the owners of capital, than in their present ancomfortable and oten diearrons relations with them."

Double wropellers

We find in a daily cocemporary-al ways enterprising and interesting, and generally correct - the following item of "

The latest marine contrivance is the double propeller bout being intro ured by the French Transatlantic Cım. pany. Instead of a single screw resting on the keel of the widh, there are two screws placed one on each side of the Stern with the rudder between. It 18 claimed that the new arrange-
ment will increase speed, work more easly, produce less ment will increase speed, work more enslly, produce less
strain and wear on the vessel, and give a new impulse to the movement by which propellers are slowly crowding sidewheels from the ocean."
It would not be inappropriate to advise our cotemporary, and its thousands of readers, to take the Scientific American, and learn that double propellers have bean used for years. Terms of subscription, three dollars per year in ad-

When Mr. Darwiu aa at ral ara - w, he ound beds of mussels and limpets at a hight of 1300 the atove the level of the sea. and he expresses his conviction tha these bets of shells had been raised to their present elerated position by a series of such earthquakes as those which have beta expass.
enced in recent times.

