abandon his attempt to reach the Pole in that direction. When De Haven went in command of the American expedition in search of Sir John Franklin, he was told in his letter of instructions that when he had gone far up into Wellington Channel he was to look for an open sea to the north ward and westward. He did so, and saw in that direction a "water sky." A few years later Captan Penny found open water there, and sailed upon it. We have seen that Dr. Kane, in 1855, sa \boldsymbol{m} open water from the northern extremity of Kennedy Cbannel, and our readers will scarcely need to be reminded of the evidence which Dr. Hayes' recent vjyage affords of an Arctic Ocean extending far to the north of Greenland. In the year 1818, again, Barringt.n and Beaufoy called the attention of scientific men to the evidence of Dutch captains, who asserted that they had approached within two or three degrees of the Pole, that they had there found an open sea, which w,

Dr. Kane, also, infers the former existence of open water further south than its has beendiscovered, from the traditions of the Esquimaux. Such traditions rarely are found to be without good foundation.
Admitting the existece of a permanent, open sea around the pole. the question, "can it be reached by vessels?" is natural in view of the efforts now being made to accomplish that object. So far, every attempt to penetrate to it has been prevented (unless it were actually reached by Penny) by an impenetrable wall of ice. Navigators have sought in vain for leads through which their vessels might be forced, and many have been forced to abondon them in the ice-locked chavnels which have closed only too surely behind them. Is there a permanent and fixed break somewhere in this ice. wall, a gate ever so narrow, ever so perilous by which access can be obtained to the mysterious Polar Sea? As yet practically undecided the question finds some who believe yes, ans others who believe no. Both parties find arguments to sustain their position. It is argued that the tides wbich rise and fall in the open Polar Sea, could not occur unless there were some large inlet communicating with the main ccean. To this it is answerpd that the sea is sufficiently large to admit of an independent tidal wave. Maury, while aomitting that the ice wall would be a complete obstacle to the tidal wave in the Atlantic, takes this ground. He says: "I apprebend that the tidal wave from the Atlantic could no more pass under the icy barrier to be propagated in the seas beyond than the vibrations of a musical string can pass a fret on which the muscian has placed his finger. These tides must have been born in that cold sea, having their cradle about the North Pole."

Others hold that the tidal wave of the Atlantic finds its way into the Arctic Ocean round the northeastern shores of Greenland, although barred off on the side of Kennedy Channel. An adverse opinion is lastd upon the a, pearance pre sented by the planet Mars.whose atmosphere resembles great ly that of the earth. The white spots at the poles of Mars Dever entirely vanish, although, in the summer, which that planet has, as well as the earth, they become less conspicuous It ie argued from this that the open sea at the Nurth Pole is not permanent in form or positinn. It is also argued wit much force that the statements of different navigators confirm this view; as where one has found open water others have failed to find it at the same season, and vice versa. The question must ye \pm remain open, as there are approaches to the pole which have never yet been thoroughly expl red. A def nite answer will, no doubt, be given by the combined obser-
vations and discoveries of the different expeditions already vations and discoveries of the
far on their way to the porth.
The German expedition, when last spoken, was in $80 \frac{1}{2}^{\circ}$ north latitude, having failed to reach the eastern shores of Greenland in latitude 75°. At that time it was still sailing northward. The S wedish expedition, when last heard from, was in latitude 80°. The route which these expeditions have taken, although on many accounts very promising, has ne vertheless been fruit u of of tailure to other navigators. In 1607 Hudson reached $81 \frac{1}{2}^{\circ}$. Cabot had previously reached a higb latitude in the same waters. In 18.27 Parry made the attempt to reach the Nortb Pole ly sailing as far north from Spitzbergen as possible, and then resorting to boats and sledges. A feward had heen offered the party, if they should succeed in reaching eigbty-five degrees, but they only reached a point 120 miles distant from that latitude. Here they were carried back by the ice as fast as they could advance upon its surface, the entire ice field being found to be floating steadily toward the south.

Whether the present expeditions are to be more successful remains to be shown. Meanwhile we shall be obliged to re main in suspense, as probably the last news of them has reached us until their return, if that event ever takes place.

american silk manofacture.

The entirevalue of raw silk produced in theworld amounts annually, in round numbers, to two hundred and fifteen milapnually, in round numbers, to two hundred and fifteen mil-
lions of dollars. The value of silk goods manufactured in lions of dollars. The value of silk goods manufactured in
France, amounts annual'y to nearly one hundred and filty millions dollars. The United States have been and are still the best customer for French silk goods. Possessing mechaniçal skill equal to any nation on earth. and unequaled manufacturing facilities, we have yet allowed our guld to fiow out in a constant current, to purchase French goods. For this there have been two reasons. First, the difference in the current rates of labor existing in Europe and America; and sec-
ond, the hitherto interior quality of goods produced in this ond, the hitherto interior quality of goods produced in this
country. The first of these reasons might have been reme country. The first of these reasons might have been reme died by a proper tariff upon imported silks; but so long as
the second remained, there would have be nen nearly the same
demand for manufactured silks from abroad, as the in'erior article produced in this country would not have found favor will always be preferred, without regard to its price
B th the price.
America are now removed America are now removed. The present tarlff on fortign silks enables our manufacturers to compete with European
labor, while the quality of goods now produced here is in labor, while the quality of goods now produced here is in
many instances equal if not superior to the imported. In order to bring the manufacture of silk to its present state of perfection in the United States many difficulties had to be urmounted some of which we shall nntice at length.
The peculiarities attending the manufacture of texture rom any particular fiber, depend upon the nature of the fiber itself. The machinery used must be adapted to these peculiarities. Cotton is worked dry, the fibers admitting of being drawn in any direction; that is, two fibers of cotton laid side by side woll slide one upon another either way. Two fibers of wool laid thas would be found to slide only in one direc tion. the wool fiber being barbed or serrated. Wool, there fore, can not be drawn out like cotton, and it requires to be oiled in order to reduce the tendency of the fibers to cling to each other in the process of carding. Flax needs to be wetted before it can be spun, in order that the fibers may be evenly drawn out, and distributed so as to make a uniform thread Silk fiber differs very materially from any other used in extile fabrics.
Silk is a bardened thread of gum, secreted by larvae o different species of the Phalaena genus of insects. The thread is composed of two filaments, which are spun simultaneously and cemented together. When wound into the cocoon, the coils mutually cobere to each other, but readily seoparate upon being immersed in warm water, so that the entire thread can be reeled off. As many of these filaments as may be desired to give a thread of any required size are reeled off together, and become cemented so as to form one thread. In tbis state it is the "rawo silk" of commerce. When this thread is iwisted, tr add to its strength and firmness it is technically called "singles." Two or more singles twisted together form ram silk, which is generally used for the shoot or weft in weaving. When two singles are twisted together in an posite direction to that in which the singles are twisted throoon silk or organzine is the name given to it, and the pro cess is called throwing. The lengths of filaments vary from 300 to 600 yards in a single cocoon. When the filaments are to be joined no knot is necessary, the natural gum on the silk being sufficient to effect the junction. The raw silk used in America is chiefly imported. It comes in the form of pack ages, each containing more or less siik as well as different qualides according to the quarter from which it is obcained The several operationsthrough which this silk passes in formng the different textures, are winding, cleaning, spinning doubling, throwing reeling, dyeing, and weaving or braiding In each of these operations, special regard is necessary to the
peculiar nature of the material, its elasticity being a promipeculiar natn
On a recent visit to the establishment of the Dale Manufacturing Company, in Patterson, N. J., we witnessed the en ire process of silk manufacture, and as the success realized by these and other works settles ald doubts as to the entire practicability of the silk manufacture in this country, we beieve that we can not furnish more valuable matter of infor mation to our readers than a description of them
The ground plan of the mill is in the form of a T, the main portion having an extension from its center 50 feet in width unning 100 feet back from the rear. The main part of the building is 275 feet in length, 50 feet in width, and four tories high The building was designed by and built under the supervision of Thos N. Dale, Esq., President of the com pany, the entire labor being performed by day's work. The walls are twenty inches in thickness, and the building is as substantial a specimen of architecure as any structure we have seen designed for manu'acturing purvoses.
A portion of the lower floor is occupied by a spacious office which opens into a large storeroom. In this storeronm is an enormous fire-proot safe for storing the raw material, etc. capable of containing millions of dollars worth of goods. From the lower floor of the extension above referred to, project two minor extensinns, one each side. The first of these contains the dye works of the establishment, and the second the engine and boiler. These are so situated that in case any explosion should ever take place, the main building would not be jeopardized. The engine is of the well known C rlise make, and is of eighty horse-power. The entire building is heated by steam, and ample provision is made for the extinc
tion of fire wbich, however, is less likely to occur than in cot ton manufactories. The portion of the first floor not occupied by the office and storeroom is devoted to winding and clean ing. The raw silk is here placed upon reels, and from thenct wound un to spools. The reels are six sided, and are techni cally called swifts. They are adjustable to suit the sizes of the hanks, and balanced so that they will not break the threads by irregular motion. By means of weights enough friction produced upon their axes to keep the threads stretcbed The bobbins have each an independent motion, and any one
can be taken off and replaced without interfering with the thers. An eye through which the tbread pa-ses to the bob tin has a traverse motion, by which the thread is wound obliquely, and lateral adhesion is prevented. Constant care watchfulness, and intelligence are necessary in this as well as in all the subsequent operations.
Cleaning is performed by fixing the hobbios horizontally on plain spindles, and passing the thread between two adjustble pieces of metal. Should a knot or other unevenness chance to be on the thread, these pieces of metal frevent it from passing through, the plate of metal is depressed and the
bobbin is lifted of the friction roller which gives it motion, The stopuage being perceived by the attendant, the defect is removed and the work proceeds. The silk being cleaned, it is next spun. The second fivor is devoted to this operation. The spinning is, however, only the twisting of the threads, the real spinning having been done in the outset by the silk worm. The twisting 18 effected by passing the threads re. quired from the boobins upon which they are wound, to otber bobbins placed on spindles provided with figers, through the eyes of which the threads pass. The amount of $t w_{1 s t}$ is regulated by the vel city of the second series of bobbins, which have the usual traverse motion.
When the threads are twisted they are next doubled, that 9. several of them are wound together upon the same bobhin. They are next twisted together upon frames precisely like hose used for spinning. This process is called throwing or pinning, and the silk after it is thus twisted is called throon ilk. The doubling frame is provided with independent stop motions, one for each thread, so that when any one breaks the bobbin upon which it is being woura stops, until the turead is mended by the attendant and set in motion again.
The silk is now ready for the dyer. It may be dyed in a hard or soft state, that is, with the gum on, or removed by long boiling with soap and water. The proper estimation of the amount of gum removed is most important, as throughout the whole process of manufacture weight is the basis of value, and the check upon employés. The amount of loss in cleaning is usually 25 per cent. The most admirable system prevails in the works of this comoany, involving the most srict methods of book-keeping in every department. Each oom, when it receives stock in any stage of advancement, redits the department from which it is received, and has the same charged to its account. The goods, when delivered into ther hands, must with the waste correspond in weight to what was originally received, minus a small percentage which, adburing to the floors and walls of the room, can not be recovered. The result of all this is t wo-fold. First, it enables the company to transact its business intelligently, thus avoiding the too common fault of manufacturers-namely, ignor nce of important defects until too late to remedy them. Sec nd, the system of tests and checks running through the entire outine of this establishment is such that any fault can be at nce detected and traced to its proper source, and the blame hrown upon theperson who has committ-d it. Orders are trans mitted in writing to and filed as vouchers by the foreman of ach department. An incident illustrative of the benefits of such systemization recently occurred. Some goods were found o be deficient in weight when single pieces were tested, alhough the aggregate meight was correct. An examination mmediately took place, but the cause for a considerable time luded pursuit. Experiments were instituted, and the errer was found to have arisen in the following manner. Some reels having been constructed of the proper size, the edges of the bars had been left somewhat rough. The operative in charge, wishing to correct the fault, sand pa oered them, thus slightly reducing the size. This was the sole cause of all the mischitf. The reels were afterward protected by plates of polished brass, and the operative cautioned against taking any such liberties in the future. The importance of sush a ystem in th
s obvious.

byoun

Dyeing is the next step. Our space will not admit of a full description of this process It is the most critical of all, nd allthough the Americans have been for some time able to compete with the French in all colors save black, the difficulties attending the production of the latter bave been only overcome within the last two years. Now, as fine blacks are made here as can be found in any market. A piece of American black dress silk was shown to an expert in our presence, who avo wed that it was fully equal in all respects to the Freuch silk, and could be sold as such in France. An error generally prevails among buyers in regard to sewing. silk. generally prtavils among buyers in regard to sewing silk.
The basis of price in this as well as all otber silk goods is The basis of price in this as wetll as all otber silk goods is
weight. Sill loses a certain amount in cleansing, as we have shown, but in dyeing it may be increased in weight so as to more than cover the loss. Heavy silks can thus be sold cheaper than light ones, but the gain in weignt is at the ex pense of length of the thread. while the added weight in dyeing does not increase its strength. The high priced sew.ing silks are, therefore, the cheapest, as greater length of thread of a given strength is obtained for the money than in the cheap silks.
The tbird fioor of this mill is still vacant. It has been reerved as a weaving room fordress-goods; and it is hoped that a company may soon he organized to occupy this room in the manufacture of such fabrics, now that the interests of importers and manufacturers ane rendered mutual by the increased cost of imported goods. Formerly, these interests were antagonistic. The result was an effort on the part of home manutacturers to make an article which could compete in price. The effort now is to compete in quality. A comparison of goods shows tbat the latter attempt has been successful; and domestic silks are now afforded at a less price han the French of equal grade.
The Dale Manufacturing Company confine themselves, as st, to the production of cords, braids, bindings, sewing silks, etc.: but there are large inducements to com mence upon broad
goonds, which they have already successfully produced in gonds, which the
small quantities.
The fourth fioor is occupied by looms and braiding ma chines The looms are of quite a primitive construction some having the Jaquard attachment, but all appearing large and cumbersome for the light and delicate textures formed upon them. We greatly mistake if Yankeeingenuity does notere long replace these machines with lighter and more effective
already in progress. The braiding macbines are peculiar in appearance and operation. The principle upon which they operate may be illustrated by the "ladies' chain" in a quadrille. A number of bobbins are fixed u on a horizontal circular platform. They are placed upon spindles, and by an ingenious mechanisnı are made to oance around each other and around the platform, at the same time whirling on their axes like nothing that we can concerve of but the figure in the quadrille alluded to. The threads are thus interwoven into beautitul and intricate textures.
In closing t lis article we wish to make some remarks upon what seem to us causes of , tailure in some attempts to manufacture silk in this country. We have alregdy mentioned the difference in price of labor in Europe and America, and it will be seen that when labor is worth in France only one fifth as much as in the United States, and in England unly one fourth as much, that without protection the Americans cquld not compere with them. The present tariff on pure manu'actured silks is sixty per cent ad valorem; on mixed silks fifty par cent; on organzine thirty-five per cent, and on raw silk nothing. The conclusions from these facts are obvious; but there is another effect of protection that will not be so generally perceived. France and England manuf-cture for a fortign market; the United States manufacture for themselves. The French workman is forced to be content with his blouse and wooden sabots, the Englishman with his corduroys. This state of things is necessary that labor may be cbeap. The system abroad depresses labor, our system elevates it. Here the producers are consumers also, and enjoy in large measure th r comforts of the more affluent, including educational facilities which render them able to prepare their children for bigher stations in life as such ooen to them. This is proved by the fact that in the city of New York at this time large numbers of wealthy and prominent men are the sons of hard-working and industrious mechanics, who have, by virtue of their talents and business energy, risen from the ranks, to honor and preferment.
A fruitful cause of failure has been in injudicious location. No one who has examin+d the subject can have failed to perceive that peculiar manufactures tend to centralization, and in all industries requiring such intelligence as is necessary to conduct the manufacture of silk, this is the natural law. Those whoignore it must evtntually suffer from its violation. We might adduce instance upon instance to illustrate this point but it will not be necessary. The names of Lyons in Fiance, Birmingham and Sbeffield in England, will suggest many others to the minds of our readers. The attewpt to distribute this growing branch of industry rather than to concentrate it around the nuclei already established, must in our opinion prove disastrous. Add to the protection offered by the Government, the mecbanical genius of the American mind, and a recognition of tue laws of industry, and the permanent establishment of the silk manufacture in this country will be placed beyond question.

LITERATORE FOR WOREINGMEN.

A Baltimnre journal, devoted largely to a very light species of literature, puts forth a plea for the more extensive circulation of that class of reading among the working classes This is quite natural. Interest is too often an of stacle to correct opinion. We were not, however, prepared to see such literature put at the head of all others, as being the precise thing that the masses need to supply their mental and moral necersities, as is done in the following quotation
"The putting into the hands of the workingman imaginative literature is even a more impnrtant advantage than the cheapening of scientitic books. The tendency of mechanical employments is to exercise the understanding alone; they afford nodiet for the fancy or the feelings. They leave unfed no small portion of the intellect. They do not enlarge the world of observarion or experience. They do not open any of the doors of history or biography. The artisan, like the student, requires the hours of leisure to stand in contrast witb his daily employ nent. A few will find recreation even ir severer sturies, and will resort to it by a natural instinct; but we speak of the many who are use i to be led rather than the few who can guide themselves. And, for the many, nar rative, sometimes historical, but more frequently imagınatire, holds out greater attractions than all the publications of the Useful Knowledge Society, or than all the excellent manuals of more recent date of mathematics, chemistry, or natural history."
The paper from which this is taken is a large and popular journal, and it is doing a great injury to the public by suct false instruction.
It is a tissue of unfounded, and as such, uncalled for assertion trom beginning to end. The tendency of mechanica employments is not alone to the exercise of the understanding. Granted that there are many occurations that require little oo understanding or fancy, or anything else but elbow-grease (sawing wood for instance, which is a mechanical employ. ment), we assert that there are no employments except the fine arts and authorsbip in which fancy hass greater scope and none whatever that call into more active play all the mental faculties than mechanical occupations. They do not leave the intellect unfed any more than other work, and it they did, we fail to see why imaginative literature is the proper food for famished minds.
Let us go down to the very root of this matter. All the useful arts are devoted to the supply of the wants of nam The first of these is air; that nature supplies. The second is food. Agriculture is then the first and most essential of all occupations, and as such it employs the largest number of individuals. Is there no scope for fancy and feeling here? Is all appreciation of the beauty of fruits and flowers, and billowy

ovelists? What say you, country lads and lasses?

After food, clothing. Is there no room for play of fane ere? From whence have originated the beautiful textures, the designs for je welry, the general taste
vilized world for refinement dress?
But perhaps we shall find the field narrowed when we come to dwellings? No. Architecture attained, long ago, the dig ity of a fine art.
How is it about those who make the machines, the implements by the use of which mankind are fed, and clothed, an housed? Here we are on our own ground, and we know of what we speak. First, the motors. A steam engine, or turbine wheel. Did ever Rapbael paint, or Grecian sculpto carve a form of greater beauty than a first class steam engine Talk of the poetry of motion. The motion of the steam en gine, and its influence upon the progress of civilization, is grander epic than ever yet was written. We grant you tha turbine wheel has more mathematics in its compact frame work than artistic taste, yet even in this triumph of hydrau lic science, we may find curves upon which the eye can pleas urably linger. Pass from the motors to the lathes, the planes, the spinniug jennies, the looms, the steam fire-engines; the carriages, railway cars, steamboats, and all the other para phernalia of civilized life, and then say if you will that fancy is excluded trom the mechanic arts. Every artizan is insulted by such a statement, and still further insulted by the state ment that his miad can digest only the light and trashy im aginative literature which forms the staple of the paper that thus puffs its wares.
We do not believe in the entire exclusion of all the light kinds of literature; but we denounce such willingness pander to a depraved taste as is manitested in the quotation we have cited. The silly love stories or the wonder-exciting tales of bloodshed, and crime, and narrow escape, with spice of ghost stories thrown in for a relish, which abound in many publications,-the most vapid, most diluted broth of literature is something we protest against as mental pabulum for any class of people whatever, especially for those young and intelligent mechanics and apprentices who weekly read the Scientific American.

WEATHER PROPGESYING.

That science will yet ascertain a way of foretelling storms we firmly believe. Indeed, the telegraph is even now useful lo employed for this purpose, and its agency, we hope, will a some not distant date serve to warn our coast dwellers and coast wise crafts of an approaching storm in time to enable the one to pre are to assist the other. Since the publication of Prof. Espy's Theory of Storms, much atten ion has been devoted to this subject, and although a system which is enirely reliable and generally applicable, has not yet been perected, it is to be hoped that the progress of scientific investigation will yet evolve such a system.
The weather propheying, however, of experts, who calculate by the phases of the moon, by the comparison of one season with another, by cycles of storms, by the variations of the barometer, and the fluctuations of the thermometer, we derm of no value whatever Nothing has ever yet been adduced to prove that the moon has any appreciable influence over the climate of this planet, or the temporary changes in he climate of localities The comparison of former year. with the present afford no criterion. The changes on the surface of the ingabited earth, by the destruction of forests and the multiolication of civilized habitations have much to do with alterations of climate. The theories of storm cycies re yet in embryo. Sudden fluctuations from causes beynnd our knowledge are not taken into account by storm theorists; or if so, these fluctaations upset all their calculations, and 'hey are left in the dark. The variations, neither of th. barometer or the thermometer, are to be confided in. They re unreliable.
The astronomer, who from the top of his tower, or rom a mountain summit ; or the sailor, who has a more exrended field ot vision, may, from the appearance of the clouds and the condition of the atmosphere, prognosticate the advent of a storm and its direction. So, also, t he farmer and the hunter, by long experience, necessitated by their pursuits, learn to read the heavens, or, rather, the atmosphere, to some benefit; but when our weather prophets presume to foretell a dry summer, a lean harvest, a cold winter, from their yearly observations, based only on observation, and not on a thorough knowledge ot natural laws, we choose to place but little reliance on their prognosticatinns.

Hardening the muidioard of Plows.

A new method has been discuvered for the manufacture of be moldboard of plows, which gives them all the hardness and temper of steel, in combination with the toughness ot iron. The moldboard (good iron) is heated and dipped into molten iron. It remains there ten seconds, when the two surfaces become heated to a white heat, while the center is not heated through. It is then immediately dipped into water; the surfaces come out harder than the highest tempered steel, while the interior is still iron and retains all the toughness and strength of the iron. The advantages claimed for this invention is that the plows made by this process will 'ake the finest and hard st polish, while they will be tough -nough to endure any reasonable knocking about in stony -noug

We find the above in one of our exchanges. What is the new method? and where are such plows manufactured? W have had several inquiries about this matter.

A Man in England recently made fifteen miles in one hour
patents are granted for seventeen fears, the following

 82 913.-EEL PoT.-George D. Allen, New York city.
I claim the eel pot funnel, of india rubber, and perforated substantially as
abo set forth
Alsos, the eel not funnel, formed of india rubber, with a contracted mouth
 Also, the eel put funacl, haveng the twocharacteristics of perforation and
a contracted mouth substantialy as before set forth.
Also the comhination or the hodv of the trap with a funnel of indla rub-,914.-ALKALI CAN.-Christian Barry, Philadelphia. Pa. tanti.11v in the mamher devcribera.

 Q, and lips. S, for the reception of caris, substan ially as set fortb. Clinton,
O2.917.-CENTERING SQUARE.-George W. Brooks, Clint I Mase, in combination with the square, the a a justable slo ited bar, b,when

 3d, the combination and arrang mert of the reveral parts of the planter
heretin described, wen used for the purpose set forth.
S2 919.-HOLLOW WINDOW CRUSS BAR OF SHEET IRON-T 82 919.-Hollow Window Cruss Bar of Sheet Iron.-T
A. cambensy, Chicago, IIl.

 scribed.-OX Yoke.-William Cooper. Paris. Me.
 , claim the b n t teeth, A A, pivot d togetheras ashmore station. Ill. arr w with fiexible sides, substantially as and for the purposes herenn set Or,y24 - Washing Machin e.-C. H. Cramer, Rutland, N Y.

 82,927.- ATTACHING ROBETTESTRO HARNESS. - William L
 82,928-Pianoforth, B idge.-Charles H. De Vine, Buffalo

 82,931 . - Core Bar For Casting Pipes.- John Enright

 82,936.-Steam Engine Piston Valve.-Richard Gorna!1, Baltimore, Md.
I calain, lit, The combination of the main valve, C. With the interior slidtng
ved. D, having we flaryes, e e, substantially as and for the purposes speci-

 82,938.-Célitvator Plow.-B. F. Guy and J. V. Guy, Ma-

