these are not published is perhaps a matter of surprise to our correspondeots. We are always glard to publish anything that we consider suggestive, or likely to lead to useful research. Many communications, although they may contain entirely erroneous statements and false reasoning, are noticed because they afford an opportunity for the imparting of useful information, or the correction of popular errors. Our readers would be surprised, were we to werely give the titles of some of the communications we receive. Here is a correspondent who writes us upon the duality of sex in the human brain; another who thinks there is a relation between the phenomena of thought and the planets Venus and Mercury still another who most degmatically states that he has with out esperiment, by pure reasoning, discovered the relation of matter in its ultimate condition, and wishes us to occupy four columns of stace with his ideas upon the sabject. In striking contrast with these is one from a sch ol-boy, asking for infor mation upon a subject which shows that he is inquasitive in the right direction, and coucbed in language which gives evi dence of improved opportunitits, and large promise for the future. Welcome, my lad! Your inquiry shall receive attention in due time, wbile other more pretentious, but far lpes valuable correspondence, finas its way into the waste-basket.

COPPERED IRON ROLLERS FOR CALICO PRINTING.

The last number of the Londen Mechanics' Magazine says, that to save a portion of the large amount of capital invested in copper printing rollers by calico manufacturers which lies necessarily idle, "the Swiss printers have been exprrimenting." and with complete success, with iron rollers coated with copper of sufficient thickness to allow of the pattern being engraved upon it. The mode of ccating adopted by the Swiss is said to be a secret ; but there are several plans by which a thin layer of copper can be obtained upon which as much metal as may be wished can be thrown down by the ordinary electrotyf: process. We have published stveral modes of coppering iron already, and add one more devised by Weiskopf. He first brushes the object (say ruller) over with a solution made by diseolving one part of nitrate of copper in fifty parts of hydrochloric acid; and afterward with second solution of ten parts nitrate of cupper, ten parts chlo ride of copper, and eighty parts hydrochloric acid. This lat ter solution is applied very quickly with a sott brush The copper is deposted in a few seconds, ana the object must be rinsed immediately in cold water and wiped with a soft cloth By repeating the application of this second solution the cop per cuati, g may be obtained of any desired thickness. Tbis process, the anthor says, is to be recommended for its simplicity, cheapness. and the durability o: the cop, er layer Our own experience with the coating of copper with acid solutions similar to this has shown us that unless the appli cation be made very quickly indeed, the copper does not ad here firmly to the iron and is apt to blister and peel off. For coating roliers, therefore, we should recommend an alkaline process-either Weil's or the old cyanide plan. When the
pattern is out of date, the Swiss convert the old roller into a new one by covering all parts of the roller except the engraved pattern, with an insulating varnish, then immersing it in a bath, to fill up the pattern with fresbly deposited copper. The roller is then ready to have a new pattern engraved upon it.'
We can scarcely reconcile the two statements in the above extract that the Swiss process is a "secret," and that they "immerse the roller in a bath" to fill up, by deposition, the depressions of the engraving. We have, also, very litule faith in coating iron rollers with copper for calico printing by the electrotye process. Several plans for coating iron with cop per by deposition have been proposed, but we have yet 'to know of any that have been entirely succeseful-that is, have produced a perfect homogeneous and solid coating It is almostimpossible to make the surface of the ironso chemically clean and to so free it from all minute irregularities that the copper will combine with it and secure a perfect copper cov ered surface. The colors used in printing frequently contain acids, and if the slightest pin hole exists in the copper cov ering these acids wouid certainly affect the colors by the
dation of the iron, and tend to undermine the cooper.

The rollers used in calico printing are hollow, to receive mandrel, but are composed entirely of copper. When the pattern engraved on x set of rollers has been used sufficiently, the roller is turned in a lathe to remove the engraving, and then ground and polished. Thus the roller may be used for a large number of patterns, being reengraved and turned until the shell becomes too thin. The worn out roller and the turnings are worth nearly if not quite as much as pig copper to be wrought over again.
We have often thought that iron rollers might be substituted for those made entirely of copper, having a casing o copper-not, however. deposited by the battery-but a sheath or hollow cylinder of copper might be forced upon the iron core by hydraulic pressure and made of sufficient thickness to be engraved and used for printing a number of times. This would sem to be more reasonable than the y lan proposed by metal for the reception of the engraving.

the quality of lllominating gas.

In looking over our exchanges we notice frequent complaints in regard to the porr quality of illuminating gas fur nished by the different gas manufacturing companies These complaints are not confined to particular cities, but stem t be nearly universal. Some seem to cling, h° wever, to the idea that it is not the quality of the gas that is at fault, but the meters. In an artucle ϵ ntitled "Gas Measurement," published on page 337, Vol. XVIII. of the Scientific Anerican,
we showed that the meters were unjustly blamed for th want of uniformity in the expense of illumination through was to be referred to the inferior quality of gas furnished by the manufacturers.
It is not unfrequently the case that the standard of quality is allowed to sink so low that three feet of gas give no better illumination than two feet of the proper quality ought to give. The three feet of poor gas cost the producers but little more than two feet of good gas, and the companies add largely to their dividends by the draud. When the murmurings of the public bugin to be troublesome and seem to threaten oppnsition, up goes the standard, and the clamo subsid s for a season.
It is high time that a remedy for such wholesale imposition should be prescribed. The standard of quality should be fixed by law, in lieu of anything better; but we are confident that our suggestion contained in the article above referred to would be a much better check than any legislation upon the subject could be. The suggestion referred to was the invention of a meter that should register for quality as well as quantity. The idea seems to us perfectly practicable, and the man who can invent a cheap and accurate apparatus by which the daily quality of gas, as well as its average quality for a given time, can be registered, would find a buyer in nearly every consumer of gas. With such tell-tales in every houpe, gas companies could not practice the irregularities bitherto complained of. People would know what they were buying and would be on an equal footing with the monopo ists, who, not content with legitimate profirs, seek to swel heir gains by depreciating the quality of their products. We know of no more promising field for inventive geniu than this, and we are confident a rich reward awaits the in ventor that shall succeed in oupplying this growing want in all gas-consuming towns.

OFFICIAL EXAMINATIUN OF APPLICATIONS FOR PATENTS.

Applications for patents are distributed into thirty-six diferent classes under the following classifications:
I. AGRICULTURE. II. AGRICULYURAL PRODUCTS (Preparation of) II bullderj' hardware. iv. calorif cs. V. carriages. Vi Hemical processes. VIl. CIVIL ENGINEERING. VIII. CL 1 Y MAN
Factures. ix compositions. X. FELTING and Hat Mak NG XI. FINE ARTS. XII. FIRE.ARMS. XIII. GLISS MANUFACTURE. XIV. GRINDING MILLS. XV. GARVESIERS. XVI. HOUSEHOLD FUR ITURE. XVII. GYDRAULIUS AND PNEUMATICS. XVIII ILLUMI
NTION. X, LEA ENGINEERING. xXI. METALLURGY. XXII. METAL WORKING. XXII. NAVIGATION. XXIV. PaPER M KING. XXV. PuILOSOPGI CLINSTRUMENTS. XXVI. PRESSES. XXVII. PRINTING AND STA TIONEHY. XXVIII RAALROADS AND CARS. XXIX. SEWING MA
CHINE SXX. SPORIS, GAVES. AND TOYS. XYXI STE CHINE S XXX. SPORIS, G.avES. AND TOYS. XXXI. STEAM AND
AIR ENGINES. XXXII STONE WOREING. XXXIII. GURGICAL AP.
 APPAREL. XXXVI. WOOD WOREING.
These classes are distributed to twenty prinnipal examiners, and thrir assistants, and each class embraces a var ety f subjects, as for example class thirty-six, devoted to "WoodWorkiog," contains nearly 500 moditications of machines and implements applied to that branch of industry. Now when n application for a patent is filed it goes to the class or subdivision to which it belongs. and is examined when that comes up, and not upon the plan adupted by the miller who grinds oui his grist in regular rotation.
It would not be poseible for an examiner toget through with his cases properly unless he should take up and dispose of all that relate to the same subject on his file. Thisex plantion will enable applicants for patents to understand why ome cases remain longer than others in the Patent Office.

PATENT OFFICE MATTERS.

Commissioner Foote has appoint+d James S. Grinnell chie clerk, in place of A M. Stout, resigned Mr. Grinnell was or several years chief clerk in the Agricultural Department, but more recently Examiner in charge of the class of Lumber in the Patent Office. He is a gentleman well qualified to perform the duties of the office, and his appointment, we are sure, will give satisfaction to inventors, and all others who have occasion to do business with the Patent Office. General W. H. Browne, of this city, has been appointed a First Assist ant Examiner and assigned to duty with General Schoepf in the classes of Land Conveyauce and Mechanical Engineering. Horace Binney, of Philadelphia. Pa., has also been appointed First Assistant, and Emmett Qainn a Second Assistant Examiner
The Commissioner, in order to reduce the expenses of the office, has notified a number of those engaged in the model ooms that their services will not be required after the 1st proximo ; and there will aiso, we understand, be a reduction f the clerical force in the draftsmen's and other rooms, after hat date.

Perpetual Motion.

An exhibition of a "Perpetual Motion" machine is now going on at Wilkesbarre, Pa., which seems to astonish the natives, if we may judge from the laudatory editorials of some of the papers in that region. One of our Wilkesbarre cotemporaries says:
" We are free to confess that we were disappointed in point of mechanism; it is one of the finest pieces of mechanism that we ever saw, and in a scientific point of view it is a uzzler, and worthy a visic from every mechanic and every obilo ophes, and we are satisfied that all will be pleased as well as astovish d . To describe this wonder of the nineteenth century is a task, and beyond the posisibility of description, and must be seen to be understood.

The power is derived from four brass balls weighing each
four und one half ounces, operating upon a combination of levers so combined as to give the long end of each in favor of the power, and while the ball on one ead is passing down by its own gravity through an arc of 90°, the other end of the lever, loaded with a ball of the same weight, is being carried up through an arc of 95°, the difference between the arcs being occasioned by the inclination of the planes by which the balls are conveyed from one end of the levers to the other. This excess of distance through which the balls pass on the and of resistance seems to be easily overcome by the third lever, which is attached to the second in such a way that it de-cribes a greater are than is deacribed on the descending end, which seems a contradiction in mechanics, and yet it is so, and at the same time retaining the balance of power in avor of the end of power.

While the ball in its descent is twelve inches from the fulcrum, the point of resistance is but ore; $\mathrm{i}^{ }$. is thorefore certain that whatever weight the descending ball may have, multiplied by the difference between the point of power and point of ressstance, would give the potential power of the machine; and it is manifest that a ball of four-and-a-half ounces will exert an influence equal to fifty-six ounces on the machine. Wonderful as this may seem, get it mu t be so
"To describe this beautiful piece of mechan'sm, is out of the question, and the more we say seems only the more to bother the mind; we, therefore, advise those who are interested, i^{i} an opportunity offers, to go and see it and solve the problem for themselves. The man who ventures a negative opinion on any question in this nineteenth century, stands on lippery ground. We prefer to see rather than denounce."
Genius is capable of wonderful things to be sure, and no man can fix its limits But the most ingenious mactines, if hey operate at all, must move in accordance with natural laws. The phenomenon which astonishes our editorial friend is that of a $4 \frac{1}{2}$ ounce ball going down hill and at the same time drawing up the hill a weight of 56 ounces. This apparent cont
The B-rks County self-motor is nothing but a piece of mechanical legerdemain, deriving its motion from a concealed source, probably a clock work or an electro-magnet. Such "perpetull motions" are very old.
An engraving of a machine answering somewhat to the description of the "Berks," was published and explained some years ago in the Scientific American.

Trial Trip of the First Locomotive.

Major Huratio All n , the engineer of the New York and Erie Railroad, gives the following account of the first trip made by a locomotive on this continent

When was it? Who was it? And who awakened its energies and directed its movements? It was io the gear 1828, on the banks of the Lackawaxen, at the commence ment of the railroads connecting the canal of the Delaware and Hudson Canal Company with their coal mines-and he who addresses you was the only person on that locomotive. The circumstances which led to my being alone on the road were these: The road had been built in the summer; the structure was of hemlock timber, and rails of large dimensions notched on caps placed far apart. The tiaber had cracked and warped from exposure to the sun. After about three hundred feet of straight line, the road crossed the Lackawaxen creek on trestle work about thirty feet high, with a curve of three hundred and filty-five to four hundred feet radius. The impression was very general that the iron monster would either break down the road, or it would leave the track at the curve and plunge into the creek.

My reply to such appretensions was that it was too late to consider the probability of such occurrences; there was no other course than to have a trial made of the strange animal which had been brought here at grat expense ; but that it was not necessary that more than one should be involved in its fate; that I wouldtake the first ride alone, and the time would come when I should look back to the incident with great interest.
"As I placed my hand on the throttle-valve handle, I was un decided whether I would move slowly or with a fair degree of speed ; but believing that the road would prove safe, and preferring, if we did go down, to go handsomely, and without any evidence of timidity, I started with considerable velocity, passed the curve over the creek safely, and was soon ouc of hearing of the vast assemblage. At the end of two or three miles I reversed the valve the valve and returned without accident, having thus made the first railroad trip by loco. motive, on the Western hemisphere."

Conduction of Air and Hydrogen

Prof. Tyndall, in his lecture on "Vibratory Motion' at the Royal Institution, illustrated the very low conducting power of hydrogen for sound ly a novel experiment. A bell struck by clockwork was placed under the receiver of an air pump, and the air exhausted as perfectly as possible. By applying the ear close to the g'ass a faint sound could still be heard. The exhausted receiver was then filled with hydrogen, when the bell was again heard to sound, but faintly. On pumping out the hydrogen all trace of sound ceased, even when the ear was placed close to the receiver. Hydrogen being about fiftern times lighter than air, it might be supposed that its low conducting power arose from its tenuity. But such is not the case; the conducting power of air, rarefied fiteen fold, and therefore of the same density, excteds that of hydr.gen in a marked degree.

IT is stated that timber rindered fire proof by saturation with silicates is extensively uned in Germany for flooring planks, doors, and staircases.

