THE NEW TEMPLE EMANUEL

The above is the name of the new Jewish synagogue recently dedicated situated on Fifth avenue and Forty-third street, New York city. Few buildings ever erected in this country, have attracted more attention, or are more entitled to admiration than this edifice. As a specimen of Moorish architecture, slightly modified to adapt the strueture to its destined use, it affords a grod study to professional architects and to all lovers of art. It occupies a lot one hundred and four feet on Fifth avenue, and one hundred and eighty-four feet on Forty-third street. It consists of a nave thirty-four feet wide, one hundred and sixty feet long, and seventy-two feet high, with transepts of about ninety feet in length, attached to whichare aisles about twenty feet wide, containing the galleries. In front, on either side of the nave, rise two towers detached above the aisle walls, but connected with the nave by two bridges on a line with its ceiling and with the choir gallery, as well as by open balconies running all round the front. These towers are to be about one hundred and serenty feet hiph, and are to terminate in stone cupolas, the surfaces of which are to be covered with relief ornaments. The building is built o^{f} sandstone, out of the New Jersey, Cleveland, and New Brunswick quarries-uach of these being used and a ranged with reference to its color. The entire cost of the structure and ground will amount to nearly a million dollars. The architects elected by the build. ing committee were Mr Lwopold Eidliız and Mr. Henry Feu bach
The Evening Post gives a graphic description of the new temple and designates it as a " poem 10 stone :
" All admirers of fine architecture will first be impressed with the façade Its fine proportions. varied color, and rich ornamentation are elements of beauty worthy of close study. The opeaings of the nave-the five entrance dors, the rose window and the transverse gallery near the apex-together ith those of the tower crowned with open octagonal domes, are so many distinct torms hapily grouped and tastefully treated The ornamentation throughout is honest, uppropre ate, and rich. Foliated capitals, delicately sculpture i, and clust-red columns attached to the doors and windows, fretted spandrils and light pinnacles, rising like winarets from the buttresses of nave and transepts, supply imaginative points o great value in the matter of expression. The bright creamc.nlored pinnacles relieving against a blue sky and on the brown rubble, sparkling like so many jewels in thei r setting animate the entire front and forestall anything like monotony of outline. Various intaglio desigos, c insisting of intricate mazes of lines peculiar to the M orish syatem of decoration, fascinate the eye and enliven surfaces that would otherwise apper sombre. This ine combination of anple forms and ornamental devices, each in appropriate relationshıp for u*e and beauty, secures to this building an elegant and majestic ir, which more ostentatious structures of greacer magnitude fail tn convey. The secret of this effect does not lie in size or in richness of decoration, but in proportion, a quality of all others in architectural art the subtlest and must rarely encountered.

USE OF COLOR.

Attractive as the exterior is, the interior far snrpasses it On entering the building we seem transported to another sphere. Here we enter on the realm of colur; forms seem to have vanished or to resolve themselves into radiant splendor. Color as an architectural element appears to reign supreme we have that which the Orientals, the acknowledged masters of this element of art, most delighted in. The problem they bave solved through the skillful handling of ornament, and a consequent distribution of color, is the production of gene ral effects n t only pleasing in themselves, but also harmoizing with the constructive masses. The Jews in their Bible, and the Mohammedansio their Koran, prohibited from depicting animated forms, have been obliged to make the most of color on its own merits; color, consequently, is their principal decorative medium. Yellow or gold, blue, red, black, and white are their vehicles of art expression. All muddy compounds of hybrid tiots, miscalled color in many modern pictures, are completely ignored. The only figures they employ are delicate arabasques. and patterns arranged in a capricious but still regular manner, and which, adapted to the eye in conformity with its sensuous autitude challenge o criticism on the scure of their non-resemblance to known natural objects. Gorgeous huvs, therefore, in true complementary union, cover the spacious walls of this eificy; the eye wanders over them attentive to their innumerable harmonies as the ear listens to the infinite harmonies of musical sounds. Draped arches, festooned with divers tints, support bue panels decked with golden stars, while the stained glass windows, more like luminous interstices than anything else, pour in a flood of prismatic brilliancy to blend all together in soft and radiant light. The obscurities of the tritorium, the sanctuary, the organ-loft, and other spaces, lend an air of mysterg to the general tone, which is again enhanced by the ark reflections of the richly carved wood work. The general effect is one of subdued richness, an effect in harmony with a spirit of adoration, and with that instinct which leads man to exalt worship by art.
"The use of color in this building will attract all eyes to it, and make it a model for imitation far and wide. Mr. Eidlitz has used color elsewhere, and notably in Sc. George's Church, but nowhere on the same grand and effective scale as here Decorative motives generally consist of meaninyjess imitations of Renaissance ornamencs, mouldines, pamels and t/acery bolstered up aith arificial shadowo, expressing no seniment and svmbolizing no truth. C lor, as here employed conforms to natural law, and is therefure a truth in itself.
None of its combinations suggests the intellectual perversity
associated with Renaissance symbols so conventionally ap plied to public and private edifices everywhere.'

ventilation.

The Journal of the Franklin Institute, contains the first, or part of the first of a second course of lectures on ventilation, delivered by Lewis W. Leeds, before the Franklin Institute during the winter of 1867-68. There seems to be such an itching for scientific laurels at the present time, that the mist common subjects, upon which all that is pertinent can be said plainly and briefly, are made the vehicles of profes sional display ad nauseam.
The subject of ventilation is an important one, and per baps is not appreciated as it should be, or sufficiently pro vided for in either public or private edifices. Grant all that but does it follow, thit in order to cure the evil, long ha rangues upon the constitution of air, the physiology of respi ration, the ana+omy of the lungs, and the circulatory system, the diffusion of gases, and all the technical information in the remotest degree connected with the subject, should be aired in trying to convince people that unless they breath pure air their health will suffer? The first installment of these lectures treats of all the above-mentioned subjects, and more too. How much is to follow before the real gist of the sub ject shall be reached, we are unable to say. Perhaps a dis cussion of the respiratory apparatus of fishes and reptile with snme accounts of toads which have been jubedded in rocks for nobody knows how many centuries, without breath ing, and have emerged trom th-ir rocky prisons. "fresh as when in their pristine youth, etc," and hopped a way without even thanking their deliverers. This might bo made appii cable to the subject of ventilation, as thus: The toad does not breath in the same way as man inhales the ambient air, consequently what is fun to them, would be death t, you, my hearets Moreover, all the stories of living toads, imbedded in rocks and trees. are humbugs-except the trees were hollo and the rockshad holes in them-from which we conclude that man culd not breath without air, or live wichou breathing. Quoderat demonstrandum.
How to get the pure air is the question ; a purely mechanical one. Hot air rises-cold air falls. The impure gases do the same thing; therefore it is only necessary to provide fo the escape of foul gases at the bottom of a room, provided it 13 heat-d with warm air, or at the top, if heated by radia iion; the pure air being admitted in the latter case through openings protected so that strong currants shall not be formed, and the exchange of air being ful'y provided for by passing the vitiated gases through heated flues, or drawing hem off by fans or other apparatus.
There is the whole thing in a nutshell and all the scien ific discussion of things upon the earth or under the eart can't make it more sc ; so the Scientific american believe and we believe its practical readers will concur

Patents and Claims

Issued by the United States Patent Office
for the week ending september 15, 1868.
patents are granted for seventeen years, thent
betng asheaule of tees:-

 of Canada and Nora Scotia pay $\$ 500$ ou application.(1) Pamphletscontaining the Patent Lavos and rull part:culars of the mode of apply ng for Letters Patent, spece fy.ng s.ze or modelrequ.red, and much other nformation use ful to Inventors, may be had gratis by add
H ONN $\&$ CO.. Publshers of the Sc entific Amer,can. New York.
82.058 - Mnrtising Chisel.-Otis Adams and James Hatch, Sin crancisc., dal.
Whe clith making the beveled from the edge to the mainpart of the 82,059.-LAMP Borner.-Thomas Adams, Hudson City, N

 82,061.-School Desk -Herbert L. A ndrews, Chicago, Ill.

8\%,063.-Leather Stretghing Machine.-W. R. Andrews,

 $82,058 .-$ Wagun Axle. C. D. Bachelder, Camden, Me. Iclain, list, The combisation, With an axle provided with an oll rec ss, b,
 $82,019 .-W_{A(x)}$ and JACK - E. R Bald win, Southfield, Mass.

 82 0 i1.-Enamel for Window-Shades Edward C. Ban
 82,0:2. - ELASTIC Drafr AtTaCHMCNT FOX SINGLEi AND

 82,074-l'lane.-Valentin Bitsch, St. Louis, Mo.

 82,077.-Machine for Forming Eaves-troughs.-John
 82,078. -Saw Sharpe ning Device.-P. M. Bristol, Luding
 82,0:9.-Manufactore uf Artificial Foel.-George H.

 820030 -
82,000 - Arpararatos for Domestic Mandfacture of Gas.
I cohn W. Brown, Wooster, Ohn

 tally as described.
5 th, T he rake. 1 in 82,081.-Chatr Seat -E. L Buckingham, Jefferson, Wis.
 rails, A, all sub, tantially as hereln shown and described.
82,082. -CARRIA
 the dra
083-Lubricating Material.-Calvin Carpenter, Jr.
 82,084.-Ang dlar Shaft Cotrling.-John M. Case, Wor-

 nnular groove, C, or the nut, D, and the spring
or the purpose set forth.
22.086.-CAR W HEEL and Frog.-W. H. Childe, Gaines

 82 087.-Measuring Funnel.-Charles Chinnock, Brook
 82,088.-Feed Bag.- Chárles Chinnock, Brooklyn, N. Y.
 82.039. - Clain. 1st. The hoard, A, provined witb the koives, a, eto, and tecto, b

82,090. - Shotrif. - Nathan Clough, Lowell, Mass., and We clalla a shuttie liavisy tits tip-shank riveted to the wooden plug, and
theplug secured in the sbuttie, as heren deacriped.

82,091-BUCKLE.- James Cory, Wayne, Mich.
 Without.an intermediate bar, substantially asand for the purposes set forth.

 purpos feet oftrothe en ont of two bearing points on the guide, F, substantally
as and for the purpose set forth.

 tially as and for the purpose described. Ind, Independence, Iowa.
 and described, for the purpose specited. Foley (assignor to himself
 tion, substatially as and for the purpose described.
82,103 ,-DEVTEF FOR PRESTNG, PACING, AND W EIGHING

 purpose described. Prok.-H. H. Gillett, Warsaw, Mo.

祭2,114.

 set,

 tianly a deesrive.

 82,122. - Composition for Making Designs upon Fabrics.
 Ior tie pur Mose set forth. operating substantially in the manner and tor the purpose herein described
$82,124 .-$ DEVICE FOR BLoCING CHAIN.

 82,125. Inv Incin Ress.-T. S. Kennard, Exeter, N. H.

 32,126.-Osclllating Steam Engine.-R. J. King, Lancas-

 ,

 82,128.-LIfTIING MACCINE.-A. Kriebel, Hereford, Pa.

 82, Macomse.-A. W. Lockhart, Sacramento, Cal.

pose nerein deseribed and set forth
82,137 - CoMisin Ed Corn PLANTER AND Cultivator.-John

K, , adjustabie side bar, E , beam, A , and lever, L. as herein described for the
purpose s. specifed

 82, 141. -HARTESTER RAKE.-Leander J. McCormick, Wil-

 82,142.-HAMES FASTENER.-Robert R. McDonald, Syracuse,

 herein showo and described.
$82,144 .-$ ToBACCO DRESSING MACHINE.-Robert Meginnity Wad Joseph Dessenger. Detroit, Mich Me ors fine cut tobacco by a blast of

 When arranged to operate as set forth. C . H. Muller, New York
 sabstantially as set forth. William W. Netterfield, Rochetser, N. Y.
 10rth. 148 . - Corn Harvester. - Nelson Newman, Spring-
 82,149. - - RoTARY STEAM ENGINE. -Thomas A. Nizer, Hamil-

 the inclined planes, C , as herein enown an d described.
$82,150 .-L A M P$.-John E. Noyes, New Albany, Ind.

 trueted, as and for the purposes set forth. If ind Ind withiodescribed burning fluid, compounded and prepared sub.

stantially as set forth. $82,152 .-H A Y ~ K I F E$. -James Offineer, Ashland, Ohio

 $81,154,-$ Process or preparing Solphate of Barytes. -
俍

 I chaiim, , , ist, The combination, sn bstantially as set forth. ot the main frame,

 82,157.-PLow. Eztara Peck, Chicago, Ill.
E, as set forth and tor the metron beam, wean coostructed with the flanges,

 82,162.-CORN-PLANTER- JJames Selby, Peoria, Ill.

 Sp,164.-A APPARATTS

for ramink nad lowerning the D Dat 822.167-Twise Box.-H. Smith and J. Emerr, Buffalo, N.Y.

 82,

 Ya,

 Grennale la, hass
 I claim, 1st, The quadrant, I, provided with fanges, J, when attached, and
operaring substantially as an for toe purpo ses her ein described.

 taily as berein set forth
82, 184 .-CUTVF
Wailey. New Orleans, La., assignor to the New Orleans Pneumatic Pro

 ande , substantially as heretin described.
81, 185 .-Post
shank, Spring HoLe Ohe Borer. - Jacob M. Walter, and Samuel syanais.spinf yieat, inioe

82,189.-A ATTACHMENT For PLow.-Charles E. Wilson, Pal-
 82,190. - VALVE Gerar For Steam Engine.-Furman R.

 82,191. - Coutrvanton- -J. A. Woodward, S. S. Woodward,

 R2, $194 .-$ Proctss of Refining Cast Iron. - Haydn M.Baker

 beringet fortham Genrrator.-Auguste L. Bezy and Isidore

8R, $99 .-\mathrm{RaLLW} A Y$ SAFETY ATtACBMENT.-H. S. Blood, Jef

 32,202-Manveactrob or artificial Stone.-Wm. K

 Red and
边

 82,210 - Rallioad Car Heater.-W. b. Farwell, New

 32,211.-CUTtrer HEad.-Samuel Fawcett, Rochester, N. Y.

 82, 10

 8d, it? Ritage-Gerrze Gan
 Ren
 Sold

 82,2n1, - STEP LADDER Joint.-Shubaei E. Hewes, Alba-
 8,

 2,224.-Device for Fluling Marshes.-George Howell

 R2, 2026.- Rall way Snow Plow.-Jenkins Jones, and \mathbf{T}. .
 82,2,27. - Bedif Fastening.-Timothy Kennedy, Mount Car-

隹

 82,330 . Bortrie Stopper.-John Klee, Dayton, Ohio.
 2, hosid - ATTMCBMENT FOR GAS BTRNERS.-Julius Kopp, Ho-
 82,
 S2, Hosise W.J.

 geribed. - COURN.-Henry Leber, Bellfair Mills, Va.

 82,337.-Machine for Bending Wood.-Josiah F. Melcher, I claim the construction and arrangement of he cross beam, C, tables, F F ${ }^{2}$ 82,238. - PRocEss OF DEBRANNING WHEAT. - John G. Moxey, Pa,
delphiz, Pa,
claim the within described improved process of deb ranning wheat, that io so say, subjecting the gram. Without the use of stean, and whie in a dory
state, the action of the blades, in the manner described.
82,239.-Drop TUBE STEAM GENERATOR.-Joseph Nason,

 $82 \operatorname{lin}^{\text {spenin. }}$ Shw shakpening Device.-A. m. Newman, Terr

 $82.241-$ Fouk-wheel Plow.-Nelson B. Norton, Burling

 2242 - Lime Kun. W. C. Pettijohn. St. Louis. Mo.

 $82245-$ Burnd Hinge.-R. B. Prindle Norwich, N. Y.

 arraiged to operate as bei vilneecribed.
 82,2̇̃5-Fiutur.-Thomas Simmons, Brooklyn, N. Y.

 82 25f.-COMBINED Clothes-HOKSE, ETC.-Henry L.Stillson

 8belis from the chambers, snditanttally as h hereilibef ore especitied.
 82,260.-Mandeacture of Artificial Stone.-Demetry

 nns arran
 82,262 .-VAPOR Burner.-Christoph Wintergerst, Mobile

 8. 264.- WaTt.R ELEVATOR.-C. P. Woodruff, Newbern,

REISSUES.

79,298.-MANOFACTURING GLASSWARE WITH HaNDLES,-

 62 ber bid.-ALARM LncK.-Dated March 5, 1867; reissue 3.120.

 46,771- APpaRATVS For Carberering Air or Gases. -

Inventions Patented in England by Americans. (Compliea from the" Journal of the Commissioners of Pasenta
PRODISIONAL PROTECTION FOR BIX MONTHS.

2,564.-Fog ALARM -Joha R. Anderson, Brooklyn, N. y. Ang. 17, 868.

at

 Rerions, mode of piep pat ation, ases, an m merita

