ON A PIECE OF CHALK."-A LECIURE TO WOREING. MEN.

BY PROFESSOR HUXLET, F. R. S., ETC

If a well were to be sunk at our feet in the midst of the city of Norwich, the diggers would very soon fixd themselves at work in that white substance, almost too soft to be called rock, with which we are all familiar, as 'c chalk'"
Notonly here, but over the whole country of Norfolk, the well-sinker might carry his shaft down many hundred feet without coming to the end of the chalk; and, on the sea coast where the waves have pared away the face of the land which breasts them, the scarped faced of the high cliffs are often wholly formed of the same material. Northward, the chalk may be followed as far as Yorkshire; on the south coast it and breaks into the Nedle of the shores of Kent it supplies that long line of white cliffs to which England owes her name o ${ }^{+}$Albion.
Were the thin soil which covers it all washed a way, a curved band of white chalk, here broader and there narrower might be followed diagonally across England from Lul worth in Dorset to Flamborough Head in Yorkshire, a distance of over 280 miles as the crow flies.
From this band to the North Sea on the east and the Chan rel on the south, the chalk is largely hidden by other deposits; but, except in the Weald of Kent and Sussex, it enters into the very foundation of all the south asterac unties Attaining, as it doe in some places, a thickness of more than a thousand feet, the English chalk must be admitted to be a mass of considerable magnitude. Nevertheless, it cover
bat an insignificant portion of the whole area occupied by the chalk formation of the globe, which has precisely the same general character as ours, and is tound in detarhed patches, some less and others more extensive than the English.
Chalk occurs in northwest Ireland; it stretches over large part of France,-the chalk which underlies Paris being in fact, a continuation of that of the London basin; runs
through Denmark and Central Europe, and extends south ward to North Africa; while eastward it appears in the Cri mea andin Syria, and may be traced as far as the shores of the Sea of Aral in Central Asia.
If all the points at which true chalk occurs were circum scribed, they would lie within an irregular oval about 3,000 miles in long diameter,-the area of which would be as grea 2s that of Europe, and would many times exceed that of the largest existing inland sea,--the Mediterranean.
Thus the chalk is no unimportant element in the masonry of the earth's crust, and it impresses a peculiar stamp, varying with the conditions to whichit is exposed, on the scenery of the distric's in which it occurs. The undulating downs and rounded coombs, covered with sweet grassed turf, of our
inland chalk country, have a peacefully domsstic and muttoninland chalk country, have a peacefully domestic and muttonor teautiful. Bit on our southern coasts, the wall-sided cliffs, many hundred feet high, with vast n vedles and pinnacles standing out in the sea, sharp and solitary enough to serve as perches for the wary cormorant, con'er a wonderful beauty and grandeur n on the chalk heaslands. And in the Eas chalk has its share in the forrati,n of s?me of the most ven erable of mountain ranges, such as the Lebanon.
What is this wide-spread component of the surface of the earth and whence did it come?
You may think this no very hopeful inquiry. You may not unnaturally suppose that the attempt to solve such problemas these can lead to no result save that of entangling the in of verification.
If such were really the case, I should have selected some other subject than a " piec \rightarrow of chalk" for my discourse. But in truth, after much deliberation, I have been unable to think of any topic which would so well enable me to lead you to see how solid is the foundation upon which some of the most startling conclusions of physical science rest.
A great chapter of the history of the world is written in the chalk. Few passages in the history of man can be supported by such an overwhelming mass of direct and indirect evidence as that which testifies to the truth of the fragment of the history of the globe, which
read with your own eyes to-nignt.
Let me add, that few chapters of human history have a more profound significance for ourselves. I weigh my words well when I assert, that the man who should know the true
history of the bit of chalk which every carpenter carries about history of the bit of chalk which every carpenter carries about
in his breeches pocket, though ignorant of all other history in his breeches pocket, though ignorant of all other histury,
is likely, if he will think his knowledge out to its ultimate esults, to have a truer, and therefore a better, conception of this wonderful universe, and of man's relation to it, than the most learned student who is deep read in the records of humanity and ignorant of those of nature. The language of the chalk is not hard to learn, not nearly so hard as Latin, i you only want to get at the broad features of the story it has to tell; and I propose that we now set to work to spell tha
tory out together. We all know that if we " burn" chalk the result is quick lime. Chalk, in fact, is a compound of carbonic acid gas an lime, and when you maine it very hot the carbonic acid flie: away and the lime is left.

* By this method of procedure we see the lime, butwe do not see the carbontc acid. If, on the other hand, you were to powder a little chalk, and drop it into a good deal of strons vinegar, there would be a great bubbling and fizzing, anst finally a clear liquid in which no sign of chalk would appear Here you see the carbonic acid in the bubbles; the lime, dis solved in vinegar, vanishes from sight. There are a great
many other ways of showing that chalk is essentially noth
ing but carbonic acid and quicklime. Cnemists enunciate the result of all the experimeuts which prove this, by stating th
chalk is almost wholly composed of "carbonate of lime." It isdesirable for us to start from the knowledge of act, though it may not seem to help us very far towards what we seek, for carbonate of lime is a widely spread substance, and is met with under very various conditions. Ail Sorts of limestones are com nosed of more or less pure carbonate of lime. The crust, which is otten deposited by waters which have drained through limestone rocks in the form of what are called stalagmites and stalactites, is carbonate of ime. Or, to take a more familiar example, the fur on the inside of a tea kettle is carbonate of lime ; and, for anything hemistry tells us to the contrary, the chalk might be a kind of gigantic fur upon the bottom of the earth-kettle, which is kept pretty hot bel ω w.
Ler us try another method of making the chalk tell its own history. To the unassisted ege chalk lo ks simply like a very loose and open kind of strne. But it is possiole to grind a lice of chalk down so thin that you can see thr ugh it,-until it is thin enough, in fact, to be examined with any magni'y ing power that may be thought desirable. A thin slice of the fur of a kettle might be made in the same way. If it were examined microscopically, it would show itself to be a more or less distinctly laminated mineral substance, and nothing ore.
But the slice of chalk presents a totally different appearance when placed under the microscope. The general mass fit is made up of very minute graaulos; but embedded in hismatrix are innumerable bodies. some smaller and s ime larger, but, on a rough average not more than a hundredth of an inch in diameter, having a well-defined shape and struc ture. A cubic inch of some specimens of chalk may contain hundreds of thousands of these bodies, compacted together with incalculable millions of the granules.
The examination of a transparent slice gives a good notion of the manner in which the components of the chalk are ar ranged, and of their relative proportions. But, by rubbing u ρ some chalk with a brush in water, and then pouring off he milky fluid, so as to obtain sediments of different degrees of fineness, the granules and the minute rounded bodies may be pretty well seoarated from one another, and submitted to microscopic examination, either as opaque or as cransparent objects. By combining the views obtained in these various methods, each of the rounded bodies may be proved to be a beautifully constructed calcareous fabric. made up of a number of chambers, communicating treely with one another The chamber d bodies are of various forms. One of the com monest is something like a badly grown raspber y, being formed of a number of nearly globular chambers of d'fforent sizes congregated togetaer. It is called Globigerina, and some specimens of chalk consist of little else than Globigerince and granules
Let us
Let us fix our attention upon the Globigerina It is the he spoor of the gante we are tracking. If we canlearnwha it is, and what are the condicions of its existence, we shal see our way to the origin and past history of the chalk.
A suggestion which may naturally enough present itself is, that these curious bodies are the result of sume process of aggregation which has taken place in the carbonate of lime that, juat as in winter, the rime on our windows simulate the most delicate and elegantly arborescent foliage,-proving that the mere mineral, water, may, under certain conditions assume the outward form of organic bodies,-so this mınera substance, carbonate of lime, hidden a way in the bowels of the earth, has taken the shape of these chambered bodies. I am not raising a merely fanciful and unreal objection. Very learned men, in frmer days, have even entertained the notion that all the formed thing 4 , und in rocks are of this nature; and if no such conception is at present held to be adm ssible, it is because long and varied experience has now shown that mineral matter never d"es assume the form and struc ture we find in fossils If any one were t, try to persuade you that an oyster shell (which is also chiefly composed of carbon ate of lime) had crystallized out of sea-water, I suppose you would laugh at the absurdity. Your laughter would be jus tified by the fact that all experience tends to show that oys ter shells are formed hy the agency of ovsters, and in no other way. And if there were no betspr reasons we should be jus product of anything but vital activity
Happily, however, better evidence in proof of the organic ature of the Globigerince than that of anal gy is forthe ming It so happens that calca reousskeletons, exactly similar to the Globigerince of the chalk, are being formed, at the present m ment, by minute living creatures, which flourish in multi tudes, literally more numerous than the sands of the sea hich is coverge extent of
The history of the discovery of these living Globigerince, and of the part which they play in rock building, is singular enough. It is a discovery which, like others of no less scien tific importance, has arisen, incidentally, out of work devoted to very different and exceedingly practical interests.
When men first took to the sea they speedily learned to nok out for shoals and rocks, and, the more the burden of their ehips increased, the more imperatively nu-cessary it became for sailors to ascertain with precision the drpth of th arey traversed. Out of this necessity grew the use he lead and sound line; and, ultimately, marine surveying which is the rec rrdiug of the form of coasts and of the dep of the sea, a-certained by the sounding lead upon charts. At the sawe time it became desirable to ascertain and dicate the nature of the sea bottom, since this circumstanc greatly affects its goodness as holding ground for anchors.
Some ingenious tar, whose name deserves a better fate than
the oblivion into which it has fallen, attained this object by arming the bottom of the lead with a ium of grease to which more or less of the sand or mud or broken shells, as the case mighi be, adhered, and was brought to the surface. But however well adapted such an apparatus might be for rough nautical purposes, scientific accuracy could not be expected from the armed lead, and to remedy its detects (especially when applied to sounding in great depths), Lieutenan Brooke, of the American Navy, some years ago invented a mostingenious machise by which a considerable portion o the superficial layer of the sea hottom can be scooped up and brought up from any depth to which the lead descends.

In 1853, Lieutenant Brooke obtained mud from the bottom of the North Atlantic, between Newfoundland and the Azores at a depth of more than 10,000 feet, or tw (miles, by th 9 help of this sounding apparacus. $\quad \mathrm{Th} \leftrightarrows$ specimens were sent for ex amination to Enrenberg of Birlin, and to Bailey of West Point, and those able microscopists found that this deep sea mu 1 was almost entirely composed of the skeletons of living organism.-the greater provortions of these being just lik the Globigerince already known t, occur in the chalk.
Thus far the w irk had been carried on simply in the inter ests ot science, but Lieutenant Brooke's method of sounding acquired a high commercial value when the enterprise of laying down the telegraph cable between this country and the United States was undertaken. Forit became a matter of immense importance to know, not only the depth of the sea over the whole line along which the cable was to be laid but the exact nature of the bottom, so as to guard against chances of cutting or fraying tue strands of that costly rope. The Admiralty cons quencly ordered Caotain Davman, an old fr'end and shipmate of mine, to ascertain the depth ove the while line of the cable, and to bring back specimens of the bottom. In former days such a command as this might have sounded very much like one of the impossible thins which the young prince in the Fairy Tales is ordered to do beore he can obtain the hand of the princess. However, in the months of June and July, 1857, my friend pertormed the task assigned to hin with great expedition and precision, without o faras I kn,sw, having met with any reward of that kind The specimens of Atlantic mud which he procured were sent o me, to be examined and reported upon.
The result, of all these operations is that we know the con thurs and nature of the surface-soil covered by the North At antic for a distance of 1,700 miles from enst to west, as well as we know that, of any part of the dry land
It is a prodigious plain, one of the widest and most even plains in the world. If the sea were drained off, you might rive a wagon all the wey from Valentia, on the w st coas of Ireland, to Trinity Bay in Newfoundland. And, except upon one sharp incline, about 200 miles from Valentia, I am not quite sure that it would even be nece sary to put theskid on, so gentle are the ascents and descents upon that long route. From Valentia the road would lie down $h \cdot 1 l$ for abou 200 miles to the point at which the b stom is now covered by 1,700 fathoms ot sed-wat-r. Then would come the central plain, more than a thousand miles wide, the in ${ }^{\circ}$ qualities of the surface of which would be hardly perceptible, though the depth of the water upon it now varies trom 10,000 to 15000 eet; and there are places in which Mont Blanc might be sunk without sh wing its peak above water. Beyond this, he ascent on the American side commences, and gradually leads, for about 300 miles. to the $\mathbf{N e w}$ foundland shore
Almost the whole of the bittom of this central plain (which xtends for many hundred miles in a north and south direc ion) is covered by a fine mud, which when brought to the sur face, dries into a grayish white friable substance You can write with this on a blackboard, if you are so inclived, and to the eye it is quite like very soft, grayish chalk. Examined chemically, it proved to be composed almost wholly of car bonate of lime; and if you make a section of it in tbe same way as that of a piese of chalk was made. and view it with the microscope, it presents innumerable Globigerince embedded in a grannular matrix.
Thus this deep sea mud is substantially chalk. I say sub tantially, because there are a good many minor differences but as these have no searing upon the question immediately before us-which is the nature of the Globigerince of the chalk -it is unnecessary to speak of them.
Globigerine of every size, from the smallest to the largest, are associated together in the Atlantic mud, and the chambers of manv are filled by a soft animal matter This soft ubsrance, is, in fact, the remains of the creature to which the Globigerince shell, or rather skeleton, owes its existence,and which is an animal of the simplest imaginable descrip ion. It is, in fact, a mere particle of living jelly, without defined parts of any kind,-without a mouth, nerves, muscles, or distinct organs, and only manifesting its vitality to ordi ary observation by thrusting out and retracting, from all parts of its surface, long filamentous processes, which serve for arms and legs. Yet this amorphous paricle, devoid of verything which in the higber animals we call organs, is capable of feeding, growing, and multiplying; of separating rom the ocean the small prooortion of carbonate of lime -hich is oissolved in sea-water ; and of building up that sub stance into a skeleton f.r itself, acc rding to a pattern which can be imitated by no other known agency.
The ootion that animale can live aads fourish in the sea at be vast depths from which apparently living Globagerince have been brought up does not agree very well wi h our usual conception respecting the conditions of animal life and it is not so absolutely impossible as it might at first sight ppear to be, that the Globigerince of the Atlantic sea-bottom do not live and die where they are found.
As I bave mentioned, the soundings from the great Atlan
granules which have been mentioned and some few other cal careous shells; but a small percentage of the chalky mudprrhaps at most some five per cent of it-is of a different nature, and consists of shells and skeletons composed of silex or pure flint These silicious bodies belong partly to those lowly vegetable organisms which are called Diatomacece, and partly to those minute and extremely simple animals termed Radiolarice. It is quite certain that these creatures do not live at the bottom of the ocean but at its surface,- where they nay be obtained in prodigious numbers by the use of a properly constructed net. Hence it follows that these silicious organisms, though they are not beavier than the lightest dust, must have fallen in some cases through fifteen thcusand feet of water before they reached their final resting place on the ocean floor. And considering how large a surface these bodies expose in proportion to their weight, it is probable that they occupy a great length of time in making their burial journey from the surface of the Atlantic to the bottom.

But if the Radiolarice and Diatoms are thus rained upon the bottom of the sea from the superficial layer of its waters, in which they pass their lives, it is ovviously possible that the Globigerince way be similarly derived ; and, it they were so, it would be much more easy to understand bow they obtain their supply of tood than it is at present. Nevertheless the negative and positive evidence points the other way. The skeletons of a full-grown deep sea Globigerince are so remarkably solid and heavy in proportion to their surface as to seem little fitted tor floating; and, as a matter of fact, they are not to be found along with the Diatoms and Radiolarice in the uppermost stratum of the open ocean.
It has been observed again, that the abundance of Globigerince in proportion to other organisms of like kind, increases with the depth of the sea; and that deep-water Globigerince are larger than those which live in shallo wer parts of the sea; and such facts negative the supposition that these organisms have been swept by currents from the shallows into the deeps of the Atlantic,
It theretore seems to be hardly doubtful that these wonderful creatures live and die at the depths in which they are found.
However, the important points for us are that the living Globigerince are exclusively marine animals, the skeletons of which abound at the bottom of deep seas; ::nd that there is not a shadow of reason for believing that the habits of the Globigertnce of the chalk differed trom those of the existing species. But of this be true, there is no escaping the conclusion that the chalk itself is the dried mud of an ancient deep sea.

iCE MACHINES.
 (Continued from page 196.)

Since publishing the former article, a pampnlet has appeared in Germany containing a short descripti,n of the modern ice machines, in which, however, the American inventions and improvements, as usually is the case with European publications, are totally overlooked. We possess here a decided a vantage over Europe, in the fact that Americans al ways keep themselves posted about European inventions and improve. ments, while Europe has not yet come fully to the persuasion of the great importance of our inventions and improvements, and how useful it would be, always to take due notice of them.
We see from the German pamphlet referred to, that five different forms of the machine described by us, have been patented in Europe, the first by Vranken in Cologne and Meller in Essen, a second by Grubeaud, a third by Penant, a four'h by Fruju, and a fitth by Toselli. None of them pos sess any striking peculiarity or advantage, their differences being of the same mechanical kind as in the different cream freezers so well known in this country, and on which there exist several scores of United States patents. In general they all resemble our cream freezers, of which many could be used for ice machines of this description; perhaps some
them have already been patested in this country as such. them have already been pated ted in this country as such.
We will only add a few more freezing mixtures to our list
We will only add a few more freezing mixtures to our list page 196 :

As these mixtures are made simply with water, and not with acids, the ingredients may be regained by evaporation and recrystallization of the salts, and therefore they are much less expensive than the solutions in acios, mentioned on page 196. It is curious that also here heat must be employed in order to return to the salts their cold-producing qualities, and in this sense the chemical ice machines described are related to those of the second class to be described next week, which perate entirely and solely by the previous application of heat.
The difierent makers of these machines recommend special solurions, accoiding to the amount of success they obtained with them, in their machines. So the chloride of ammonium, saltpeter, and wat r (page 194) is recommended by Vranken; by Grubraud, nitrate of ammonia, and water (see ab:sve); Penant recommends bydrated glauber salts and muriatic acid (hydrated sulphate of sodu and hydrochloric acid); Toselli recom mends crystallized soda and ammoniacal salt (he means probably carbonate of soda and nitrate of ammonia, or chloride of amonium, or sulphate of ammonia, which are cheaper than the nitrate of ammonia.)
In order to be successful in these manipulations, they must
be made with as large quantities as possible, the differen salts must be well powdered, and, as well as the liquids used, be cooled before hand as much as practicable, the mixing of the ingredients must be done as rapidly as possible, and great care taken that no heat can be absorbed anywhere, except from the water to be cooled or frozen.
One more point must be observed in relation to this method of producing cold. When the salts are too dry, no cold will be produced, even heat, as in place of liquefaction, at first a solidification of water in the salt will take place, which of course in solidifying will set its latent heat of fluidity free, the same as takes place in pouring water on quicklime, which is anhydrous lime. This is illustrated in the cooling method of Berzelius, described on page 196 . When the chloride of calcium* is too dry, as is the case with the fused anhydrous substance, it will commence with absorbing water, and solidifying it, to form first a hydrate. The heat thus produced in some portions, may counteribalance to a considerable extent the cold produced by other dissolving particles; from there the prescription of Berzelius, to let the salt, by powdering it and parsing it t rough a sieve, absorb water from the atmos 1, here, previously to usiag it.

Cerrespondenfe.

The Editors are ressionients.

What Makes the Diference?,

Messrs Edrtors.-An article which appeared in the Scienific American, of Oct. $14 t \mathrm{~h}$, commenting upon the difference in social position, pay, etc, of mechanics and clerks, does not seem to me to touch the real point of the subject discussed.
In the first place, labor, perse, is not degrading, nor is it generally considered so, but many men working as mechanics do not take the pains to qualify themselves for sucial position. They affect to despise the points of etiquette, and other things considered essential in society, and cry out against them. There is no reason why a man working only ten hours per day should nothave abundant time to study and perfect himself in all the rules of conduct for the best society, as it is called, that is the society of educated and refined people.
A young man who takes a little care to learn, and practice the rules of good society, and read works of a character tending to elevate and improve his mind will find plenty of opportunilies for associating with people of the soccalled first circles. In the circle of my acquaintance I know of many persons, who started in life as working mechanics who are now leaders of society, and I know others, having abundant means. so far as bare money is concerned, to gratify every desire and move in the highest circles, who are content to grovel along without any social intercourse, so to speak. It is not wealth alone that gives the entrée to refined circles, but it is mind, and the attention to points of etiquet.e which have become establishet in the course of centuries of attriti in among crowds of gentle-men and gentle-women, known in ordinary conversation as "gentlemen and ladies."
Now clerks in stores are selected for their gentlemanly style of behavior; it is an essential qualification for a clerk that he should be polite and w+ll behaved, and it is on account of their having tuese qualificatious that they are better received in society than mechanice. Let a mechanic how. t ver, qualify himself for society and study to make himself agreeable, as clerks are obliged to be, and he can have the enurée of as good society as the clerk, in fact, my experience is that the workingman or mechanic, has advantages in social intercourse above the mere clerk, because, as a g,neral in learning a trade improves him in more pays than one, if he only aims for superiority.
a Mechanic.
[Our correspondent falls into the error that there is a distinction generally made in favor of clerks over mechanics, in rugard to their admittance into good society. We repeat that we know of no society in this country-beyond a select and exclusive class to which neither would be tlligible under ordinary circumstances-that makes any such distinction.
We dissent from the opinion that the servile and puppyish manners acquired in the counter-jumper's profession are superior in any respect to the manly independence yet general courtesy of mechanics. We affirm that as a class mechanics are infinitely better informed, have better minds, better health, look better and feel better, live better, earn more money, and use it more wisely than clerks in dry goods and fancy goods stores. Of course we dont include every kind of clerks in our expressions of opinion, but we do believe, man was created for a nobler purpose than peddling dolls or attending millimers' shops.
Our correspondent has missed the entire drift of our article, if he failed to see that the difference which we alluded to was in favor of the bricklaper, as compared with the fancy goods clerk, in his manliness, his mental ability, and his cour age, and that these qualifications, not his greater wages, were the true secret of his power when be "strikes" and the want of them the very reason why the fancy goods clerk, is a fancy goods clerk, and why he will always bow his neck to
the goke, and submit to the exactions of his employers.-EDS.

Center of Gravity.

Messers. Edirors:-The difficulty with Mr. McCarroll, about
the centers of gravity in revolving wheels, arises from the
fact that he does not. or bas not, considered the difference be t ween gravity (which is au immutable orinciple) and centrifugal force, which is changeable-being a mechanical torce and not a principle. Gravity has no motion, but is the same every instant of time; and, hence, a wheel cannot he put in such rapid motion as to change the center of gravity. If it could, then we could have perpetual motions. Gravity can not be cbanged by mechanical force, bence nature will, in every case, find its own balance; and thus no such thing as a self-moving machine, or perpetual motion, can be brought nto existence.

John S. Williams.

Thermometers-How to Select.

Messrs. Editors:-I have just purchased a thermometer, made by Sargent \& Co., and, on comparing it with one of Kendall's thermometers, I find a uniform difference of two degrees between the two instruments. There must be an error somewhere; but where is it? It cannot be in the tubes for the improbability of two tubes having the same imperfec-tions-which must be the case, other things leing equal-to give uniform results, amounts to almosi a moral impossibil ity. It cannot be in the graduations, or in the scales, for the same reason. If there be an error is the graduation of one of the tubes, or one of the scales, there must be precisely the same prror in the other tube or scale, to give a uniform difference of t wo degrees. It is possible that the discrepancy is due to such a combination of errors in the two instruments as exactly compensate for each other, and so give uniformity of exactly compensate for each other, and so give uniformity of
action ; but this is too improbable to merit a moment's atten action; but this is too improbable to merit a moment's atten
tion. The fault must, then, be sought for in the adjustment of the tubes to the scales. By the aid of a microscope I find, upon the Kendall tube, certain scratches or file marks, evi dently made by the graduator, corresponding to the figures on the scale- $32,60,100$, aod 140 .
On the Sargent tu es are similar marks, corresponding to figures 34,62 , and 92 . As the file marks upon the former occur at the definite figures or landmarks-32 "Freezing point," 60 " Temperate," 100 , and 140 ; while those upon tne atter at 34,62 , and $92-1$ conclude that the Kendall tube is properly adjusted to the scale, and that the Sargent tube is raised two degrees too high-an error which cannot be corrected without taking the instrument apart, and enlarging the upper hole in the brass scale. If the above premises and deductions are well founded, the inference is that both the instruments are perfect in all their parts, with the single exception that one of them is imperfectly put together.
It is a notorious fact that hardly two cheap thermometers xactly agree at all temperatures; but by comparing oae instrument with another, and noticing whether the difference in the hight of mercury, if any, is uniform, at different tem peratures; whether the file marks, which can generally be found by sliding the point of a knife along the sides of the tube, occur at definite figures or landmarks, of which 32 will always be one, and whether a portion of the mercurial column, broken off by a slight jar, occupies equal or varying lengths in different parts of the tube, it is not difficult to as certain where the error if any is, and whether it is remediable.
J. H. Parsons.

Eating Clouds.

Dr. Livingston, relating his adventures on Lake Nyassa hus tells one curiosity which he fell in with: During a por tion of the year, the northern dwellers on the lake have a harvest which furnishes a singular kind of food. As we ap proached our limit in that direction, clouds, as of smoke aris ng from miles of burning grass, were observed bending in a southeasterly direction, and we thought that the unseen land in the opposite side was closing in, and that we were near the end of the lake. But next morning we sailed through one of the clouds in our own side, and discovered that it was neither smoke nor haze, but countless millions of minute midges called "kungo" (a cloud of fog). They filled the air to an immense hight, and swarm upon the water too light to sink in it. Eyes and mouth had to be closed while passing through this living cloud, they struck upon the face like fine drifting snow. Thousands lay in the boat after emerg ing from the clouds of midges. The people gathered these insects by night and boiled them into thick cakes, to be used as a relish-milions of midges in a cake. A kungo cake an inch tbick, and as large as the blue bonnet of a Scutch plow man, was offered to us, it was very dark in color, and tasted not unlike caviare or salted locusts.

Presto Change.

The Richmond Nevis, says a man in that city ismanufacturng butter by a chemical process at the rate of one pound and nine ounces from one pint of milk and two eggs. It says: We know that the statement seems improbable; we know hat people will turn up their eyes incredulously, and say it can't be done, it can't be good,' etc., but the proof of the pudding is in the eating. The operation is performed every morning at nine o'clock, and every evening betore sales com mence at Mr. Smith's auction room, in the presence of crowds and doubters are invited to go and see the butter made, and see it weighed, and then to taste it before they pronounce the thing impossible. The butter can be made in any churn crock, or jar."
We have not the least doubt of the truth of this statement. We have heard that a French cook will make plenty of good soup from pebbles, provided a sufficient allowance of other materials are incorporated. So in this case we see no reaso to doubt that one pound and nine onnces of butter can be made from a pint of milk and two eggs, provided the chemical employed in the process be one pound and a little over eight ounces of butter.

