Nevertheless, ine commenced work in his master's celebrated shop at ten shillings a we $\epsilon \mathrm{k}$, and worked his way up from the bottom to the top of the ladder in his own walk of art. This ingenious man may be said to have been called fortb by Brunel's gigantic design for the Great Eastern steamship It was originally proposel to propel this vessel by the paddle, but the shaft for this purpose would have been so large that no forging tools then in existence would have been able to turn it out. Brunel accordingly appealed for help to Nasmyth who responded by sending a drawing, by return post, of his fa mous steam-hammer. It was, nevertheless, determined to substitute the screw for the paddle, and the drawing was for gotten. Some years afterwards, however, Nasinyth was visit ing a celebrated iron foundery in France, and, noticing a piec of forged work that he keew could not have been accom plished by the ordinary means, was curious enough to inquire how it had been produced. The answer was, "Why, with your steam-hammer, to be sure." The Frenchman had been shown the drawing, and righily estimatieg its value, he hac one made. Large designs call forth large tools, and larg tools, in their turn, call forth large designs. Had it not been for Nasmyth's hammer, there would have been no such thing as iron-clads, neither would there have been any of the mon ster cannon built upon the coil system, us they are at present The steam-hammer enables us to undertake Cgclopean task which we should never have dreamed of otherwise.
The last and best known machinist of the goodly band that issued from the establishment of Messrs. Maudslay \& Field is Joseph Whitworth. This celebrated iron worker improved upon Clements planing machine, in his Jim Crow planer. This machine works with a cutter, which reverses itself, cut ting backward and forward without losing any time. It was at work, it will be remembered, in the Industrial exhibition of 1862. Whitworth is, perbaps, best known by his rifie gun, the ritting of which is the very perfection of art. Accuracy of work, learned by him irom the tradutions of the shop in which he was taught, led Whitworth to contrive various machines For the furtherance of that object. He has invented one machine which detects variations of a millionth of an incl. It is very likely that this contrivance will be but rarely used, but the influence of the practice of its inventor must have immense effect upon the trade, and help to keep up a standard of excellence which less known men, if they would succeed, will have to attain. The use of machinery has now become so general, that the perfection of workmanship is almost a neceseity. Such contrivances as those we have drawn attention to, would have been beyond the reach of the simple hammer and flle of our forefathers; and if the world were reduced once more to the hand of the craftsman for the production of its machinery, all its great operations would gradually be brought to a standstill. Yet it is but little more than holf a century since the hand was all we had to depend upon in the world of mechanics. If the reader wishes to measurg the difference between the old work and the machine work of the present day, he has only to look down the hold of any small steamer at one of $P \in n n$'s marine engines, or to behold the splendid specimen on board the engines, or to behold the splendid specimen on board the Warrior iron-clad. This engine was designed, also, by the
Messrs. Penn; and the perfection of its workmanship may be Messrs. Penn ; and the perfection of its workmanship may be
estimated by the fact, that, when its five thousand pieces were assembled together for the first time, such was the mathematical accuracy of their fit, that as soon as steam was got up, it began to move with the utmost smoothness. Let the reader, we say, compare this splendid piece of work with the old Newcomen engine in the South Kensington Museum, and he will at once see the ages of mechanical genius we have traversed since Watt took the latter in hand, and by patient thought built up out of it the present steam engine. Yet it is not more than a century ago that the machine represented the most powerful motive engine we possessed, and was as fair a specimen of work as the eighteenth century could turn out. Such are the differences that have been brought about by half a dozen able men carrying out the traditions handed down by Henry Maudslay,-mere workshop traditions, which now are act: d upon throughout Europe wherever the machinist's skill is known-Cassell's Magazine.

GCARCITY OF PAPER MATERIAL.

The scarcity of paper stock, felt almost immediately after the inauguration of the late war, is not singular. In Bishop's " History of American Manufactures," we learn that in 1748 a similar scarcity existed in the Massachusett's Colony. Thomas Fleet, who (copying his public notice) was " Printer at the Heari and Crown, in Cornhill, Boston," advertises thus: CHOICE PENNSYLVANIA TOBACCO PAPER TO
 $\stackrel{m u c h}{\text { Priests. }}$
This selling of Papal indulgences and bulls, in Puritan New England, scems odd, but the facts of history account for it. Several bales of the indulgences, printed on one face or page of a small sheet of very good paper, had been taken in a Spanish ship captured by an English cruiser during the war with France and Spain in 1748, of which Mr. Fleet purchased a large quantity. He made use of them for printing ballads, the back of each copy of the bull being large enough for two songs, as "Black-Eyed Susan," etc. "To what base uses do we come at last."

In cutting some timber in Omaba, a few days since, a bullet was found imbedded in the trunk of a rock elm. The grains which had overgrown it show that it must have been de posited there sisty-two years ago, a time when the countr had not yet been visit $\in d$ by any white men, except the ex plorers Lewis and Clarke.

SIMPLE DEVICE FOR ROASTING COFFEE.

The adulterations perpetrated in the preparation of coffee cady ground for the use of the family have greatly stimulat ed the sale and use of household devices for the preparation of the berry. One of the best coffee roasters we have seen is that illustrated in the accompanying engravings. It is a hol-

Mig. 1

ox globe of cast iron with a circular opening for the reception of the berries, closed by a convex or cup-shaped cover, A, at of the berries, closed by a convex or cup-shaped cover, A, at
tached to the handle, B, and furnished with lugs engaging with ears on the globe, by which the globe is revolved over th fire. This glebe or receptacle turns in a hemispherical cap that is furnished with a fiange fitting over the opening in the stove or range. A forked lever, C , thie arms of which project on pach side of the globe and act as springs, engages with catches fixed on the circular flange to hold the globe in place while being used. A simple movement of the levers, B and C, disengages the cover and reverses the globe, thus discharg

. Fig. 2

ing its contents. The action of the hand on the lever, C, re noves the cover, disengages the catches, and reverses the po sition of the globe. While in operation, the catches of the lever, C , hold the globe in position for operation.
This improvement was patented by Fred Max Bode, tbrough the Scientific American Patent Agency, July 28, 1868, and as signed to C. G. Mueller, No. 12 Theater Platz, Hanover, Prus sia, to whom all cominunications should be addressed.

A NEW REGISTERING BAROMETER.

The following is a description with an engraving of the Barourtrograph, recently invented in France. We do not believe it to be as delicate as the Self-regestering and Printing Barometer invented by Prof. Hough Astronomer in Charge a

the Albany Observatory, but it seems to be less complicated and expensive.
It is usual in taking barometrical and thermometrical observations for the purpose of registration, as regards changes of weather and for foretelling weather, to take them at stated and regular intervals, so that the variations at those periods may be noted and, if required, plotted out on a chart. Iudeed for obtaining quick and useful comparisons, there is nothin γ compared to the plan of projecting the curves of atmospheric variation on the charts specially prepared for that purpose; it enables one at a glance to see the variations of the barometer during the past day-savidg the bother and calculation necessary where the observations are simply noted down as so many figures. But there is one great objection attendant upon observations of this nature; however carefully they may be recorded or described on charts, they are but observations of the time only, and show nothing more. For instance, the hight of the barometer at the two
usual times of obzerving, in the morning and evening, are recorded, and a line drawn on the chart from the one point to he other is assumed to show the variation between those times. True, it does to some extent, bat only to the extent of the difference of the two. In stormy or unsettled weather he rise and fall of the barometer may be considerable between the two periods of observation, and yet it is possible that at the two periods the observed indication will be precisely the same. The chart would consequently show an even state of pressure, wheress the opposite would be really the case. Accurate resultscan, therefore, only be obtained when the observations are made hourly, or, at least, at very frequent intervals. This is, as far as regards personal observation, quite impracticable for the generality of observers; and to give a true and faithful record of the variations of the barometer from minute to minute and from hour to hour we can only look to mechanical means for bringing about this much-desired result.
Among the plans suggested but very few have been ever practically carried out, and of those we have seen their great expense proves an almost insurmountable barrier to their
adoption. The "barometrograph" depicted in the accompanying illustration, seems to combine simplicity with cheapness, and accuracy with ease of observation. The records are continuous and comparable, and are produced by the variare continuous and comparable, and are produced by the vari-
ations of the barometer known as the aneroid. The pressure of the atmosphere affects four metallic boxes, as in the ordinary aneroid, having their upper and under faces undulated; a vacuum is made in each of them separately, and they are attached together in one series, so that for an equivalent variation of pressure the movement is four times greater than it is for one box only. A very strong flat steel spring, R , acts upon the barometric boxes in an opposite direction to the atmospheric pressure. This spring controls the indicating lever, L L , by means of a connecting piece at the point B; this connector receives the action from the extremity of he spring and communicates it to the lever, L L , at a point very close to its axis, from whence it follows that a consider able multiplication of movements is the result.
The indications of the movements of the lever are registered in the following simple manner: A cylinder, C , is revolved by the regular movement of an ordinary pendulum time piece; it makes a complete revolution in one week, and carries a glazed paper, which has been smoked black by means of a candle. At the extremity of the lever is a very fine spring pointed at the end, which rests upon the cylinder and traces a white line upon the black groand. At the end of each week the paper is changed for a fresh one, the old one being prevented from having its record destroyed by having a coat of varnish. The whole operation takes but a little time, including the attachment in a book, or, when required, time, including the attachment in a book, or, when required,
the record of one week to that of the preceading, so that the indicationsmight be continuous. The barometrical arrange ment of this instrument is far less liable to error than the ordinary aneroid, where so many movements and acessories are required to translate the changes of the barometric box to the indicating needle on the face of the instrument. In order to render the indication recorded useful for comparison, the paper can be divided into equal parts, representing the days of the week, and again subdivided to represent the prin cipal divisions of the day; this has been done in practice and instruments similar to what we have just described hav been in use some time, earning great approbation for the fldelity and utility of the observations recorded by them.

Reducing Tin for Coating Metals.

The Mechanics' Magazine contains a description of a new method for coating metals with tin which has been recently patented in England. This invention relates to the applica ion of the electro-plastic process for the reduction of pure tin in a metallic state of all thicknesses, so as to render it cohesive, ductile, and of such density that it may be stamped up, drawn, and rolled, and may also be deposited in molds in the same manner as copper by the galvano-plastic process, or on metals, especially lead and its alloys, for coating or plating the same. This reduction is effected whatever may be the nature of the hot or cold alkaline or acid baths used provided that the salts, oxides, or acids of the tin employed are chemically well prepared, which is an essential condition. The tin reduced by the electro-plastic process, according to this invention, is rendered sufficiently ductile, malleable and cohesive to assume any form by chasing, embossing or engine turning without cracking, which is the case when tin used turning without cracking, which is the case when tin ustd
as a plating on lead in thin sheets in ordinary use is stamped up in a similar way.
The tin produced in the manner herein described, may also be applied, frst, for forming a relief surface on a plain ground for capsules, covers, and other articles for the purpose of obtaining greater firmness and a more elegant appearance The relief surface is obtained by stamping or embossing, in the ordinary way, with a male and female die, or when the metal is sufficiently ductile only one die is needed, which would produce an impression or embossed surface in a similar manner to that made by a seal on wax; second, for reproduc ing figures and ornamentation, such as objects of art, or others, by embossing or stamping in imitation of metal cast ings by the aid of a die or dies, in the manner above des cribed. Many attempts have been made to produce in metal trade and other distinguishing marks on the corks or stopper of bottles and other vessels, or on other articles, either by embossing, coloring, or printing, in imitation of those pro duced in wax or metal capable of receiving an impression The result has been, howerer, to produce an inferior impres sion, the design being obtained on a plain surface, and bear ing but an imperfect resemblance to a wax seal
In order to olbtain a mark of a perfect natare, the inventor
first produces the design or mark in wat, and reproduces the impression on a stamp, with which he marks the various articles, their genuine character being thus insured by having the real mark on each. He also, as a substitute for the leaden seals used in the Customs, interposes a soft materi al between sheets of tin produced in the manner alread produced a mark covered with tin. Instead of interposing a produced a mark covered with tin. Instead of interposing a
soft matrial beneath the tin, tin alone may be used, but soft matirial beneath the tin, tin alone may be used, but
somewhit thicker, and doubled together, afterward stamping it as before.
This improved product may also be applied for electro chemically coating or plating lead and other metals or alloys in any thickness for making cartridge cases, percussion caps, capsules for botties and other veseels, covers used for pre serves and other purposes, wrappers for éatables, and gener ally in all cases where pure tin and its alloys are employed Further, for lining pipes, sheets, or ornaments or utensils of lead where tin is employed for preserving it from oxidation. Lastly, the inventor applies the electro-chemical tin, above mentioned for plating glass in imitation of silvering, and for ornamenting articles required to present a silvered effect.

Alphabet for the Rind.

Rev. C. H. Carpenter American Missionary at Harpoot, East orn Turkey, has invented a novel alphabet to be used in the instruction of blind Armenians, of which many are found in his field of labor.
"A very small round-topped tack, tbrust upright into a piece of pine board, represents the first letter. The same tack inclined to the top, represents the second, and leaning to the bottom, the right hand and the left by turns, the next three. For the next four letters, one side of the tack is then cut off, and the cutportion made to face by turns the top the bottom, the right and the loft hand. The halt-headed
tack inclined to the top, the bottom, the right and left hand, again by turns representing the nest four letters. Essentially the same course is then pursued with the next two styles of tacks. and our alphabet is ready. Other sorts of tacks and variations of them then furnish points for punctuation and the numerals, and with a good supply of tacks and a piece of soft pine board for a page, we are ready to write a chapter of the Bible or a hymn for ove blind reader whose sensitive fingers will so learn to run along the line of iron and enpper with such speed and assurance as are ours in reading the printed page. The page once committed to memory will be passedalong to a second reader, or the tacks withory will be passed along to a second reader, or the tacks with
drawn and like your printer's type, used for printing another rawn and like your printer's type, used for printing another page." In this way two or three dollara' worth of tacks may
be made available for printing, if he choose, all the chapters be made available for printing, if he choose, all the chapters
of the Bible and the hymns of the hymn book, or anything of the Bible and the
else which is needed.

new publications.

A System of Mineralogy. By James Dwight Dana, Sil liman i'rofessor of Geology and Mioeraloys in Yale Mineralogy and Mctalhurgy in the Sheffield Scientific Mineralogy and Metallurgy in the Sheffeld Scientific enlarged, and illustrated with upward of six hundred
wood cuts. New York: John Wiley \& Son, No. 2 Clinton place.
This work might have been aptly entitled a cyclopedia of mineralogy, as it
seems to comprise all the tacts rclating to it both in mineralogy proper and seems to comprise all the tacts rclating to it both in mineralogy proper and
in the colluteral sciences, and lacks nothing except the usuaia rrangement in the collateral sclences, and lacks nothing except the usu 31 a rrangement
which is generally expected in " work oearing that tit'e. The new features Which we find in this edition, asi ${ }^{\circ} \mathrm{c}$ from addrions necessary to bring the WCrk up to the present standopint of mineralo icical science, are "the recoe
nition, a nd the description of the different varit work up to the present stand
nition, a nd the description of the different vari-ties of species," the adoction
of the new chemical symbols in the formulas g given throughout the work, of the new chemical symbols in the formulas 9 iven throughout the work,
and its valuable mistorical synonomy. The latter contians the first author and thefirst publieation of each species, and f'lows with all the names in
has borre in their chronological order, with much other matter of interest has borre in their chronological order, with much other matter of interest.
Prof. Dana, in the preface to this edition, thas speaks of the recognition and description of varicties: "The first edition of this treatise, that of 1837 , was
written in the spirit of the school of Mohs. The "ultitudes of subdivisions written in the spirit of the school of Mohs. The "ultitudes of subdivisions
into sutspecies, varitiles, and subvarieties, based targety on unimportant into sutspecies, varie.ties, and subvarieties, based largely on unimportant
characters, wlich had encumbered the science through the earlier years of characters, which had encumbered the science through the earlier years of
this century, and were nearly smothesing the species, were thrown almost cision to the idea of the species. Much rubbish was cleared away and the science clevated thereby; out much that was necessary to a full compr + hen sion of minerals in their diversiffed stares was lost sight of. In the present
edition an endeavor is made to give rarieties cheir true place; and to insure edition an endeavor is made to give varietits their true place; and to insure
greater exactness with regard to them, the original locality of each is statell greater exactness with regard to them, the original locality of each is staterl
with the ciescription." A fall exposition of the new nomenclature is given in the introduction, and in the acoption of it in this edition, the foothold whicb the introduction, and in the acoption of it in this edition, the foothol whine in the most scienific institutions of our country is brought forcibly to vicw. The hydrocarbon compounds are most comprehensively
treat cd, and the book will prove a most valu ible work of reierence upon treat $\%$, and the book will prove a most valu ble work of reference upon
thisubject. The work is printed in clear bold type, an i will prove one of
the most valuable recent additio to scientific literatu
Aniline and Irs Derivations. A Treatise upon the Man-
ufacture of Aniline and Aniline Colors, by M. Reimann,
F. D. L A. M., to which is added in an Appendix, the
Report on the Coloring Matters derived from Coal Tar,
by Dr. A. W. Hofmann, F. R S. Published by John
Wiley \& Son, No. 2 Ulinton Fiall, Astor place, New York.
We puolished an extract from this work, entitled "The Aniline Blue," on
paze 102 , No. 7, current $\%$ olnmc. withsome remarks commending thcwork. page 102, No. 7, current volnmc. Withsome remarks commending the work.
We will add to what we have already sald. that further examination and reference to its pages only adds to the good opinion we at frrst concerved. Not
only are a host of facts given relating to the manufac ure of this important only are a host of facts given relating to the manufac ure of this important
class of substances, but they are given in a plain and intelligibie form. Without ceasing to be scientiffc he has made his work eminently practical.
brilliant successfor the book.
The Lathe and its Uses.
This is the title of an octaro volume of 284 pages publish hod bv John Wilev
\& Son, No. 2 Chnton place, New York city, whieh is profusely illustrated, and \& son, No. 2 Chaton place, New Yors city, which is profusely illustrated, and is one of the best compendinms of information relative to the lathe and to
lathe work we nave jet seen. The lathe bas been elevated from a mere
machineas anaid to the productionof work \mathbf{k} of simple use, to the positionof machine ss an aid to the productionof $\begin{aligned} & \text { onk } 3 \\ & \text { cof of simple use, to the positionof } \\ & \text { compan and means tor emploving leisure hours. Its nse is one of the }\end{aligned}$ companion and means tor emploving leisure hours. Its nse is one of the
pleasantest orcapations for a raing day or otherwise ide hour, and mas be pleasantest orcapations for a rainy day or otherwise idle hour, and may be
made procuctive and proftable pecuniarily. The growing practice on the foot lathe in this country makes the appearance of this work timely and

MANOFACTORINO, MININO, AND RAILROAD ITEMS

The Erie railroad company have contracted for 8,000 tuns of steel rails.
The total value of live stocks
States in 1867 was $\$ 2,507,257,065$.
Recent dispatches announce another terrible colliery explosion at Jem mapes, in the province of Hainault, Belgium. Fifty-one persons were silled and a great number injured.
Grorain Air Linr Railroad.-A bill has been introduced into the Legis
ature of the State of Georgia to aid in the building of the Georgia Railroad.
The number of miles of railroad in operation in this country is 20,000 , and hey cost $\$ i s, 000,000$
Polytreinio School in Ceicago-An ordinance appropriatiog $\$ 25,000$ ano in the establishment of a polytechnic school in Chicago was recently passed by the common council of thatcity.
Eiget-botr Labor.-Fifity one buildings are being erected on the wes side of the city, on whi
the eight-hour system.
gold discoveries on the Cimarron Rivir.-The New York Daily Tri bune says: "The discoveries of gold on the Cimarron River, near the cor-
ners of Colorado, Kansss, New Mexico, and Texas are creati"g great excite ment, and miners are rushing into the new diggings. The mineral belt is the same that has already been opened and . Worked from Montana to Mexico There can bc no doubt of the existence of valuable mines or the head waters ofthe Cimarron, as well as of the Canadian and otber forks of the Arkansas
heading in the Rocky Mountains. The new diggings are on the ine of the proposed extension of the Eastern Division of the Union Pacfic Rallroad to
Santa Fe."
Thi Elifitad Railmaf.-The expcriments on the elevated railmay in test it. It is expected that by the 1st of January next, the road will be in hed to ind rteenth street.
Rapidity in bridear Constrootion.-Time is money, and railroad men now it. On M nday evening, July 27, the bridge on the Toledo, Wabash, nd Western Rallroad, over the Vermillion ralroad at Danville, ill., was
ntirely burned up. On \therefore agust 8 , a uew bridge was completed, and traius rossed on it. The bridge is 1,100 feet loog and abont ninety-elghtfeet high ove ine bottom of the rive
Sugarin Rusis.-The American Consulat Moscow,states in a letter to
he Commissioner of Agriculture, that beets are there very largely cultithe Commissioner of Agriculture, that beets are there very largely culti-
vated for sugar. Almost all the sugar uised in Russia is produced in the vated for
country.
Removal of Obstructions at Hell Gatr.-The estimated cubic cortents the rocks known as "Frying Pan" and "Pot Rock" at Hell Gate to be emoved are, respectively, thirteen hundred cubic yards over an area of
welve hundred squareyards, and five $\mathrm{h}: \mathrm{n}$ Ired and seventry cubic yardsover narea of thirteen huo ired square yards. These rocks are tobe removed to depth of twenty-ivef et mean low water. General Newton, of the United a depth of
States E
shortly.
In the

In the last year, the Marquette district of La Ins of ore, or an amount equa,
Missouri is literally on ner metal. Lead has been discovered in over two he sollis estimated capable of yelding a supply of one million of tung to ver 200 years at years.
The Pittsburg Fort Hill Workshave receptly made a trip hammer of twentyone tnns, fora new iron shop in the same city. One of the Pittsourt machine
sheps have made a locomotive weighing only one tun, for usein a coal mine. sheps have made a locomotive weighing only onetun, for usein a coal mine.
By the side of one of thegreat freight eng ines of the Pennsylvania railroad, By the side of one of thegreat freinht engines of the Pennsylvania railroad,
this litile worker musthavesiven the pair the appearance of a locomotive this lit!le work
with her kitten.
Steam plows have not been eminently successfal, but there seems to be a evival of enterprise in this aire in a short tin" past, a company ha steamplows which will cost the purchaser about \$250' each. Quite recently a cinzen ot Olino announced a successful plow, and a Meadville, Pa. inventor has brought out one which on trial is said to have worked perfectly. Last
spring it was announced that an English steam plow was coming over to spring it was announced that an English steam plow was coming over to gratuitonsly overtura2.000acres of illinots prsirie, but these things indicate
that this trouble need not be taken.
Two monster furnaces have been constructed at Ferry Hill, Englaud, and er and give the works of the company to whom they belong, a capacity 180,000 cuns of pig iron a year.
A gas and water pipe factory at Newport, Ky., obtains thecrudeore from Iron Mountain, Mo., and transmits the ore of one morning into castings on the wav to market by the next dayat noon. Som
company have an interior diameter of 40 inches.
Harry Meigs left San Francisco a few years since in bad repute, as a million dollar bankrupt. He went to Chili, made friends with the Government, aroused an interest in railroads, and built nearly all the roads in that coun.
try. He thenwento Peru. repeanng his Chilian experience, and oas just try. He thenwentto Peru, repeatung his Chilian experience, and oas Just
taken acontractoo ouild 100 miles of railroad for taken acontractio ouild 100 miles of railroad for $\$ 120,000$ a mile, on which
expertstigure to Mr. Meigs several millions profit.

therent Amercan and foretgu tatent

Submarine Lantrrn.-Michael Vander Weide, St. Petersburg, RussaaThus invention relates to a new an paratus tor submarine lighting for the use
of divers, and for other purDoses, whereby the diffculties of submarine ex dioration are greatly diminished.
Convirtible agrioultural implement.-J. h. Heald, Columbus, Miss. -Thisinvention relates to a new and improved device whereby various im.

Variable Nozzlr.--James A. Cushman, Seneca Falls. N. Y.-Tbis invention relates to the discharging end of a dre engine hose pipe, and especially
to the nozzle wnich is attached thereco, and the invention consists in so con to the nozzle wnich is attached thereto, and the invention consists in sc con-
structing the nozzle that the stream of water discharged therefrom may be raised at will by a simple movement of thehaud of the operator.
Tool holder for Planing maobnis.-W. J. Lintun, Detroit, Mich.This invention consists in a bracket wnich may be secured to the tool slide,
and having a right angled arm projecting forward irom the cross plate a sutficient length and provided with a pivoted holder for the tool.
Belt Tigitener - Samuel Paton, Chatsworth, In.-The object of this vention is to provide a sinple and effective attachment to belt pul:eys,
which toe beitcan be tightened to any required degree without difflcuity.
Combined Corn Planter and Cultivator.-Geo. W. Kinzer, Linden Station, Ohio.-The objeot of this invention is to provide a co ubined corn
pianter and cultivator which shall be economical io construction and corver ient in operation.
Fruit Cratr.-W. G. Goodale, Centralia, IIl.-In this invention the truit is packed in a crate in well ventiated boxes, supported upon springs to pre
vent theirbruistig it \quad The wbole crate is very simple, cheap, and durable, vent their bruistng it The wbole crate is very
and will effectually protect the fruit from injury.
Sorb wditiverand Coenterbink.-Peter N. Jecobas,Flat brookville, N. J J -The object of this invention is to construct a screwdriver in such a manne
that it shali grasp the scre w by the head and hold it frmly while inscrting it into the wood or removing it therefrom; and while inserting the screw, shal nto the wood or removing it therefrom; and while inserting the screw, shat
eam away the wood around it,so as to form a countering for ita head.

Cuttrir Attainment to Plows.-T. E. Marable, Petersburg, Va-This detice is a neat, simple, and cheap cutter, which cin be readily attached to
the beam of any plow, in front of the colter moldboard, or ehoval, and which will grazealong the surface of the ground in advance of the plow, cutting up all wefds, grass, etc., and throwing them out of the way on the side oppost Smove wicb the phiowsits dirt.
Shovel PLow.-B. F. McCollester, California, Mo.-The object of this in-
vention is so to construct and attach shovel pows to beams that they can be adjusted at any inclination, and, when worn out or injured in one end, can be reversed without difficulty.
Mrdioal Compound.-A. V. Lee, Clayton, Ala.-This inventinn relates a a combination of ingredients for forming a medium for the cure of
diseases which prevail in almos: all cliustes to a greater or less extent, and which diseases have generally baffled the skill of the medical faculty-more Elevator-Erwin T. Hope, Philadelphia, Pa.-Tnis invention consists of an arrangement of a series of vertical teleacopic tubes and a dlunger, on the
tod of which the carriage is supported, and moved between suitable vertic:7 guides, when the said telescopic tubss are extended by the action of water torced in at the bottom to the lower tabe, whieh is stationary.
Window Ventilator.-R. L.Long, Milwankee, Wis.-This ventilator for windows coiststs of a frame carrying a pane of glass, so as to be trausparent,
which frame has an elliptical or orther spring applied to one of its sides, and is arranged to move up and down within a frame made of m:tat or other suitable material, attached to the inside of that section of a sash frame where
it is to be located, the glass of which bas been cut out to a degree correit is to be located, the glass of which tas been cut out to a degree corre-
sponding to that of the sapplementary frame having the glass thereon arranged to move or slide.
Maobine for Saming Shinglgs or Headinge.-L. C. Robinson, Shep mactines for suwing shingles or headings, or relates to improvements in it 13 designed to provide a more simple and effective machine than any now
in use, and that will etther saw them in a straight or tanered form, cut off in use, and that will etther saw them in a straight or tajered form, cut off
the ends and plane the edges, and it conists in the combinations and arthe ends and plane the edges, and it con:ists in the co
arrangements of the parts whereby toe same ts effected.
Construotion or Soows.-E. J. Allen, Rondoat, N. Y.-This invention relates to a new manner of constructing scows, with an object of strength-
ening the same and consists 6 rst in strengthening the fore and aft particions by means of trestle work; secosd, in arranging cross keelsons above and at right angles to the fore and aft keelsons, and in the use ot cross besms on head or fore and aft seelsons, and parsllel to the cross seelsons; the fore and art partitions are not only made substantial ny me
work, but still more so by the cross keelsons and beams.
Gatr.- William E Nichols. Baldwin, Mo.-This invention consists in an arrangement of cords and pulleys for eff ecting the ahove-described object
and the necessary posts for supporting the same.
Rat Trap.-M. D. Fowler. Vineennes, Ind--This iuvention has for its ob
ject to furnish a simple, converifent, and reliable rat trap. which shali be so Ject to furnish a simple, convelitent, and reliable rat trap. Which shali be so
constructed and arranged as to catch, without fyil, any animal that may enter the trav and try to eat the hait.
Impioved Fastener for Vehicle Seats.-Charles Dixon, Weedsport, . Yeaos of which the seats of wago bject to furnish an improved fastener. by means of which the seats of wagons, slelahs, and othe
veniently, secorelv, and detachably secured in place.
Maobines for Uniairing Hides.-Elias Brock and Judson Schultz,
Ellenville, N. X.-This invention has for its object to improve the corstruc tion of the nnbairing machines, patented hy Elias Brock June 25, 1867, and numbered 66,124 , and by Judsoi: Schultz, June 25, 1867, and numbered 66,176 ,
Ro as to make said machines more convenient in use and more satisfactory in perstion.
WAGons.-Samuel Seitz and L. D. Arnold, Melmore. Ohio.-This invention boxes, by means of which the end boards of tine box may be securely hagon in place, and which shall at the same time be durable and allow the end boards to be convenicntly and quickly put in and tak 3 out.
Potato digarr.-B.d. Vanderveer and Daniel Riddle, Freehold, n. J.This invention conslsts in the arrangement of a plowshare to raise the pota-
toes from the around and shakers for separating them from the soil, and in toes from the ground and shakers for separat
a device for cleaning the machine of vines.
Skate-Charles Gooch, Cincinnati. Obio.-The present invention relates to that class of skates which arc provided with a fastener. that acts upon the
boot or shoe hole in the direction of its lengri snd from end to end, and it consistsin a novel constraction and arrangement of the toe and heel clamps of such fasteners, whereby the skates can be adjasted to more fully and pertectly arcommodate the various lengths of boots, and thus the fastener ren-
deredmore general in its apolication or adaptation to the varying sizes on deredmore general in it
the length of the boots.
Car brake.-J.L. Miller, De Witt, N. Y.-This invention relates to a new and improved car brake, which is applicable to etther horse or steam cars, and it consists in a novel construction and arrangement of the hrake, where
by it is rendered capable of being operated through the medinm of a friction wbeel, and the brake operated on a single car, or all the brakes of a series of ware comprising a train operated simultaneously.
cand
Cortain Fixturgs.-J. D. Legg. Long Eddy, n. Y.-This invention re lates to a new and useful improvement, or a currain tixturef or which Letters
Patent were granted to J. D. and I. W. Lega, May 5th, 1868. The object o the present invention is to obviate the difficulty attending the lowering or drawing down of the shade, and the winding up of the coil springs, the inner ends of the lattor heing attached to the cylindrical boxes out of or at a shor t
distance from the ir conters, a necessity in the old arrangement, and which distance from their centers, a nocessity in the old arrangement, and which calises the springs to bind after a few convolutions have been drawn to
gether by a few revolutions of the cylindrical boxes, so thatthe springs can not be fully wound up.
Apparat usfor Roasting Nuts.-D. A. T. Gale, Poughseepste, N. Y. case and provided with gas burners, and of a warming epparatus to which the tobe which supplies gas to the roasting apparatus is connected for sup plying heat to it and so arranged that after the nuts have been roasted and
placed in the said warming apparatus the flow to the roasting burner may placed in the said warming apparatus the Hlow to the roastn
be stopped while that to the warming apparatus continues.
Rotary Stram Enginks.-John Woody, mount Vernon, Ind.-This invention relatea to that clas of stea u en rines. kaown as rotary engines, where
thesteam acts continnously and the pressure is applied without intermission and with uniform effect.
Extresionclothrs-line Supportrr.-Francis W. Tilton, and Moses C.
Swift, New Bedford, Mass.-The object of this iovention is to provide mean or supporting clothes hnes and elevating the same.
Buorle.- H. C. Wessel, Indiana, Pa.-This invention relates to a new and or other purposes. The object of this invention is to construct a backle in such a manner that it may be applied without sny stitching or sewing and also without the aid of rivets and other peruanent fastening and still be
readily apptied to and detached form the straps whichit joins or cennects.
Easy Chair.-Dumont Marean, Hubbardstown, Mass -This invention con Easy Charr.-Dumont Marean, Hubbardstown, Mass -This invention con
sists in atrac'ing the seat to two or more springs and in connecting it with the legs or seats of the chair by link
ticity and fexibility are obtained.
TooL Holdre.-William J. Linton, Detroit, Mich.-This inventiou con Sists in a holder having a iectancular slot through a fattened cencral por
ion in whicharearranged two clamplng ja ws, one stationary and one mov tion in which are arranged two clamplng ja ws, one stationary and one mov
able, and provided with two handles one of which screws into the said fiat tencd central portion for adjusting the movable ja
the conssuction of die plates for cutting screws.
Wagon Coupling.-James M. Wyna, Scipio, Ind.-The object of this in ention is to provide a simple and effective means of coupling the rear axle
of a wagon to the reach pole or perch of the same. It consists of a plate at

