a Weekly journal of practical information, art, science, mechanics, chemistry, and manufactures

Improved Machine for mitering Frames. The joints of rectangular frames as picture, looking glass, window, and other frames must be cut at the proper angle hefore being put together; and to make perfect joints they should be planed as well as sawed. Usually, these two processes are performed on separate machines, and sometimes the fitting is done by a hand plane. 'The machine, however, which is herewith illustrated performs both these operations at one time, perfectly and with great rapidity.
The machine is an iron frame carrying a sliding platen, Tho of inon, on the having a sliding platen, heads mounted on a single central heads mounted on a single central shaft. This shaft, with its combined
saws and cutters, is driven by a saws and cutters, is driven by a
belt running on a small pulley on it, driven by a belt running from a larger pulley at the rear of the machine and near the floor, the shaft of which carries a fast and loose pulley. On this shaft is also a worm engaging with a worm gear on an upright shaft, having on its upper end a pinion engaging with a rack fixed to the under side of the sliding platen. This combination is the feed of the platen. The upper journal of the vertical shaft runs in the end of a lever pivoted to a brace under the platen, the other end of the lever being a handle projecting beyond the forward end of the platen. A slight transverse movement of this handle throws the pinion out of gear with the platen rack, and by pressing lightly on the handle of another lever, pivoted to the platen, the under face of the lever being covered with leather, it engages with the top of the saw shaft under the platen and the revolving of the shaft carries the platen sapidly back ready for another forward movement, which is obtained by the actinn of the pinion and rack thrown into gear. If the automatic feed is not desired, the pinion and rack may we left disengaged, and the platen moved simply by pushing with the hand, as on ordinary sawing machines.
For guiding and holding the stuff to be sawed there are three frames, formed at an angle of 90°, secured to the face of the platen, their raised edges being gradnated to inches and their parts, and in a score cut diagonally across the platen is a sliding guide, or holder, that may be held by a thumb nut and bolt at any point desired, to regulate the length of the piece to be cut

The saws are not ordinary circular saws, but annular, the blades being secured to turned wrought iron flanges insuring stiffness and perfect truth. These flanges are bolted to hollow heads, which are formed to receive two, three, or more planing bits, or cutters, that finish the joint of the stock after it passes the edge of the saw. The method of setting and securing these blades is peculiar and very effective. It is shown in detail in Fig. 2.
These hollow heads are divided into as many radial com. partments as there are planing bits. The sides of these compartments have planed ledges on their sides, which hold the edges of one side of the bits. They are seen in perspective, in Fig. 1. These ledges are planed or filed perfectly smooth and straight. On the other side of the bits are wedges, Λ, Fig. 2, with planed surfaces meeting the back of the bit. These wedges are moved by means of screws, B, the heads of which are seated in semi-circular recesses in the head, as seen, and turned by means of a socket wrench. The edge of the
head, a slight turn of the screw brings the wedge down upon it and hugs it with great force against the ledges.
This method of securing cutters (which may be also applied to any tenoning or grooving machine) leaves a clear throat for the discharge of chips, unimpeded by bolt head or other devices, and does not neccssitate the slotting of the lit, which is simply a plain plate.
This device was patented through the Scientific American may be addressed for the purchase of the entire right, or for

sanders' patent mitering machine

New York He will also sell the right to hold planing irona, tc., by his method, to plane makers, wood workers, and hers wishing to use it.

NATURAL SELECTION-THE DARWINIAN THEORY.

The theory of the origin of species as first enunciated by Darwin, and which has been so widely discussed, has un doubtedly been gaining ground among the most celebrated naturalists. The basis of that theory is, first, that variations, so slight as not to form distinctive features of classification, are constantly occurring in the reproduction of both plants and animals; second, that these variations of form are cap. able of transmission to progeny, and that the peculiar char acteristic resulting from the variation is generally intensified in its transmission; third, that whenever the variations give their inheritors peculiar advantarres in obtaining sustenance, etc., over that possessed by their fellows, they will live longer, will procreate more, and consequently, in the lapse of ages, will extinguish the weaker types. The author of the theory called this process natural selection, and supported his theory by the results of numerous experiments, in which, by artificial selection, he produced similar results to those which he claimed for the natural selection. He experimente mainly with animals which propagate very rapidly, as pigeons, rabbits, etc., and thus was enabled to produce between gencrations widely separated, very astonishing differ ences in form, color, and habits. He produced such marke changes in the descendauts of wood pigeons, that he truly said, that had they been found at large by a naturalist, they would not have been classed with the same genus. They ate meat, iad hooked beaks, and talons, and were both in appearance and habit similar to the family of hawks.
When this theory was first propounded, it met both vehement oplosition and ridicule. It was attacked by philosophers and wits, and forwed the subject of many a lampoon and satire. It was denounced as opposed to the teachings of revelation, as a system of guesses, which were not sustained by either facts or logic. But there was a vitality in the theo-
ry, and the conclusions of a man who fortifits his opinions with such a lost of facts as Mr. Darwin brourht to sustain his, are not easily putaside. One after another the thinkers f the entire world have slowly been accepting the thwory, until it may fairly be doubted whether any hypothesis is more nearly established upon a permanent basis.
Dr. J. D. Hooker, in his recent address to the British Λ sso. ciation at Norwich, thus reviews this subject :
"Ten years have elapsed since the publication of ' The Origin of Species by Natural Selection,' and it is hence not too carly now to ask what progress that bold theory has made in scientific estimation. The most widely circulated of all the journals that give science a prominent place on their title pages, the Athenceum, has very recently told it to every country where the English language is read, that Mr. Darwin's theory is a thing of the past; that watural selection is rapidly declining in seientific favor ; and that, as regards the above two volumes on the variations of animals and plants under domentication, they 'eontain nothing more in support of origin by selection than a more detailed reasseveration of his guesses founded on the su called variations of pigeons.' Let us esamine for ourselves into the ruth of these inconsiderate statements.
"Since the 'Origin'appeared ten year:s ago, it has passerl through four Euglish editions, two American, twe German two French, several Russian, a Dutch, and an Italian ; while of he work on ' Var:ation,' which first left the publisher's house not seven months agro, two English, a German, Russian, American, and Italian editiou are already in circulation. So far from natural selection being a thing of the past, it is an accepted doctrine with every philosophical naturalist, including, it will always be naderstood, a considerable proportion who are not prepared to anmit that it accounts for all Mr. Darwin as-
signs to it. Reviews on 'The Origin of Species' are still pouring in from the Continent, and Λ gassiz, in onc of the addresses which he issued to his colluborutcurs on their ate voyage to the Amazon, directs their attention to this theory as a primary object of the expedition they were then undertaking. I need only add, that of the many eminent naturalists who have accepted it, not one has been known to abandon it ; that it gains adherents steadily, and hat it is, par cxcellence, an avowed favorite with the rising chools of naturalists : perhaps, indeed, too much so, for the voung are apt to accept such theories as articles of faith, and the creed of the student is also too likely to become the sliibboleth of the future professor. The scientific writers who have publicly rejected the theories of continuous revolution or of natural selection, or of both, take their stand on physieal grounds, or metaphysical, or both. Of those wbo rely on the metaphysical, their arguments are usually strongly imbued with prejudice, and even odium, and, as suc!, are leeyond the pale of scientific criticism. IIavingmyself heecn a student of moral philosophy in a northern university, l entered on my scientific career full of hopes that metaphysics would prove a useful Mentor, if not quite a science. I soon, however, found that it availed me nothing, and Illong ago rrived at the conclusion so well put by Agassiz, where he ays, 'We trust that the time is not distant when it will b universally understood that the battle of the evidences will have to be fought on the field of physical science and not on that of the metaphysical.' (Agassiz on the 'Contemplation f God,' in the Kosmos. Christian Examiner, 4th series, vol. xv. p. 2). Many of the metaphysicians' objections have been controverted by that champion of natural selection, Mr. Darwin's true knight, Alfre Wallace, in his papers on 'Protection' (Westminster Revieve) and 'Creation of Law,' etc., Sournal of Sicnce, October, 1867), in which the doctrines of continual interference,' and the ' theories of beanty,' kindred subjects, are discused with admirabte sagacity, koowledge, and skill. But of Mr. Wallace and his many contributions to philosophical biology it is not easy to speak without enthu
si som ; for, putting aside their great merits, he, throurhout his writings, with a m desty as rare as I believe it to be unconscious, forgets his own unquestioned claims to the honor of baving originated. independently of Mr. Darmin, the theo. ries which he so ably defends.
"On the score of geology, the orjectors rely chiefly on the assumed perfection of the geological record; and sin ealmnst all who believe in its imperfection and many of the other echool, accept the theories both of evoluti n and natural selection, $\mathbf{w h}$. 1 ly or in part, there is no doubt but Mr. Darwin claims the great majority of geologists. Of these, one is in himself a host, the veteran Sir Charies Lyell, who, after having devoted whole chapters of the first editions of his ' Principles' to establishing the doctring of special creations, abandoss it in the tenth, and this, too, on the showing of a pupil ; for, in the dedication of bis earliest work, 'The Naturalist's Voyage,' to Sir Charles Lyell, Mr. Darwin states that the chief part of whatever merit himself or his works possess has been derived from studying the 'Principles of Geology.' I know no brighter example of heroism, of its kind, than this, of an author thus abandoning, late in life, a theory which he had for forty years rega ded as the very foundation of a work which had given him the hishest position attainable among sci-ntific writers. Well may he be proud of a superstructure raised on the foundations of an insecure doctrine, when he finds that he can underpin it, substitute a new foundation, and, after all is finished, survey his edifice, not only more secure, but more harmonious in its proportions than it was before; for assuredly the biological chapters of the tenth edition of the 'Principles' are more in harmony with the doc
trine of slow changes in the history of our planet than were trine of slow changes in the history of ou
their counterparts in the tormer editions."

A NEW TREATISE ON STEEL.

We are in receipt of a new treatise upon the theory, met allurgy, properties, practical working, and use of steel, translated from the French of M. H. C. Landrin, Jr., C. E., by A. A. Fesquet. Chemist and Engineer, with an appendix on tbe Bessemer and the Martin processes for manufacturing steel, from the report of Abram S Hewitt, U.S. Commissioner to the
Universal Esposition. Paris, 1867. Universal Exposition. Paris, 1867.
Among the many claimants to public favor, which have appeared upon this subject, we have met with none wbich appears to us betteradapted to the universal necessities of all directly or indirectly interested in the metalurgy of steel. The mectanic will find here the information he requires, conveyed in a simple and practical form unburdened with unnecessary verbiage, and arranged in convenient torm for reterence and condensed without neglect of important principles. A go d specimen of the work is the following extract, upon the tempering of steel. The temperatures are given in degrees of
the centigrade scale. The reader can easily coavert them into degrees of the Fahrenheir scale, by the following simple rule: Multiply the egrees expressing any temperature in the centigrade scale by 2 . Subtract one te th of the product from the product itself, and add 32 to the remainder The resuit will be the number of degrees of the Fahrenheit scale, expressing the same temperature.
"Notwithstanding what has been said, and the so-called experience of some practical metallurgists, pure water is the best liquid tor hardening steel. It is a mistake to believe, with the ancien's, that certaiu waters are more adapted to this operation than otbers. The only difference lies in their temperature. A workman of Caen, Mr. Damesme, who has published a diffuse work on steel, has tried the hardening of steel in the juices of vegretables, and las nscertained that there is c mparatively no advantage over hardening in water. Mercury has no other property than that of \mathfrak{b} ing cold, and of producing a hardness whish can be oltaned with water at the same t-mperature. Tallow and oils, where carbon is one of the constituent elements, produce an imperfect bardening, but prevent a loss of carbon. When by over
heating, steel has been burned and decarburized, the oils and heating, steel has been burned and decarburized, the oils and
fatty matters are useful, because they give back to the steel a part of the carbon lost in the fire. S , me acids, such as sulphuric, are justly considered as imparting more hardness to steel, by dissolving a film of iron from the surface and expos ing the carbon. As for urine, alcohol, brancy, and a thousand other liquids extolled by ignorant workmen, they are not worth as much as water, which has the advantage of being abundant everywhere, cheap, and adapted to all changes of temperature.

Steel should be hardened to the point corresponding to its nature and its use. Indeed, it is possible to correct the quality, either by increasing the hardness by a very cold dipping liquid, or by producing more elasticity when tempering; but these corrections are left too much to the judgement of the workman to be consioered efficacious. For instance, in fine catlery, and principally in the manufacture of surgical in struments, every instrument must have its peculiar hardness and tenacity. Very few men always succeed in the operation, which, generally, is le't to chance.
"Hammers, cold chivels for iron, drills, engraving tools, require a strong hardening, a great harciness; sabres razors, straw cutters, +tc., do not require to be aipped into very cold water ; table knives, scissors, and springs, require less hard-
ness. ness.
". We readily underatand, that if the temperature the most proper for the degree of hardness and tenacity of the instru
ment were known, it would le sufficient t, raise the instrument to that temperature, and to immerse it afterward in water. Some workmen heat the steel which is to be hardened, much above a cherry redness, allow it to cool slowly in the air, and wait until it has taken a certain color, previous to plunging it in water. This is a very bad practice, because
tion of the steel, which has then large grains, and is without tenacity at the edges. In order to graduate the heat, and to bring the instruments to varinus and distinct temperatures D. Hartlep, in 1789, thought of using a pyrometer, when hardening This process, very good, indeed, was difficult in practice. Sir Parkts was more suscessful, by determining in ance the various points of fusion and of perfect liquidity of certain metallic alioys. These temperaturas belag knomis,
steel is plunged into the molten alloy, the same as into a f, rge fire, and when thoroughly heatad, is dipped into cold water.
"Although this method has not been generally employed, for the sake of its ingenuity, we will take from the compositions of Sir Parkes, those which most nearly correspond with the various colors and temperatures necessary for certain in struments.

"The temperatures are in degrees centigrade :-		
Lead.	Tin.	Temperature of fusion,
7	4	parts.

Lead melts at 319°

"The metallic baths above named are certainly not for heating steal previous to hardening, but for tempering steel al ready hardened.
"Hardened steel is generally harsh and brittle; so is chilled iron, probsbly for the same cause. If, a ter a strong harden ing, which will be the type of extreme hardness, steel is heated again to redness, jt loses all the hardness it had gained,
becomes soft, and will be rendered hard again only by a new hardening. Bet ween these two extremes: hardness and soft. ness, there are several degreee which are as many shades of the qualities adapted to certain uses.
"These degrefs are made apparent by the color of the metal when reheated, and take place in the following order :
"1. Being put upon burning fuel, the steel gradually heated be comes tarnished, yellow, and straw yellow.
"2. The heat increasing, the color deepens, and reaches a gold y ellow, full yellowo,
a Afterward, the steel takes several shades, rapidly fol lowing and blending with each other; they are purple, بigeon's throat. conper, brown purple.
4. These shades become veepur until they become violet.
" 5 . Afterward, they pass zapidly to indigo blue, full blue dark blue.
"6. This color becomes weaker, and gives a shy blue norëor less pure.
"7. The blue takes a greenish tint and produces shades which are gray and sea-green.
"8. At last, the steel reddens, and will no longer give distinct colors.
"The shades of these eight colors, which are called temper ing colors, and perfectly dietinct, very apparent, and easy to recognize; but they take placa only after hardening and on clean steel. The metal which has not been hardened, will
not show these colors so plainly; the sbades are mingled, not show these colors so plait
ble ded, and less in number.
" The colors, during the tempering, are a sure guide for the workman, of the degree of hardness or tenacity he desires to cbrain. Dark blue indicates a great tenacity, scraw yellow produces a greater hardness, and is the tempering shade for razors. Bistouries, lancets, penknives, erasing knives, some scissors, and generally blades requiring body, are seheated t full yellow. The strong blades for table knives and gardening tools are tempered to a brown or purple brown. Purple is the proper color for large shears. Violet and dark blue are for springs; with a violet color, the spring will be very elastic but brittle, a blue shade will make it very resisting It is very difficult to break a spring reheated to the color of water ; but its elasticity is a great deal lessened.
" The temperatures (centigrade) corresponding to these colors, and best adapt-d to the $t \cdot m p e r i n g$ of various instruments ar seen in the following'table :

Lancets	$210^{\circ}-215^{\circ}$
Other surgical inst	220
Razors	225
Peniznives, erasers	230-235
Scalpels, cold chisels for iron	240
Shears, sheep shears, gardening tools	250
Hatchets, axes, plane irons, pocket-knive	260-265
Table knives, large scissors	270-275
Swords, uatch springs	285
Large springs, daggers, augers	
Saws, scyue springs	310-315
Various other instruments requiring less hardening.	320

"The hardened instruments are reheated in or upon a live ire, easily regulated, and witbout the help of bellows as far as practicable. An intelligenc workman will cease blowing as soon as he perceives that the metal bt gins to change its
c lor. The proper shade must come by iiself without. increasing the fire, and n ust, be regular all over, before the piece is pluoged in co'd n ater. S metimes this last dipping is omitted.
"The small pieces, such as penknives, erasing knives, etc., rest upon a wire cloth put into the middle of the fire; when "A lancet requires a special teolor they are cooled in water. "A lancet requires a special tempering : the shank must be
blue ; from there the color will be first purple, next brown,
and at the point, full yellow. These various shades upon one blade are a necessity, on account of the degree of hardness and tenacity required by this instrument. Full yellow will produce the proper sharpness, but would not be suitable to the rest of the blade, which, instead of hardness, must have tenacity and elasticity.

A good workman, willing to give the greatest perfection to n instrument, will be very caretul when tempering it, in or ,er to obtain the various shades which are necessary. A knife, for instance, must be brown purple at the cutting edge, purple in the middle, and sea green at the back, to unite the hardness of the cutting edge, with a certain amount of resistance which will prevent its breaking under a strain.
"This is obtained by using certain precautions, and above all, by not going beyond the proper degeee, because it is very difficult to retrace the steps. If the fire is too strong or ir regular, part of the edge may be purple brown, while the other is only straw yellow; then, by pinching the blade be tween red hot tongues, at the place which should be more heated, the temperature rises rapidly, and the instrument is brought up to the proper tempering point. Certain scraping and burnishing tools, and steels for sharpening, do not require any tempering, because they cannot be too hard.
"It happens though rarely,that steel bars which have been and left for some time in store rooms, will break with a noise and will project to a distance, pieces of steel trom the corners. This phenomenon does not take place with small pieces, such as smooth or even bastard files, but will happen with large rubber files, mostly those of cemented steel. By hardening rubber files, mostly those of cemented steel. By hardening
too quickly, the same effect is sometimes produced; the workman receives a shock in his arm at the moment of dipping : part of the piece breaks off with a noise, or the steel splits along its length"
Published by Henry Carey Baird 406 Walnut street, Philadelphia, Pa., and sent postage free to any addrese upon the receipt of three dollars.

STEAMER FOR COMMON ROADS-VOLCANIZED RUBBER

 TIRES.We noticed some time ago an adaptation of rubber to wheel tirts for traveling over rough and uneven surfaces. We copy the principal points of an account given in one of our Scottish exchanges-the Edinburgh Scotsman-of an experiment made with R. W. Thomson's patent road steamer in Edinburgh, Scotland. "It drew four loaded wagons each of whicb weighed, when emptr, 28 tuns and carried a load of $5 \frac{4}{4}$ tuns of coal, making the groes weight of the wagons 32 tuns. The road steamer weighs 8 tuns. Thusa total ot 40 tuns was n motion. The soad steamer had drawn thetrain trom New battle Collieries, eight miles from Edinburgh, over a very hilly road, with rising gradients of 1 in 16 . The hill from the Pow Burn up to Minto Street is both long and s eep, but the road steamer die ω its train to the top with the most perfect ease. It was very curions to watch the behavior of the patent india-rubber tires of the road steamer as they passed over the various descriptions of road surface. In the outskirts of the city, where the roads are macadamized, there were many places where broken stones had just been spread on the surface. Over these sharp loose st,nes the india-rubber tires of the road steamer passed without crushing or in fact disturbing them in the least. The roughest and sharpest bed f broken stones sank gently into the elastic cushion of india rubher. which rose from the contact with the most jagged fragments of stone without any trace or mark of iojury. The perfect command which the conductors of the train had over its movements enabled them to control both its course and speed with the utmost precision. The line of streets through which it passed-viz., Minto strert, Clerk street, Nicolson street, and Leith Walk-are always tbe most crowded streets in the city, but at the time the train passed through these horoughfares there happened to be an unusually great curent of traffic passing in a contrary direction towards the South Side Gymnasium, where some games were going on, which gave rise to a great stream of omnibuses, cabs, and conveyances of every description, in addition to a great crowd of pedestrians. Not withstanding all these obstacles, aggravated by the streets being at some points under repair and closed for one-half of their width, no difficulty was experienced in steering clear of every impediment. The crowd of pectators increased with such rapidity that by the time the train was passing the University thousuads were trying to catch a glimpse of the novel sight, and when crossing the High strent the swarms of idlers who give such a busy aspect to that locality rushed in vast numbers to see how the train would descend the steep incline from the High street to the Bridge. This was done with as much ease and quietness as it there were n o hill at all. 'The extremely curious way in which the whole four wagons follow, snake like, in the track of the road steamer was clearly seen in passing out of North Bridge iato Leith street. First, the road steamer bad to turn to the right, and before the last wagon was round the corner to the right, the road steamer had already turned sharp to he left to go into Leith street-thus the traio actually assumed the form of the letter S. every wagon going over the ame ground as the road steamer with the most perfect accuracy. The very steep and crooked descent of Leith street, which has a gradient of probably 1 in 12 , was managed with perfect ease. and the train pursued its way down Leith Walk, along Junction street, and up Bonnington Road to the works of T. M. T-ncant \& Company, where it had to deliver the coals. In passing out of Junction street into Bonnington Road there is a sbarp acute angle, so that the train had actually to double back on itself; however, it rounded the corner without the smallest difficulty. The final maneuver was one which the conductors of the train did not expect to be able

