From iron founding to the manufacture of gingerbread; in agriculture, in dreing, in painting; indeed it would be zery dces not depend more or less upon this most important substance. A friend aske over our shoulder, "Do you include lawyers and clergy men?" Most certainly we do. The paper upon yers and clergy wen?" Most certainly we do. The paper upon
which, and the ink with which lawyers and clergymen write, which, and the ink with which lawyers and clergy men write,
involve in their manufacture the use of sulphuric acid. Try involve in their manufacture the use of sulphuric acid. Try
something else. Hesitatingly-"boot-blacks." Out again. No blacking without the immediate or remote use of surpburic acid. Once more. "No, I give it up if the two extremes are not exempt. I'll none of the means.'
The processes of manufacturing sulphuric acid are various. The fuming Nordhausen acid is distilled from the sulphate of iron, popularly known as green vitriol. The acid as thus obtained is in a state of he highest concentration it can attain tained is in a state of he highest concentration it can attain
in a fluid form. A proper redistillation of this acid produces in a fluid form. A proper redistillation of this acid produces
a white fibrous mass of a silky a ppearance-solid sulphuric a white fibrous mass of a silky appearance-solid sulphuric
acid. This is called anhydrous suiphuricacid, the teron anacid. This is called anhydrous suiphuric acid, the term an-
hydrous meaning without water. This is a most remarkable substance. Notwithstanding it is the most concentrated form in which the acid can he obtained, it has no acid properties. It is tough, waxy in consistence, and may be molded in the hands without danger. The concentrated liquid acid would scon reduce them to a state resembling pounded raw beefsteak. Anhydrous sulphuric acid, or concentrated liquid sulphuric acid is a very thirsty substance. Its fondness for water is only equaled by the di.gust which that fluid seems water is only equaled by the diヶgust which that fluid seems
to ex-ite in some indi viduals of the human species. If it canto ex"ite in some individuals of the human species. If it can-
not get water elsewhere the acid will absorb it from the air. The anhydrous acid thus becomes liquid after a time, and the liquid gradually becomes weaker by exposure. It is there fore necessary to keep it from the air. Advantage is taken of this property to dry certain substances from which it is
difficult to extract water. An open veesel containing acid is placed under a bell-glass, together with the substance to be dried. Being thus imprieoned together, the acid appropriates to itself all the inoisture which the bell-glass incloses, and so without artificial heat a substance may be perfectly and so without artincial heat a substance may be perfectly
dried. Its attractinn for water is so great that when poured dried. Its attraction for water is so great that when poured
into the latter it hisses like a red hot iron Strong acid exposed to the air will absorb water enough to double its weight. Mix four pints of this acid with one pint of water, and there will be considerably less than five pints of the misture. This shows that the attraction of sulphuric acid for water is very strong indeed, sufficient to compress it more than a pressure of hundreds of tuns to each square inch of surface would do if applied to that fluid separately. Were we not right in calling it a Goliath ?

We. have already said that very large quantities of this substance are used. In England alone over one hundred thousand tuns are used annually, and its manufacture is conducted on a large scale in quite a different manner from the method above described for making the Nordhausen acid. That meth 1 d is only practiced at Nordhausen, in Saxony, from which the acid takes its name. In order to understand the manufacture of sul phuric acid as it is conducted on a large scale, we must first know something of nitric aqid. Nitric acid is composed of nitrogen and oxggen. These two gases mixed constitute the bulk of the atmosphere which we breathe, but when chemically combined in the proper proporbreathe, but when chemical a combined in the proper propor-
tions they form the nitric acid of chemistry-the aquafortis of the shops-an acid ranking next in strength and imoortance to sulphuric acid. The salt known as nitrate of soda is comp sed of nitric acid and soda. When sulphuric acid is poured upon nitrate of soda, the salt is decomposed, the sulphuric acid unites with the soda to fore sulphate of soda, and the nitric acid becomes free. It is liberated in the form of a gas, and in this state it is used in making sulphuric acid. Remember its components-oxygen and nitrogen. When sulphur is burned in air the oxggen of the air combines with it, and forms sulphurous acid. This is also a gas, but like it, and forms sulphurous acid. This is also a gas, but like
most other acid gases it is freely absorbed by water. One most other acid gases it is freely absorbed by water. One
half more osygen than it already contains would, if combined with it, change it to sulphuric a a id. The process of making sulphuric acid can now be understood. First, sulphur is burned to form sulphurous acid; second, nitric acid is made to give a portion of its oxygen to transform the sulphurous acid into sulphuric acid; then the compound of nitrogen and oxygen which remains (deutoxide of nitrogen) seizes oxygen from the air (though not as much as was ab sorbed at first by the sulphurous fumes), becoming peroxide sorbed at irst by the sulphurous fumes, becoming peroxide
of nitrogen, only to be again robbed of its oxgyen by the sulphurous acid, and so on ad libitum, the sulphuric acid, as fast as it is tormed, combines with steam which is generated for that purpose, and is furiher absorbed by water. The engraving illustrates the apparatus by which this process is effected. A A are furnaces in which the suluhur is burned; in the current of he ted gas is suspended an iron pot, B, containing nitrate of ooda and oil of vitriol. The nitric acid vapors are thusintimateiy mingled witu the sulphurous fumes, and pass through flues into the chamber, FF. This cbamber is of lead, and is supporied on strong timber framework. Water two or three inches in depth is placed upon the floor of the chamber, D D, to aboorb the acid. Jets of steam are admitted from the boiler, E, through the pipes, CCC. An exit flue, G, permits the escape of nitrogen and nitric oside, the only gases which can escape in a properly managed chamber. Some modifications of this process have been invanted by Gay Lussac anilothers, by which saving is made in the amount of the salt used, but the general principle remains unchanged. The feaden cbambers are frequently of enormous size, some of them veing three hundred feet in length by twenty in width and twelve to fifteen feet in hight. The by twenty in width and twelve to fifteen feet in hight. The
acid as drawn of from the chambers is too dilute for uee in acid as drawn of from the chambers is too dilute for use in
the arts. It is therefore concentrated in lead, glass, or plat-
inum vessels, lead being used only for acids whose specific
gravity is not required to be more than $1 \cdot 720$. This is the brown acid of commerce, and it usually contains many impu rities. The concentrated acid 'f commerce is much stronger having a specific gravity of $1 \cdot 842$, according to Bineau.
We have already noticed two acids, namely, sulphuric and sulphurous, formed by the union of sulpbur and oxygen, as well as one formed by the union of sulphur and hydrogensulphureted hydrogen. There is still another oxacid, containing a small proportion of oxygen, called hyposulphurous acid. All of the oxacids combine with numerous bases to form salts extensively used in the arts. It would extend this article too much to specify these applications and describe chem, they would fill volumes. But there is one class of these salts we must say something about, namely, the alums. There are several kinds of alums, of which the common alum of the shops is a type in its c , mposition and its qualities. If you examine a crystal of alum $y \backsim u$ will see a white, partially transparent substance, which has a sweetish astringent char acteristic taste. From such an examination you would bardly guess that it is composed of five different elements, yet such is the case. Two of these components are gases, oxygen and hydrogen; two of them are metals, aluminum and potassium ; and the other is sulphur, which forms nearly one eeventh of its entire weight. Throw your crystal upon a hot stove, and it will melt and froth and bubble, and finally become a dry, hard, white, and opaque mass. You have partly decomposed the salt by the process ; it has lost $\frac{21}{7} \frac{9}{4}$ of its former weight. What passed off was only water, which is composed of hydrosen and oxygen; what remains is com-
posed of four elements, and sulphur now composes nearly one fourth the entire welght. In this state it is called anhydrous alum. The alums are in large demand in the art of dyeing, and the manufacture of the common alum is a large and growing industry. At some other time we may describe the process of making alum in full.
Take a lump of charcoal and a roll of brimstone and place them side by side. Nothing, to one unacquainted with the wonders of chemistry, would seem more improbable than that these hard and opaque substances could unite to form one of the clearest, most limpid and colorless fluids known. That is so, however, Charcoal is nearly pure carvon. Sulphur and carbon unite to form the bivulphide of carbon, a fluid so clea: and of so high a refracting power that it has been used, inclosed in a triangular glass box, for the prism of that most wondefil instrument, the spectroscope, of which you have heard and read much, and will probably hear a great deal more ere another decade passes.
Take a piece of the ordinary rubber sold at the present time in the shops; put it on a fireshovel and hold it over the coals; in a short time it will soften and fry, and presently it will commence burning with a blue flame. It is sulphur which burns with the biue flame, a very large proportion of the substance called india-rubber being sulphur. By a peculiar process this rubber can be rendered hard as horn, and in this state it is now used for combs, brush and knife han-
dles, and even for the plates upon which dentists fix artificial eeth.
Sulphur is also largely used for oieaching, its fumes while burning producing that effect. Stram goods are thus whitened.
We might fill this paper with tine enumeration of the uses of sulphur and its compounds. Any chemist will tell you that we have on'y skimmed over the surface of the surjoct, We have omitted to mention many of the properties of sulphur, some of which have given rise to much speculation. Sulphur is found plentifully distributed in the crust of the earth, but is most abundant in volcanic regions, one of the princiral sources being the Island of Sicilr, where it is found in an uncombined state. There is perhaps no other substance, unless it be iron, upon which the arta and refinements of civilization are more dependent. The world could infinitely better afford to lose all of the precious metals and precious stones, rather than be deprived of its sulphur deposits. The thought may serve to renderthe substance more palata ble, when your physician prescribes it in the future.

Who Ate Roger williams?

Steele's "Fourteen Weeks in Chemistry," says:
"The truth that animal matter passes from the animal back to the vegetable, and from the vegetable to the animal singdom again, received a curious illu, tration not long since. "For the purpose of erec, ing a suitable monument in mem. ory of Roger Williams, the founder of Rhode Island, his private burying ground was searched for the graves of himself and wife. It was found that everything had passed into oblivion. The shape of the coffins could only be traced by a black line of carbonacoous matter. The rusting hinges and nails, and a round wooden knot , alone remained in one grave; while a siugle lock of braided hair was found in the other. Near the grave stood an apple tree. This bad sent down two main roots into the very presence of the confined dead. The larger root, pushing its way to the precise soot occupied by the skull of Roger Williams, had made a turn as if passing around it , and followed the directi $)$ of the backbone to the hips. Here it divided into two branches, sending one along each leg to the heels, when both turned upward to the thes, One of these roots formed a slight crook at the knee, which made the whole bear a striking resemblance to the human form. There were the graves, but their occupants had disap. peared; the bones even had vavished. There stood the thief The gooliat in, waple was complete. The organic act of robberg The spoliatinn was complete. The organic matter, the flesh The eneses of Roger Williams had passed into an apple tree. The elenents had been absorbed by the roots, transmuted
into woody fiber, which could now be burned as fuel, or
carved into ornaments, and bloomed into fragrant blossoms, which delighted the eye of the passer-by, and scattered the sweetest perfume of soring; more than that-has been conated into luscious fruit, which, from vear to year, had bee gathered and eaten. How p
Who ate Roger Williams?',
mandfactorine, mining, and railroad items.
The Agawam Nall Works, Mass, resumec operations on the 12 th inst.
The expense for labor upon the Holyoke dam, in Massachusetts, is 8800 The consumption of four in the city of Boston is said to be one million barels per annum.
Europe is said to own $8953,400,000$ of A merican Railroad, State, and Gov-
Enment bonds.
A firm at East Hoston use six tuns of tron per day in the mannfacture of
It is stated that preparations are on foot to re-open the Schenectady and Athens route of the N. Y. Central Rallroad
 This bings its entitre suberip ${ }^{+}$'on up to $\$ 860,000$.
There are sisty thousand penple engaged in watchmaling in Switzer land They tura out over a million of watches each year.
The reftiery of Messrs. Rockefeller, A ndrews \& Flagler, at Cleveland, Ohio, roduces $1,100 \mathrm{barrels}$ of $\mathrm{f}+$ fined petroleum per day.
It 18 estima ated thatby 1870 there will be 50000 miles of railway completed The iron bridge over the Eo ousatonic river at Grat Barrington, Mass., is completed. It is an elegant and expensive structure.
Thore are at present 557 woolen mills in Ohio, Michigan, Illinots, Indian Wisconsin, lowa. an Minnsota, Nit a capital oi $\$ 7,500030$.
The Directors of the Chicago and Northwettern Rairoad have fully deter
wined to resumo construction upon the \mathbb{W} inona and St. Peler line wined to resume construction upon the winona and st. Peter line.
The Chicago, Burlinglon. and Quincy Rairroad Company 1 sbullding new
feight depot at Quincy, to accommodate trs Increasing business. eight depot at Quincy, to accommodate tis increasing busices, A single manufictory in Maine has this season packed $1,600,000$ cans of
green corn, and durng the spriug and fall has canned nearly 600000 freen corn, and during the spriug and fall has canned nearly 600.000
lobsters.
The Bay City Iron Company have begun to bulld works at Bay Citv, Mich., in wbich che
sive scale.
The town of Farmington baving refused to loan its credit to the Connectiat Western Rail road the Company have changed their route and left Farmingon out in the cold.
The highest mire in the world is the Potosi silver mine, 11,375 feet above he level of the sea. The deepest is a salt m ine in Westphalia, $, 2,55$ feei beurtace of the ocean.
A beet root sugar manufactory is about to be established in Buena V ista County, Iowa. The macninery is to come from France at a cost of $\$ 100,000$.
A. M. Wheeler, of Halifax, bas cut ah $\stackrel{m l o c k}{ }$ tree from which was made welve thousand shing les, all clear, first rate shingles, leaving timber enough or five or six hundred feet of boards, and lotz of good wood for fire, beside tree-fourths of a cord of bark.

A watchman at the car shop in st. Albans, wen to a dipe the search of a ipe the other night. Not flnding it he lighted a match and fire from it ropped 1 to the drawer which contained about a qnarter of a pound of gunarms were badly burned.

gerent Gurrian and furign きatents.

Varnish.-Isaac Ranney, Delaware, Ohio -This in vention has for its object the proun
Carriage Stre.-George Panchot, Hastings, Minn -The object of th's invenuou is to provide a neat, simple,
step for wagons and other carriages.

Bugar-top Fastening.-D. s. Early, Hummelctown, Pa.-The object of his invention is to provide a simple ann cheap device for securely fastening
he top of a buggy to the seat, whoh, by simply turowing down or up a hinge ont in the fastening rod, will instantaneously lock the top to the seat or oose it therefrom.
Car Coupling.-J. P. Freeman, Dalton, Whitfeld. Ga.-This invention has or its object the construction of a simple and eff cient coupling for rallroad and, an automatc coupling of new and greatily improved construction and operation.
Hartester - Isaac H. Palmer, Lodi, Wis.-In this invention, the plattorm, pon which the gratn is delivered by the reet. is placed directly bennd the atter, and is tilen every revoluton or the reel or of one of the draf wheels, so as to deliver the
to receive another sheaf.
Frnce.-Obadiah Love, Saxenburgb, Pa.-The object of this invention is to obtain a neat, light. cheap, and portable wooden fence, which io cap able
of being eassly converved into a temporary sheiter for shepp and other aniequised to hold them together.

Manuracture or Shot.-Wm. Glasgow, Jr., and John G. Wood, St. Louis, o. The obj. ci of this invention i to do away with the tigh lofty towers ead through a denser medium than anr. such as mercury, glycerin, sirup us, etc., he remperature and density of which will be reguly the sizeof shot to be made.
Machine for ©Drisging Millstonse.- Wm.Bold, Sheboggan Falls, Wis, The ubject of this invention is to accumplish the cutting or dressing of Corn Harvister..-John D. Hampstire, Paper Mills Post Office, Md.-This Corn Harvister.- - John D. Hampshire, Paper Mills Post Offce, Md.-This
invention relates to a new and improved machine for harvesting maize or Indian corn.
Railroad Switch.-Hiram Becbwith, Grass Lake, Mich. - Th is invention relates to an imp porement in the method of ope-atingtrail road switches. and consists in the nethor of securing the switch lever and holding it in place King-bolt and Whifpletref Plate for Wherlid Vhitioles.-Levi Adams. Amberst, Mass.-This invention relates to a new and improved king. bolt and whitfle
are \cdots "tained.
fump Valve.-J.A. Nichols, Paterson, N. J.-This invention relates to an mpruvement in the methid of coustructing pump vaives. betng more par-
ticularly designed for steam fre eugines, but whicu may be appliea to other pumping evgmes.
lubricating detioe for Steam Crlinders.-George Girty, Ranier, Or steam cylinders, and it consists of a novel arrangement of valves, oil cham steam cylinders,
ber, and lever.

