pheric electricity to the curing of diseases in plants, and encouraging their development, and he drecribed bis means of drawing currents finm the clouds and air and distriburing them among his cabbages and letcuces. Very surprising effects were produced, but little notice seems to have been taken of them ; probably, because there is a natural ten dency to ignore phennmena of the rationale of which no clear ideas can be formed. But quite recently M. Blondeau brougbt before the French Academy of Sciences the results of some experiments quite as startling as those of the worthy Abbé. He says that the current ripens fruits; of this he bas assured himself by elecirif!ing some apples, pears, and peaches, all of which ripened uoder the influence of the fluid, whilst the other fruit on the same trees remained far from ripe. Then be electrified seeds and grains, by steeping them in water and submitting them to the action of a powerful curreat. Peas, beans, and wheat, were so treated and sown in good soil. By the side of them were sown similar seeds not electrified. I'he former sprouted sooner than the latter the development of the young plants was more rapid, and the stems and leaves were more vigorous than those not subjected to electrical iufluence. But, most mysterious of all, some beans that had been electrified grew upside
the ruots in the air and the cotyledons in the soil.
Fuots in the air and the cotyledons in the soil
For the mechanical and enginearing arts, electricity has done much ulready; but it promises t, do more. We have had an electric loum to dispense with the comp'ications of
the Jacquard cards, and some of our gieat iron-clads have the Jacquard cards, and some of our gieat iron-clads have been furnished with electrical call-boys for enabling th captain on the bridge to comenunicate bis orders to the en gineer below, and to the steersman at the wheel. Now, the engineer has the prospect of reliet from his bugbear-boiler incrustation. It is asserted that the placing ot a bundle o metallic spikes in the path of the steam as it issues fr m boiler, has the effect of generating a stream of electricity and that if this be led to the metal of the boiler, it sets up an action at the surfaee which prevents the deposit of saline matter. The question is a disputed one at present.
The phenomenun is unexplained, and therefore, in some quariers, discredited; and as yet, sufficiently crucial tests have not been a plied to sertle it indisputably as a matter of fact. So we pa"s on to anoth 4 r, and perhaps better established, application of the $t w i n$ elemeats, electricity and mag. netism. We allude to their use in the manutacturing and testing of iron. This metal, in ite crude state, is full of impurities, such as carbon, sulphur, phrisphorus, and siicicius bodies. These are electro-negative in relation to iron, which is electropositive. When, then, a powerful current is di rected through the fluid metal in the melting furnace, the fortign watiers are expelled with some boiling and commo-
tion, asd a very pure metal is produced and drawn off to the casting molds. This method of purification has been tested at Sheffield with remarkable success, and it foreshadows im provements in the manufacture of iron second only to those in the making of steel. The author of the process in its present form is Mr. Robinson, of London; but a somewhat similar plan was suggested and tried five-and-twenty vears ago, to the prof of the adage that there is notbing new,
"except," as cynics say, "that which has been rorgotten and "except," as cynics say, " that which has been forgotten and
re-discovered." The testing of iron castings and forgings by magnetism is an ingenious idea, the credit of which belongs to Mr. Sasby, R. N., one of our dnckyard naval instructors When a bar of iron is ulaces at a certain inclination to the verical, it becomes temporarily a magnet, and behaves as such to a compass reedle brought into its vicinity. If the pass needle, when passed around it, goes through metbodical teolutions, always directing its north point to particular regions of the bar, and otherwise behaving in an orderly manner. But if the iron be cracked or flawed internally these will be breaks in the continuity of its magnetism cor responding with the mecbanical interruptions, and these th comease needle will point out by behaving vagariously when when it passes over them. Tbis is the principle of Mr. Saxby's tests; he has tried them practically at the Cbatham and Sheerness dockyards, and with a success that gives great hopes of removing one of the greatest difficultiea engineer have to cope with.
We have known an instance in which a large and valuable forging, the paddle sbaft of one of our great steamships, was discovered to be delective only when, after wetks of labor a cutting tool revealed the hitherto invisible flaw. The loss involved amounted to several thousand pounds, of which part at least, might have been spared had some effective mears been known for testing the soundness of the mass of meral.
The latest novelty is an electric organ. One of the most important and valuable properties of the galvanic current is that of transmitting power without motion. It we want to ring a bell at a distance, we must move the whole length ot an intervening wire, and this is otion takes strength and time. Similarly, to open the valve of an organ pipe by toucking a clavier requires the intervention of com plicated rods and levers Strength is necessary to press down the key to work these levers, and time to communicate the motion to the pive's orifice. Electricity requires neither; it instantly transmits force enough to open the valves without deniand ing more than a gentle prersure upon the clavier. Another from the organ pipes. We h_{+}ard this application suggerted long ago; the credit of working it out now belongs to an English organ builder residing in Paris, who has made several instruments on the plan. One has already been ercted at the Crystal Palace. Blown by steam-played by electricity
-what is the king of instruments coming to ?-English paper.

THE INFLUENCE OF SCIENTIFIC CONVENTIONS.

Prof. S. D Tillman, in his address at the Autuunal Opening of the Polytechnic, on Thursday, the 10th inst.. after alluding to the success of the late Scientific Congress at Chi cago, said: "Nothing more was needed to confirm the gen ral opinion as to the benefits arising from these annua gatherings. They accomplish for science what convention do for religious, political, and commercial objects, by secur ing unity of purpose, concentrated effort, and expeditious action. Indeed, they do much more in dispelling illusions, which are often palmed off as truth among those who are only captivated bo novelty. While discovery is constantly extending her domain, opening new paths of progress, and eresting new beacons, to direct those who are to follow, it is the special duty of advan ed men to see that no false lights
are shown which would lead to the propagation of unsound doctrine. Every new hypotheris or induction should be sub -cted to the keenes! scrutiny of those who are cumpetent to pass upon its merits. A scientist, who reads a paper before his peers, reaches at once the appreciative audience he most desires. If he dessribes new experiments, they, more than all others, are interested in the results; if he advances new views, they are evor ready to question the correctness of his conclu-ions. Thus, it frequently happens, that the discus sion immediately following the reading of a paper, will dis. pnse of objections, and establish positi,ns which could not
be reached in a long time through the medium of printed dissertations. Moreover, the sugg-stions oft,on thrown out during the tree exchange of ideas in a verbal debate, are of great service in exciting that enthusiasm in the votary of science which prom pts him to higher tfforts in the pursuit of truth.

The beneficial influence of these scientific aseociations is not so obvious here as in Eur pe. where they are older and more firmly established. Of late, the British Assaciaion for the Advancement ot Science has accomplished much; et it will be remember-d that, even a ter i's formation, Sir John F. W. Herschel, in a note appended to h is able treatis On Sound,' in the Encycloncedia Metropolitana, acknowledgd his indebtedness to foreign jouruals tor a portion of the information be then presented and expressed his regret that so little att-ntion was paid in bis own country to what was being done by scientific men abroad. 'Here,' said be, whole branches of continental oircovery are unstudied, and ndeed almost unknown, even by name. It is in vain to conceal the melancholy truth. We are fast drooping bebind. In mathematics we have long since drawn the rein, and given orer a houeless race. In chemistry the case is not
much better.' These, and other words of regret and reproof then written, doubtless hastened the great and favorable change which has sine taken place in his country. Certain it is, that the formation of the British Association has led to che happiest results ; for to-day it may boast of many distinguished nawes in almont every branch of science.
"If there is any hindrance at present to the progress of truth, both here and abroad, it arises chiefly from the spirit of exclusiveness sometimes evinced by those who have devoted their lives to the study of physical laws. This shruld not escite surprise, because the tendency 0^{+}abstract sci-nce is essentially arist cratic. The man who knows, stands on a
higher plane than the one who does not know. Hence, the position of the scientiss is impregnable. He has riches and power, of which he cannot be robbed. Should he find his chief enjoyment, bowever, in the reputation he has acquired, be may well fear rivalry. On the othэr band, if he pursued truth for the love of it, he will welcome all who labor in the same spirit, and extend to those below him a helping hand.
" The study of natural laws, in the absract, undoubtedly affords pure enjoyment ; yet this feeling is vastly int-nsified by witnessing their success'ul application for the accomplish ment of new and important results in the usetul arts. Such
results are often brought about by the artiran who, although he may know but few of these 19 ws, understands most thor oughly all the condiiions peculiar to his art, under whicb they can be effectually applied. Our great inventors have not, generally, had the advantage of a liberal education By ingenuity alone they take the lead, and, of course, coun eract to a certai
"Scientitic associations will be entirely successful when they fully recogoize the fact that Science in these modern times has a double mission. From serene hights she beckons on
the studens who longs for clearer views of the divine plan of the universe; yet often she descends to the huablest abodes of men, and watch $+s$ while Invention weaves sume new de vice. Thus, we find her potent influrnce in those improve ments which lessen manual labor, supply corporal wants, and add to the material resources of our race. We, of the Poly technic, welcome her in both offices, as revealer of long hid den links in the endless chain of sequences, and as prompter o new combinations of some of those links by which th surplus powers of nature are successfully applied to ingen ous mechanism. and by which even new forces are generated and made obedient to the will of man."

An Alarm.

We have in our bouse a little invention which we have sed eral times noticed in orber dwelings, but having no direct nterest in its of eration we have nut paid much attention 'o in our sleeping room; bu: in an emergency it is capable of making a good deal of noise, and im:arting useiul informa iun. It is an electric alarm, with wires entirely concealed from the eye, and which run from it to the doors and win dows and scuttle of the house; and should any of these be
dieturbed, the alarm is at once sounded. By meansof a " tell
tale" it can be ascectained at once in what part of the house to look tor the disturbance.
The other night, before retiring to bed, we had the assur $\boldsymbol{W}_{\mathrm{e}}$ of the servant that everytbing was clsee and secure e set the alarm, but instantly it set to ringing, and we knew hat something was wrong, and upon examining the "tell tale, we found out where to look for the cause. The laundry vindow was dropped about an inch, and the little machine would not keep still until the matter was made right.
By the use of this little apparatus, thousands of dollars worth of property have been raved from burglars.

The Geysers of California.

A correspondent of the New York Journal of Commerce writıng from Sonora county, Calif,rnia. thus describes the Geysers of that state: After ranging through a considerable part of the State of Caliornia, seeing that which is most grand and bea utiful, I am constrainea to tarry here and in common with travelers who have peeked into the crater of Vesu vius and witnessed other strange spectacles in the Old World, to declare that the most strange and wonderful of all has been reserved for the last, wh+n we gaze upon the extra ordinary phenomena known as "The Geysers." Few objects n nature are more deserving of attention trom those whode light in scientific investigation or desire to merely to gratify love for the marvelous.
A deep serpentine canon or ravine about a quarter of a mi'e in length is flanked by walls of denuded rock, precipit ous and rugged, full one hundred feet in hight, and tbrough their entire extent strong jets of sulphurous vapor spring rom every crevice, shile along the base strams of wate hot, hissing, gurgling, c ntribute to swell the volume of the torrent that s weeps down into the valley of the Russian river its course marked by clouds of steam. The substances held in solution by these waters coat evrry boulder with minera incrustations, and above the water line the disintegrating rocks bristle with crystalline sprays of sulphur, borax, alum etc. Indped that must be a desperate case ahich could not be curtd by medicines tound in that great laboratory; if no cure be effected, they would certainly do the other thing. Yellow, green, and gray colors predominate, with a large ad misture of oxide of ir.n. The place where you thread is al most too hot for endurarice. If you sit awbile to cuntemplate the extraordinary scene a sebsation of discomfort suggesta an imniediate cbange of base. It a longer stay prove ad mis sible, the probatility is that clotbing thus brought in con tact with strong alkalies and acids would quickly be de stroyed. This sinyular gorge is therefore not inapuropriately named "Devil's Canon." In fact every object here is sugges tive of somtthing Satanic. The visitor is shown "The Witch's Cauldron," "The Devil's Smokr Pipe," "The Devil's T'ea Kettle," etc. The roar of boiling water and the rush of sieam commingle, rendering the human voice inaudible, ex cept at short distances. The one is deep, profound, sepul chral. suggestive of spectral shapes, with horns and other di abolical appendages. The other is sprightly bubbling, as if in mockery. A cane thrust into the yielding eabankmentis withdrawn, smeart through is entire lepgth with a sticky pigment representing colors of every hue. Large masees are readily detached, rolling to the bottom, where they dissolve and float away. Seventeen varieties of mineral substances have oeen found here. In truth, it the contents of a huge drug store were multiplied one bundred times, then mixed promiscuouslo, and the whole villanaous compound thrown into a chasm heated by subterranean fires the product might bear a faint comparison with the geysers of Sonora county. In one place a pool of water, black as Er bus, and about ten feet in diameter, is seen biling furiously. To fall in would be instant death. Elsewhere the stream escapes from fissures in the rock with a nower sufficient to hurl stones from the opening with great violeace.
These phenomena have been variously explained, some as cribing their origin to a volcanic agency, as scoria and lava are found plentiully. Uthers suggest that the mixture of acids, and aikalies taking placн ca 18 ses a combustion, the effects of which are apparent. The last theory advanced recrives support from the fact, that the geysers manifest much greater activity after a season of heavy rain; erudite profes sors must settle this question.

More Uandalism

One of the peculiar faculties of the late Prof Faraday consisted in his great mechanical ingenuity and constructiveness, as evidenced in the apparatus for conducting the original and elaborate exveriesents by which he arrived at such great results. Thir main character was simplicity, which is indeed the perfection of ingenuity, and the distinguishing feature of the work of genius. As has lately b. en remarked by a good judge, "the pracrical powers were never perhaps more strikingly displayed by man than in the various conrivances he adopted while conducting his researches-some of them being almost equivalent in ingenuity to the compilation of a steam engine." We regret to have to record the fate of the greater portion of these contrivances. Shortly after Mr. Faraday's death they were given by his wile to the porter of the Royal Institution, who, we need not say, could scarcely appreciate them. He accordingly sold them piecemeal, and even parts of the same apparatus to different buyers, thus breaking up combina ins that probably were underotond by few except their gifted inventor Thus it is robable that all this splendid collection is destived to be caitesed and distributed among those to whom their only

A corions accident rece cly bapped at Almond, Mich. The jack wheel of a threshing machine burst and killed Al-
bert Tucker, who was in charge of the machine.

