ern portal sufficient to make a g od mill privilege. Some Yankee will utilize this power, no doubt, when the work is completed.
"Altogether, the mountain has been penetrated, at all the workings, about one and three fourths miles. The entire length of the tunnel being four and three fuurths. there are yet three miles to penetrate. It will be too bad if the work is ever given up after so much has been accomplished. The trouble now seems to be in satisfactorily adjuating the contracts for completing the work with the $\$ 5,000,000$ appropriation. The friends of the project very sensibly desire to divide the work into small contracts, and the Commissioners have advertised for proposals under this plan The opponents of the tunnel argue tor one contractor, helieving, no doubt, that no one man can be found who will take so large a risk, and be able to give satisfactory security for the complerion of the work. They hope the $\$ 5,000,000$ appropriation will fall by its own weight. But Massachusetts cannot afford to turn back from this great enterprise.'

the origin of petroledm

Denton, in his popu'ar lectures on Geology, entitled, "Our Planet, its Past and Future," after making some remarks upon ancient sources of rock-oil, etc., thus speaks of the original causes of these deposits:
'This is, then, no new thing ; but whence comes it? And in answer to this question we have many thenries, some of them sufficiently ludicrous. One suggests that, since the earth is a huge animal, the rocks its bones, the water circula-
tion in them its blnod, the grass and trees its hair, the hills pimples upon its face, and Etna and Vesuvius eruptive boils, all that is necessary to oltam oil is to bore through the skin into the blubber of the monster, and oil very naturally flows from it. Another supposes, that, during the time of the flood, the great whales were buried deep under accumula tions of mud, in those places where the oil most abounds; and hence petroleum is merely antediluvian whale oil. It has been suggested, that, since thr earth is at some pfriod to be destroyed by fire, the oil was probably prepared against that terible day when the matct will be applied, and the world burned up.
"Apart from these ludicrous explanations, however, men of science have considerd this question, and rendered their
veroict. Professor Sillimansays that ' petroleumisutiformly veroict. Professor Sillimansays that ' petroleumis utiformly Dana says, 'Petroleum is a bituminusus liquid resuling from the decomposition of marine or land plants (mainly the latter), and perhaps, also, of some non-nitrogenous animal tissues, By many, it is supposed to be a product of coal ; and hence the name of ' coal oil,' so frequently abplied to it. Sone suppose that the coal, heing sul.j-cted to the enormous pressure of the overlying beds, has yielded oil, as a linseed-cake
does under an bydraulic press; and I have seen the theory does under an hydraulic press; and I have seen the theory
advanced, that the coal, heaced (as it evidently has been in the coal regions of Eastern Pennsylvania), gave off oily vapors which, rising to the cold region of the upper air, condensed, and subsequ + ntly fell in oily showers, making its way as best it could to the hollows of the earth's interior, where the oilborer finds it to-day.
"Facts play sad havoc with these various theories. If the oil comes from coal, it seems strange that it is so rarely met with in a coal district. I have visited coal mines in England, Wales, Nova Scotia, Cape Breton, and not loss than ten of the United States, butnever saw petroleum in a coal mine, or even smelt it ; and this is an article that never wairs for an introduction, but salutes the olfactories at once. Of course, if this came from coal, coal mines would be the placas in which to discover it ; coal neighborhoods should abound with it, coal miners be familiar with it; and it should never be found in rocks older than the coal measures. The contrary of all this is true. Wheu it is found in the coal measures, it has been forced up from underlying beds in which it was originally contained.
"In this country, nearly all the oil hitherto obtained has been from beds that lie below the coal measures, and some times at a great depth below them. On Oil Creek, in Pennsylvania, it is found by boring in shales and sandstones, sometimes to a depth of a thousand feet; these beds belonging to the Chemung group of the Drvonian formation, and mony hundied feet below the coal measures. At Enniskillen, in Canada West. where the oil has at one time come up in springs, and overflowed, leaving a thick bed of asphaltum covering the ground for an acre, the limestone in which borings are made contains characteristic fossils of the Hamilton group of the Devonisn formation. The oil wells in Western Kentucky, and in some parts of Tennessee, are in the Tren-
ton limestone,-that is, in the lower Silurian forcation; and ton limestone, -that is, in the lower Silurian formation; and
I have seen oil even at the base of this. The same cil fluats on the surface of a limestone quarry near Chicago, the limestone belonging to the Niagara group of the Siturian formation ; showing conclusively that it has no necessary connection with coal.
"But may it not have been produced from sea plants, as coal has befn from land plants, as several eminent geologists have supposed? The quantity of free oil existing in the earth seems to forbid this. I saw a well in Western Virginia which produced twenty-eight thousand barrels in ten months. From three wells near Oil Cre-k, one thousand barrels spouced in twenty-four hours; and frum one, three thousand seven hun-
dred and forty. The 'Big Phillips' Well struck oil in October, 1861, at a deptb of four hundred and eighty fret. It yielded about three thousand bariels a day. The oil rushed out with such violence, that the well could not be tubed for soveral days; and it has been calculated that forty thousind
ield was about fifceen hundred barrels, at which rate flowed for six months.
"There must te lakes of petroleum to render such flows possible. Where are the bodies of fucoids or sea weeds from possible. Where are the bodies of fucoids or sea weeds from
which this oll could flow? The sea weeds of the Silurian and which this oll could flow? The sea weeds of the Silurian and
D.vonin times (in whose beds the greatest quantity of petroleum is found) were so loose in. structure, and contained so litt'e bituminous matter, that their impressions do not even darken the light colored shales in which they are found em bedded. Had these plants been as oily as fish, their bodies would have left dark impressions on the shalrs, as the bodies of fish do ; and if they were not as oily as fish, or as bituminous as land plants. by what possivility could they produce lakes of oil? If the plants had, indeed, been oily, no oil could have been collected trom them, unless preserved fr,m contact with the air and water. Edch plant being separated from its companions, on being buried in mud, the oil, supposing any to exist, would have been absorbed by it, and thus lost.
" Has the oil been distilled from bituminous shales, as some suppose? I think not. It requires a strong heat to distil oil from shales; and generally, where petroleum is found in the greatest abundance, there is the least appearance of igneous action
" How was it produced, then? It is a coral oil, and not a coal oil. I have in my possession numerous specimens of fossil coral, obtansed from Devoman and Silurian rocks belong ing to the tamily of favosites, or honeycomb stone, as the nam means the cells of which very much resemble those of the
honeycomb; and, as the cells of the honeycomb are filled with honey, these cells are fillod with nil. I have found oi in some specimens nearly as limpid as water ; and, by heating the coral, oil runs out readily. I have seen thess oil-bearing corals at Smokes Creek, where there are coral reefs full of it in the Silurian limestones of Middle Tennessee ; at Williams ville, near Buffalo ; and in rocks near Penn Yan. in New York In the State Collection of Fuseils at Albany, and in the Mont real Geological Cabinet, there are numerous specimens. Pro fe-sor Dana informs us, that it flows iu drops from a fossi coral at Montmorenci, Can., and at Watertown, N. Y. It might be supposed that this oil filled the cavities of the
corals, as it might any other cavity in the rocks; but I have corals, as it might any other cavity in the rocks; but I have
found it repeatedly in these corals, and in no other wart of the rock, invariably accoupanying the corals, and never connec ed with any other fossil ; these corals trequently in the cente
of solid limestone blocks. Reefs of such cora would furnis of solid limestone blocks. Reefs of such cora. would furnish oil in quantities sufficient to account for the immense depos its that bave been discovered. Preserved by them in compac bodies, the oil taking up at least half the space of the coral reef, we can readily suppose, that when the cells were crushed
by the superincumbent weight of rock, or during uphevals and sutsidences, cavities and crevices in the eartn's interio would be filled by it.
"It is, then, an animal production, and not a vegetable one It is a product of the ocean, and not of the land; being almost invariably associated with salt water from the Lott ms of seas that then covered a large portion of Wentern New Tennessee. It is not sormed from the bodies of the coral polyps, as some have supposed,--for, when dry, they are a mere film, that could be blown away by a child'e breath,--but stcreted from the impure waters, principally, though not exclusively, of the Devonian times; the coral polyps performing the same offle
for the air."

ELECTRICAL NOVELTIES.

Electricity is a wizard's power. With it and little me chanical skill a man may turn his house into a magician' castle. The late ingeni us Mr. Appold-of centrifugal pump notoriety-indeed, did this without it ; his room doors opened as you approached them, and shut behind you; his stable gates did the same; upon touching a spring, the window shutters closed, and the gas was turned on; his apartments proper hygrometric state, by regulating thermometric and atmospheric damping apparatus ; in short, his house was full or surprising devices, created and worked out by his won derful inventive and executive skill. Had he pressed the sulutle fluid into his service, there is no saying into what a palace of enchantment his dwelling would have been trans formed But what he did not do has been done by the famous Robert Houdin, who has made electricity do the work of a retinue of servants and a watchman to boot, a full description of which will be found on page 178, Vol., XVIIl Scientific American.
Such are a tew of the domestic functions of the most ubi-
uitous slave that science has entrapped for man. Of its public services we nted bardly sueak; telegraphs have be come too familar to be longer regarded as curiosities, even those that send the message in fac simile of the hand in which it is written, or reproduce a drawing a hundred miles away. Electric lights, too, have ceased to be surprising though they are far from having been used to their full pow-
ers. There have been difficulties in the way of getting a good and cheap source of electricity, which have barred the way to their extensive introduction: but some of these are
removed and we may entertajn better hopes for the future. One of the gieat doctrines, perhaps the greatest, of the pre sent era of science, 18 that of the converitibility of forces one int, anosher. Heat, is turned into mechani al torce, and mechanical fores is turned into electricity, and vice versa; ar.d heat and electricity are similarly interconverted. A celebrated London photographer has erected a magneto-electric
an intensely bright illumination, and has thus apoarently hecome independent of the sun; iv reality, he is using the solar rays which came to our planet thousaads of years ag',的 ing their precious metals, and a sugar refinerg another for iog their precious metals, and a sugar retinery another for such an apparatus is for lighthouse illumination. A French company bought the patent for France to this end, and the light was to be tried at Cape Grisnez. It was not only to il luminate the Channel "a giorno," but to shed a mild twilight over our own southern counties. We have not heard of the trial-perhaps it has yet to c , me off.
From lighth uses, the transition to buoys and beacons is easy. These an ingenisus inventor has proposed to illuminate by electricity. Those who attend scientific lectures, or ook into instrument-makers' shops, will have come to know something of coils called "induction coils," for producing in effect a very powerful current of electricity from a very weak one, and of certain glass tubes and globos for exhibiting the passage of the electric spark through a partial vacuum.
Well, the invencor aforesai 1 proposes to place a battery and Well, the inventor aforesai 1 proposes to place a battery and o one or hollow in a lan'ern on the top. A steady light, glimmering like a glow-worm on the sea, would thus be secured, and neither wind nor wave could r-adily extinguish it. Some one else invented a amp for miners on the same princiole: a knapsack was to hold the battery and coil, and wires were to lead to a lamp composed of a vacuum tube caried in the hand. There could be no doubt of the safety of this light-in this respect it would rival the immortal Davg's invention; but portabil ity is a rather necessary feature in any tool a pitman has to use, and the knapsack and entangling wires might prove rather worse than an inconvenience to him, especially when, as happens occasionally, he has to pick and wriggle his way, worm fashion, through a one foot ream.
Perhaps, after all, the most curious application of the electric light was that attempted lately at one of the Paris theaters. The actors were decked with glittering crowns, and, to add to their brilliancy, they were so made that a chıplet of electri; sparks encircled the wearer's head; the necessary current being supplied and led to the coronat from a conc-aled battery. Bat the "sensation," pleasing enough doubtless to spectators, painfully verified the truth of the Shakespearian maxim touching the uneasiness of the head that wears a crown, for one of the performers was grievously injured by the passage of the current through his or her head, instead of through the star-spangled ornament Not quite so striking, but still curious, are the electrical jewels made by MM. Trouvé and Cadet-Picard. These consist chiefly of scarf pins and brooches, representing heads of men and animals, which roll their eyes and work their jaws. Some are in the shape of tiny soldiers which beat drums, rabbits that play on tambors, and birds that flap their wings and fan heir tails. They are worked by ting electro-magnets con cealed within them, and connected by fine wires with little batteries carried in the pucket or elsewhere about the dress. Fashi nable Paris was charmed with these trifles for a seaon; doubtless they are forgorten by this time. Electricity is an agent prculiarly suited to French ideas, and has been urned to more droll uses by tuat people than by all the rest if the nations of the world put together. When rifles were the talk of the governments of Euro the emperor was shown one to be fired by electricity; the stock of the gun enclosed a battery, from whence wires passed to the breech and into connection with a platinum wire passing through the cartridge. The puls of the trigger closed the electric circuit, and in an instant the platinum wire became red hot and ignited the powder. The cartridge carried no fulminate, so it was a very safe one. The emperor, it was said, greatly admired the gun; he preferred to adopt the Chassepot, however.
From killing to curtag. While one man is using his inge wity to throw bullets into his fellow man, another is devis ing schemes to take them out. Probing the body for these missiles is a tedious and pain'ul overation, and its difficulty shiefly lies in discovering the bullet amongst the frayments of shattered bone by which it may be sursounded.
Electricity affords the means of uoing this. The probe is made with two points, from each of which a wire passes; and in the circuit is placed a battery and a signal bell. So long as the two points are not metallically connected, no current passes and the bell is silent; but, when they are joined by any piece of metal, it rings. When, then, the surgeon thrusts the probe against bone or muscle, there is no effect but when the points come against the metal bullet, the bell announces the fact : the forceps for extracting the lead be have in the same manner. That electricity exercises an ex citing influence over sluggish nerves is a fact insisted upon by wedical galvanists, but it likewise appears to possers deadening power over such as are excited, for a dentist in Bordeaux has a plied it t o dull the pain of tooth extraction. Report has spoken well of the application, but details of the modus operandi are wanting. For this one painful operation, at all events, chloroform has possibly been superseded by electricity; but the latter has joined issue with the former n another way, for two French electricians have very re cently announced, as the result of experiments tried upon animals, that a powerful shock or strong galvanic current will restore animation in cases of over-stupefaction by the sedative.
Tuese actions are inscrutable enough, but some recently nnounca 1 influeaces of the fluid ufon vegetable organisms are more puzzling still. In the beginning of the century a
pheric electricity to the curing of diseases in plants, and encouraging their development, and he drecribed bis means of drawing currents finm the clouds and air and distriburing them among his cabbages and letcuces. Very surprising effects were produced, but little notice seems to have been taken of them ; probably, because there is a natural ten dency to ignore phennmena of the rationale of which no clear ideas can be formed. But quite recently M. Blondeau brougbt before the French Academy of Sciences the results of some experiments quite as startling as those of the worthy Abbé. He says that the current ripens fruits; of this he bas assured himself by elecirif!ing some apples, pears, and peaches, all of which ripened uoder the influence of the fluid, whilst the other fruit on the same trees remained far from ripe. Then be electrified seeds and grains, by steeping them in water and submitting them to the action of a powerful curreat. Peas, beans, and wheat, were so treated and sown in good soil. By the side of them were sown similar seeds not electrified. I'he former sprouted sooner than the latter the development of the young plants was more rapid, and the stems and leaves were more vigorous than those not subjected to electrical iufluence. But, most mysterious of all, some beans that had been electrified grew upside
the ruots in the air and the cotyledons in the soil.
Fuots in the air and the cotyledons in the soil
For the mechanical and enginearing arts, electricity has done much ulready; but it promises t, do more. We have had an electric loum to dispense with the comp'ications of
the Jacquard cards, and some of our gieat iron-clads have the Jacquard cards, and some of our gieat iron-clads have been furnished with electrical call-boys for enabling th captain on the bridge to comenunicate bis orders to the en gineer below, and to the steersman at the wheel. Now, the engineer has the prospect of reliet from his bugbear-boiler incrustation. It is asserted that the placing ot a bundle o metallic spikes in the path of the steam as it issues fr m boiler, has the effect of generating a stream of electricity and that if this be led to the metal of the boiler, it sets up an action at the surfaee which prevents the deposit of saline matter. The question is a disputed one at present.
The phenomenun is unexplained, and therefore, in some quariers, discredited; and as yet, sufficiently crucial tests have not been a plied to sertle it indisputably as a matter of fact. So we pa"s on to anoth 4 r, and perhaps better established, application of the $t w i n$ elemeats, electricity and mag. netism. We allude to their use in the manutacturing and testing of iron. This metal, in ite crude state, is full of impurities, such as carbon, sulphur, phr,sphorus, and siicicus bodies. These are electro-negative in relation to iron, which is electropositive. When, then, a powerful current is di rected through the fluid metal in the melting furnace, the fortign watiers are expelled with some boiling and commo-
tion, asd a very pure metal is produced and drawn off to the casting molds. This method of purification has been tested at Sheffield with remarkable success, and it foreshadows im provements in the manufacture of iron second only to those in the making of steel. The author of the process in its present form is Mr. Robinson, of London; but a somewhat similar plan was suggested and tried five-and-twenty vears "go, to the proof of the adage that there is nothing new "except," as cynics say, "that which has been rorgotten and
re-discovered." The testing of iron castings and forgings by magnetism is an ingenious idea, the credit of which belongs to Mr. Sasby, R. N., one of our dnckyard naval instructors When a bar of iron is ulaces at a certain inclination to the verical, it becomes temporarily a magnet, and behaves as such to a compass reedle brought into its vicinity. If the pass needle, when passed around it, goes through metbodi cal teolutions, always directing its north point to particular regions of the bar, and otherwise behaving in an orderly manner. But if the iron be cracked or flawed internally there will be breaks in the continuity of its magnetism cor responding with the mecbanical interruptions, and these the comease needle will point out by behaving vagariously when when it passes over them. Tbis is the principle of Mr. Saxby's tests; he has tried them practically at the Cbatham and Sheerness dockyards, and with a success that gives great hopes of removing one of the greatest difficulties engineer have to cope with.
We have known an instance in which a large and valuable forging, the paddle sbaft of one of our great steamships, was discovered to be detective only when, after wetks of labor a cutting tool revealed the hitherto invisible flaw. The loss involved amounted to several thousand pounds, of which a part at least, might have been spared had some effective mears been known for testing the soundness of the mass of meral.
The latest novelty is an electric organ. One of the most important and valuable properties of the galvanic current is that of transmitting power without motion. It we want to ring a bell at a distance, we must move the whole length o an intervening wire, and this is otion takes strength and time. Similarly, to open the valve of an organ pipe by toucking a clavier requires the intervention of complicated rods and levers Strength is necessary to press down the key to work these levers, and time to communicate the motion to the pive's orifice. Electricity requires neither; it instantly transmits force enough to open the valves without denaand ing more than a gentle prersure upon the clavier. Another from the organ pipes. We h_{+}ard this application suggerted long ago; the cresit of working it out now belongs to an English organ builder residing in Paris, who has made several instruments on the plan. One has already been ercected at the Crystal Palace. Blown by steam-played by electricity
-what is the king of instruments coming to ?-English paper.

THE INFLUENCE OF SCIENTIFIC CONVENTIONS.

Prof. S. D Tillman, in his address at the Autuunal Openng of the Polytechnic, on Thursday, the 10th inst.. afte alluding to the success of the late Scientific Congress at Chi cago, said: "Nothing more was needed to confirm the gen ral opinion as to the benefits arising from these annua gatherings. They accomplish for science what convention do for religious, political, and commercial objects, by secur ing unity of purpose, concentrated effort, and expeditious action. Indeed, they do much more in dispelling illusions, which are often palmed off as truth among those who are only captivated bo novelty. While discovery is constantly extending her domain, opening new paths of progress, and eresting new beacons, to direct those who are to follow, it is the special duty of advan ed men to see that no false lights
are shown which would lead to the propagation of unsound doctrine. Every new hypotheris or induction should be sub -cted to the keenes! scrutiny of those who are cumpetent to pass upon its merits. A scientist, who reads a paper before his peers, reaches at once the appreciative audience he most desires. If he dessribes new experiments, they, more than all others, are interested in the results; if he advances new views, they are evor ready to question the correctness of his conclu-ions. Thus, it frequently happens, that the discus sion immediately following the reading of a paper, will dis. pnse of objections, and establish positi,ns which could not
be reached in a long time through the medium of printed dissertations. Moreover, the sugg-stions oft,on thrown out during the tree exchange of ideas in a verbal debate, are of great service in exciting that enthusiasm in the votary of science which prom pts him to higher tfforts in the pursuit of truth.

The beneficial influence of these scientific aseociations is not so obvious here as in Eur pe. where they are older and more firmly established. Of late, the British Assaciaion for the Advancement ot Science has accomplished much; et it will be remember-d that, even a ter i's formation, Sir John F. W. Herschel, in a note appended to h is able treatis On Sound,' in the Encycloncedia Metropolitana, acknowledgd his indebtedness to foreign jouruals tor a portion of the information be then presented and expressed his regret that so little att-ntion was paid in bis own country to what was being done by scientific men abroad. 'Here,' said be, whole branches of continental oircovery are unstudied, and ndeed almost unknown, even by name. It is in vain to conceal the melancholy truth. We are fast drooping bebind. In mathematics we have long since drawn the rein, and given orer a houeless race. In chemistry the case is not
much better.' These, and other words of regret and reproof then written, doubtless hastened the great and favorable change which has sine taken place in his country. Certain it is, that the formation of the British Association has led to che happiest results ; for to-day it may boast of many distinguished nawes in almont every branch of science.
"If there is any hindrance at present to the progress of truth, both here and abroad, it arises chiefly from the spirit of exclusiveness sometimes evinced by those who have devoted their lives to the study of physical laws. This shruld not escite surprise, because the tendency 0^{+}abstract sci-nce is essentially arist cratic. The man who knows, stands on a
higher plane than the one who does not know. Hence, the position of the scientiss is impregnable. He has riches and power, of which he cannot be robbed. Should he find his chief enjoyment, bowever, in the reputation he has acquired, be may well fear rivalry. On the othэr band, if he pursued truth for the love of it, he will welcome all who labor in the same spirit, and extend to those below him a helping hand.
" The study of natural laws, in the absract, undoubtedly affords pure enjoyment ; yet this feeling is vastly int-nsified by witnessing their success'ul application for the accomplish ment of new and important results in the usetul arts. Such
results are often brought about by the artiran who, although he may know but few of these laws, understands most thor oughly all the conditions peculiar to his art, under which they can be effectually applied. Our great inventors have not, generally, had the advantage of a liberal education By ingenuity alone they take the lead, and, of course, coun eract to a certai
"Scientitic associations will be entirely successful when they fully recogoize the fact that Science in these modern times has a double mission. From serene hights she beckons on
the studens who longs for clearer views of the divine plan of the universe; yet often she descends to the humblest abodes of men, and watch +8 while Invention weaves shme new de vice. Thus, we find her potent influrnce in those improve ments which lessen manual labor, supply corporal wants, and add to the material resources of our race. We, of the Poly technic, welcome her in both offices, as revealer of long hid den links in the endless chain of sequences, and as prompter o new combinations of some of those links by which th surplus powers of nature are successfully applied to ingen ous mechanism. and by which even new forces are generated and made obedient to the will of man."

An Alarm.

We have in our bouse a little invention which we have sed eral times noticed in orber dwelings, but having no direct nterest in its of eration we have nut paid much attention 'o in our sleeping room; bu: in an emergency it is capable of making a good deal of noise, and im:arting useiul informa iun. It is an electric alarm, with wires tntirely concealed rom the eye, and which run from it to the doors and win dows and scuttle of the house; and should any of these be
disturbed, the alarm is at once sounded. By meansof a "tell
tale" it can be ascectained at once in what part of the house to look tor the disturbance.
The other night, before retiring to bed, we had the assur $\boldsymbol{W}_{\mathrm{e}}$ of the servant that everytbing was clsee and secure e set the alarm, but instantly it set to ringing, and we knew hat something was wrong, and upon examining the "tell tale, we found out where to look for the cause. The laundry window was dropped about an inch, and the little machine would not keep still until the matter was made right.
By the use of this little apparatus, thousands of dollars worth of property have been raved from burglars.

The Geysers of California.

A correspondent of the New York Journal of Commerce writıng from Sonora county, Calif,rnia. thus describes the Geysers of that state: After ranging through a considerable part of the State of Caliornia, seeing that which is most grand and bea utiful, I am constrainea to tarry here and in common with travelers who have peeked into the crater of Vesu vius and witnessed other strange spectacles in the Old World, to declare that the most strange and wonderful of all has been reserved for the last, wh+n we gaze upon the extra ordinary phenomena known as "The Geysers." Few objects n nature are more deserving of attention trom those who de light in scientific investigation or desire to merely to gratify love for the marvelous.
A deep serpentine canon or ravine about a quarter of a mi'e in length is flanked by walls of denuded rock, precipit ous and rugged, full one hundred feet in hight, and tbrough their entire extent strong jets of sulphurous vapor spring rom every crevice, shile along the base strams of wate hot, hissing, gurgling, c ntribute to swell the volume of the torrent that s weeps down into the valley of the Russian river its course marked by clouds of steam. The substances held in solution by these waters coat evrry boulder with minera incrustations, and above the water line the disintegrating rocks bristle with crystalline sprays of sulphur, borax, alum etc. Indped that must be a desperate case ahich could not be curtd by medicines tound in that great laboratory; if no cure be effected, they would certainly do the other thing. Yellow, green, and gray colors predominate, with a large ad misture of oxide of ir.n. The place where you thread is al most too hot for endurarice. If you sit awbile to cuntemplate the extraordinary scene a sebsation of discomfort suggesta an imniediate cbange of base. It a longer stay prove ad mis sible, the probatility is that clotbing thus brought in con tact with strong alkalies and acids would quickly be de stroyed. This sinyular gorge is therefore not inapuropriately named "Devil's Canon." In fact every object here is sugges tive of somtthing Satanic. The visitor is shown "The Witch's Cauldron," "The Devil's Smokr Pipe," "The Devil's T'ea Kettle," etc. The roar of boiling water and the rush of sieam commingle, rendering the human voice inaudible, ex cept at short distances. The one is deep, profound, sepul chral. suggestive of spectral shapes, with horns and other di abolical appendages. The other is sprightly bubbling, as if in mockery. A cane thrust into the yielding eabankmentis withdrawn, smeart through is entire lepgth with a sticky pigment representing colors of every hue. Large mases are readily detached, rolling to the bottom, where they dissolve and float away. Seventeen varieties of mineral substances have oeen found here. In truth, it the contents of a huge drug store were multiplied one bundred times, then mixed promiscuouslo, and the whole villanaous compound thrown into a chasm heated by subterranean fires the product might bear a faint comparison with the geysers of Sonora county. In one place a pool of water, black as Er bus, and about ten feet in diameter, is seen biling furiously. To fall in would be instant death. Elsewhere the stream escapes from fissures in the rock with a nower sufficient to hurl stones from the opening with great violeace.
These phenomena have been variously explained, some as cribing their origin to a volcanic agency, as scoria and lava are found plentiully. Uthers suggest that the mixture of acids, and aikalies taking placн ca 18 ses a combustion, the effects of which are apparent. The last theory advanced recrives support from the fact, that the geysers manifest much greater activity after a season of heavy rain; erudite profes sors must settle this question.

More Uandalism

One of the peculiar faculties of the late Prof Faraday consisted in his great mechanical ingenuity and constructiveness, as evidenced in the apparatus for conducting the original and elaborate exveriesents by which he arrived at such great results. Thir main character was simplicity, which is indeed the perfection of ingenuity, and the distinguishing feature of the work of genius. As has lately b en remarked by a good judge, "the pracrical powers were never perhaps more strikingly displayed by man than in the various conrivances he adopted while conducting his researches-some of them being almost equivalent in ingenuity to the compilation of a steam engine." We regret to have to record the fate of the greater portion of these contrivances. Shortly after Mr. Faraday's death they were given by his wile to the porter of the Royal Institution, who, we need not say, could scarcely appreciate them. He accordingly sold them piecemeal, and even parts of the same apparatus to different buyers, thus breaking up combina ins that probably were underotond by few except their gifted inventor Thus it is robable that all this splendid collection is destived to be caitesed and distributed among those to whom their only

A corions accident rece cly bapped at Almond, Mich. The jack wheel of a threshing machine burst and killed Al-
bert Tucker, who was in charge of the machine.

