Improvementin Joiners' Planes.
The objects of the invention shown in the accompanying engraving are to give a control over the thickness of the shaving and depth of the cut by the pressure of the hand, and to prevent the drag of the bit on the board when the plane is drawn back. The stock of the plane is made in two parts, the upper portion, A, which holds the bit, being pivoted to the lower part, B, at the rear end by a screw, C, passing through metal guide plates, D, on each side the plane. The front end of the upper portion is raised from the lower poris raised from the lower por-
tion by means of a spring, E, tion by means of a spring, E ,
which, when the pressure of which, when the pressure of
the hand on the front of the the hand on the front of the
plane is withdrawn, lifts the up plane is withdrawn, lifts the up per portion together with the
bit or plane iron. The amount of this movement is governed by the thumb screw, F. From this description and the engraving, which is partly in section, the construction and advantages of this device may be plainly seen his device may be plainly seen.
Patented through the Scientific American Patent Agency August 25, 1868, by George Buckel, who may be addressed at 17 Prospect street, Detroit, Mich.

tHE PROTUBERANGES ON THE SUN.

Among the several scientific expeditions sent to the East by the European governments for the purpose of observing the late total eclipse of the sun, was a photographic company under the auspices of the North German States. This party was led by the distinguished scientist and photographer, Dr. Vogel, whose interesting contributions often appear in our paper. A new photometer, or instrument for indicating the actinic power of light at all hours of the day, has been lately patented in this country by him. Dr. Vogel has communi cated to the Philadelphia Photographer, and also to the London Photographic Neros, some interesting particulars concerning his photographic eclipse experiences, among which are the following:
We were not spared the sufferings generally imposed on the traveler who passes through the Red Sea at the hot time of the year. This sea, inclosed on both sides by deserts, and connected with the Indian Ocean only by a very narrow channel, forms an isolated bay, where, in consequence of the channel, forms an isolated bay, where, in consequence of the
customary calms and want of currents in the water, the temcustomary calms and want of currents in the water, the tem-
perature increases in the same degree as you advance toward perature increases in the same degree as you advance toward
the south. The perspiration flows down your body just as if you were in a steam bath; the whole of the skin is heated and irritated, and happy is he who finds a spot on deck where a slight breeze cools him for a moment. We were glad to reach the more airy ocean, and anchor near Aden on the 2d of August.

The aspect of this town is not in the least an agreeable one. You see a quite bare, savage mass of rocks, interrupted by some works of fortification, warehouses, shops, and coal sheds. The heat was supportable as long as we were not at work, but as soon as we began the slightest exertions the discomfort was very great.
At the day of the eclipse we rose at four o'clock in the morning. It was the task of the North German expedition to make a photographic view of the eclipse during its totality. For this purpose we had a long telescope with a lens of six inches, without difference of focus, and with a focal distance of six feet. This lens, constructed by Steinheil, afforded a solar image of three quarters of an inch in diameter, which solar image of three quarters of an inch in diameter, which
was taken upon a photographic plate by means of an ordinary was taken upon a photograph
sliding chest for two images.

The totality of the eclipse at Aden was about three minutes long (in India five minutes); nevertheless, we had chosen Aden for our station because there were already photographic observers in India, and because the totality appeared at Aden about an hour earlier than in India. Therefore a comparison of the ifferent results would enable us to decide the question, if the protuberances appearing at a total eclipse of the sun were changing in the course of time or not.
Our task was now to get within these three minutes as many views of the phenomenon as possible. For this purpose we had previously exercised ourselves in the employment of the photographic telescope, like artillerymen with their guns.
Dr. Fritsche prepared the plates in the first tent, Dr. Zenker put the sliding chests into the telescope, Dr. Thiell exposed, and I myself developed in the second tent.
We stated that it was possible in this way to get six images (three plates of two images) during three minutes.
When the decisive moment was fast advancing, the sky, hitherto covered with clouds, showed some openings, through which the sun, already covered partially by the moon, was to be seen. The landscape around was illuminated by the strangest light, a medium between moon and sun light.
The chemical strength of light was exceedingly weak. A proof plate gave a wholly exposed image of the cloud after fifteen seconds. The sun cresent became smaller and fifteen seconds. The sun cresent became smaller an
smaller, and the opening in the clouds seemed to increase. smaller, and the opening in the clouds seemed to increase.
The last minutes beiore the totality (which began at twenty The last minutes beiore the totality (which began at twenty
minutes past six o'clock) went rapidly away. Dr. Fritsche and myself crept into the tents, where weremained, consequently we have seen nothing of the totality. Our work be-
gan; we exposed the first plate five and ten seconds, in orde ${ }^{r}$ to know what was the just time.
Muhammed, our black servant, brought the first attempt into my tent. I poured the iron developer over the plate, eager to know what was to come. At this moment my light was extinguished. I called forlight, but nobody heard me, as all were about their task. I stretched my right hand out of the tent, holding the chest in the left, and happily caught a small oil lamp, which I had previously prepared. And now

BUCKEL'S ADJUSTING PLANE.

I saw the image of the sun appearing on the plate. The dark margin of the sun was surrounded by a series of peculiar elevations, the other side showed a strange hook; the phenomenon being exactly the same in both views. My joy was great, but there was no time for enjoyment. I soon re"The sun is coming forth!" exclaimed Dr. Zenker. The totality was over. All this seemed to have been donein a moment When I developed the second plate I perceived only very weak traces of an image. The clouds had veiled the sun at the very moment of the exposure. The third plate gave two brilliant views, with protuberances at the lower margin Glad to have reached so much, we washed, fixed, and var nished the plates, and immediately took some copies on glass, which were to be dispatched to Europe separately.
I here give you a design of the plate. Over the margin of

the sun we see the protuber-
ances, $a b$; on the opposite side we perceive the strange hook already mentioned. It teenth of the sun's diameter and it would therefore in real ity be 12,000 miles high. On the third plate we got the margin.

Great and Small-Microscopes.

A correspondent of the Boston Journal of Chemistry says: "There is a curious principle (which may be perhaps called
physiological) involved in the terms great and small. It is this: that one has no conception of magnitude except by comparison of one object with another; and no one has o can have any knowledge of the appearance of magnitude to any other one. That is, I cannot convey to you my idea of the size of any object except by comparing it with my idea of the size of some other object. If I say that a thing appears
to me to be one inch long, I merely compare it with an inch rule; but I do not, cannot know, that an inch appears to you as long as a foot does to me, or the reverse. Again, when one looks at an object that is completely isolated (to the vision) from all other objects with which it might be compared, we form an idea of its magnitude entirely arbitrary. For exam ple, the moon in a clear sky must present exactly the same apparent magnitude to every observer. This is determinable mathematically ; yet it is notorious, that, of a dozen people who may be asked their idea of the moon's apparent size, no two may agree.
"This same fact comes out in the use of the microscope. Almost all novices in the use of that instrument ask what is the magnifying power, as if the answer to that covered the main value of the instrument, thinking that the more it magnifies the better it must be; when in fact power is a sec-
ondary consideration in the value of a microscope, great power of inferior quality being obtainable at very little cost, and that what is called the magnifying power is calculated from an arbitrary standard. The apparent size of any one object in the field of the microscope is by all observers governed by their estimate of the apparent diameter of the illuminated field in which the object is seen. There are modes of determining this by comparison with other objects, but as the in strument is generally used, nothing is presented to the eye but the 'field,' and no other object is compared. Under these circumstances, different persons make widely diff rent esti-
mates of the size of the field. I once tried the experiment of obtaining their estimate f the apparent size from ten individuals, all of them accustomed to the use of the instrument, and they varied from $9 \frac{1}{2}$-inch diameter down to 2 -inch (my own case). I have since met an individual who estimated it 15 inches. Any one possessed of a microscope can try this experiment, and it will be found to afford a company much amusement, and excite great surprise.
" Now, it is self-evident, that to the one who made the esti mate of $15-\mathrm{in}$., any object of, say $1-1000$ of an inch in length, would seem to be seen $7 \frac{1}{2}$ times as large as it seemed to me, although we must have seen it exactly alike. Thus, the only conception of magnitude is comparative."

Cook's Telegraph.

We have before us as we write some very beautiful specimens of printing by Cook's improvement of the late Gaetano Bonelli's automatic printing apparatus, just received from Paris. The printing is done in fine bold letters, the words well compacted and spaced, and printed not on a continuous strip but line under line, as in a printed circular. It is certainly a very admirable result, and indicative of a perfection in tele graphy and a use of the subtile powers of electricity which must enhance the acceptability of the telegraph to the public. The great advantage of the autographic process is that it renders error next to impossible, or rather, that it does not leave to the action of outside causes, or the use of arbitrary characters whose relations to each other may be misunderstood, or to the vagaries of an operator's brain as he manipulates his messages, letter by letter, the opportunity to change their composition. The message is set up and compared before it is transmitted, and if it goes at all, must go exactly as first prepared
The paragraph before us is one of 35 words, transmitted in 20 seconds, a speed equal to 315 messages of twenty words each per hour. This fact is suggestive of a future in which the entire labor of our offices will be changed, and the operation of transmission become simply mechanical and comparatively unlaborious. We will not be surprised if, in time, par ties who prosecute much of their business by telegraph should ties who prosecute much of their business by telegraph should
supply themselves with telegraphic type, arrange their messages for transmission in a case adopted for that purpose, prove them before sending to the telegraph office, and the operator have nothing to do but pass them through the manipulating instrument. By such processes as these only can large quantities of matter be sent over the wires without the fatigue connected therewith, and, what is equally desirable, with the utmost assurance of correctness which mechan ism can afford.-Journal of the Telegraph.

Ceditorial §ummaxy.

The Velocipede Mania is beginning to set in, and with the opening of the spring months we may expect to see our parks and highways thronged with this cheap and agreeable substitute for the horse. The two-wheeled velocipede is not exactly the thing wanted for general use, as it will be some what difficult for novices to keep upright upon it. A nicely adjusted vehicle with a double hind wheel would be most desirable for all classes. The ladies will need something of the kind, and for obvious reasons; unless they don the Bloomer costume, they will not be able to ride on the two-wheeled machine. It appears to us, judging from the numerous let ters we receive on the subject, that there is to be a brisk de mand for a good velocipede, and whoever gets into the field first will find it a profitable speculation.

Geological Negatives.-Mr. James Thompson, of Glas gow, Scotland, has contrived a new method of producing photographic negatives of geological specimens. He saws from the stones thin slices containing fossil remaing or other specimens; these when polished are so thin and transparent that they may be used as negatives for photographic printing upon the usual sensitive paper. Beautiful prints are thus obtained, having all the fidelity of nature itself. Large numbers of these fossil negatives have been prepared by Mr. bers of these fossil negatives have been prepared by Mr.
Thompson, and he has undertaken to supply the British Museum with duplicates.
IT is proposed to remove Yale College from its present site to a more suburban one, thereby securing to the institution an accession offunds from the sale of its property, which, from its central location, is of great value. The value of this property is sufficient, it is said, to to purchase and fit up suitable grounds, erect buildings, and leave an endowment of a quarter of a million dollars, should the proposal be acted upon. The removal of the college is also said to be worthy of consideration for sanitary reasons.

The Powell Scientific Expedition ascended to Longs Peak, in the Rock y Mountainrange, on the 23d inst. After making the usual scientific observations a monument was erected as evidence of the visit. In it was placed a tin case coutaining a record of the observations with date, names of party, etc, A flag was planted and left flying. This peak is a celebrated landmark. Its hight however is not remarkable, being only 14,250 feet above the sea level.

The English scientific papers are criticising severely our ew war steamers. They say that the entire new steam mahinery of the United States navy is the most costly, most cumbrous, least efficient, and most utterly ridiculous in the world, and that no other power in Christendom would toler ate such blunders in its national engineering practice.

Comets Self-Luminous.-The London Daily News, says that the special points of interest attaching to the two comets f this year-Borsen's and the new one-is the remarkable discovery that both comets are gaseous and self-luminous, and that the latter consists of volatilized carbon.

Cider may be preserved sweet for years, by putting it up air-tight cans after the manner of preserving fruit. The cider should be first sett)ed and racked off from the dregs, but fermentation should not be allowed to commence before canning.
Ir is stated as a fact worthy of note, that London was recently exempt from accidental or incendiary fires, for a period of twelve hours.

