matronly dress. The hues of the males were, on the contrary, more brilliant than previously. Their general color became much lighter, and in the older individuals the lower jaw projected anteriorly, forming a sort of knob. The distension of the abdomen of the female by the eggs, caused the section of her body to assume an oval shape, while that of the male resembled the outline of the eye of a broad-ase. Fierce battles took place between the males the conqueror celebrating his victory by feasting upon the body of the vanquished; the females swam uneasily about the ponds, trying the bottom with their fins, seeking for gravel in which to deposit their eggs. The bottoms of the ponds being formed of clay and large stones. they were obliged to pass into the races for that purpose. These had previously been prepared by covering their bottoms with fine gravel, and placing ac them obstructions, forming a series of dams and eddies.
"On October 30th, fishes were perceived in the race, busily engaged in forming a nest for the reception of their eggs, by removing the fine gravel from a circle of about a foot in diameter. Across the lower end of the raceway, a net was quietly placed, and the gate at the racehead closed, by which the flow of water was stopped. To avoid being left high and dry, the fishes were obliged to pass down stream, and were thus captured in the net, the fishes being placed forthe nonce in a large tin kettle. About a quart of pure spring water was placed in the impregnating pan; a male was then taken and held in the manner depicted in the engraving, the left hand graspin the manner depicted in the engraving, the left hand grasp-
ing the neck below the gills, and the right the body just being the neck below the gills, and the right the body just be-
hind the gills. By gentle pressure witl the fore and middle hind the gills. By gentle pressure with the fore and middle.
fingers of the left hand, a quantity of the milt wae expressed, the amount being further increased k.y gentle friction toward the tail. This was continued until the water became opalescent or pearly in its appearance. A emale was then taken and treated in the same manner, eggs, instead of milt, being extruded. The eggs and milt were allowed to remain in contact for about fifteen minutes, at the expiration of which time they were carefully washed.
"It has been ascertained by experiment, that fifteen grains of the milty fluid of the male is sufficient to impregnate ten thousand eggs; but in practice a much greater quantity is used. The bottom of the impregnated pan, as shown in the same drawing, having a depression calculated to hold one thousand eggs, the quantity obtained could be readily estimated. The eggs average one sisth of an inch in diameter, and weigh one grain each.
"After being thus secured, the eggs were taken to the hatching house,which had been made ready for their reception in the following manner : The hatching-trough had been filled in the following manner: The hatching-trough had been filled
to the depth of two inches with fine gravel carefully boiled, to the depth of two inches with fine gravel carefully boiled,
to destroy the eggs of any insects which might bave been to destroy the eggs of any insects which might have been
present ; over this a gentle stream of water from the spring, present ; over this a gentle stream of water from the spring,
filtered thirough four screens of fine flannel, was conducted. Upon the gravel the eggs were placed, the greatest care being taken to avoid any sudden jar, as the recently impregnated egg requires the most gentle handling, lest its suddenly ed egg requires the most gentle handling, lest its suddenly
acquired life be as suddenly estinguished. Alter resting in their new location for a few moments, they were evenly spread over the bottoms of the troughs by means of a fine feather. over the bottoms of the troughs by means of a fine feather.
During the entire procees the eggs had not for an instant During the entire process the
been exposed to the atmosphere
" This process of im pregnating and depositing in the hatching house was repeated semı-daily mntil January 12,1868 , during which period about seventy-five thousand eggs were taken. Ex $\mathrm{F}=\mathrm{i}$ isnce shows that from a trout of one pound about one thousand eggs is the average yield; but owing to causes entirely beyond the control of the proprietor, only t wenty thousand hatched. The dead eggswere removed daily, being readi:y distinguished by turning snow white; those still retaining their vitality resembled small pearls, being translucent and slightly clouded. The first young appeared December 10ih, forty days after the impregnation of the eggs.
"When first hatched, the young presented the grotesque appearance shown in the smaller figure of the cut of the
trout. The ungainly abdominal appendage, technically termed the ' yolk sack,' is, however, gradually adsorbed into the body of the young fish, the entire process requiring six weeks for its completion.
" During this period the young trout requires no food, being nourished entirely by the contents of the 'yolk sack;' but immediately after its absorption it is necessary that they should be regularly and carefully fed. Various substances, all of an animal nature, have been tried, but after various experiments, Dr. Slack has found the muscular fiber composing the hearts of beef cattle to be the most suitable. This is prepared by being chopped into minute fragments, which are passed through a fine wire sieve. When the fishes have attained the length of one and a half inches, the eggs of other fish are employed as food. When placed in the first pond, they will be fed entirely, for some time, upon maggots, the larve of the common blue-bottle fly. The appearance of these disgusting, though to the pisciculturalist useful little anımals, are regarded as fixing the period at which the transfer from the hatching house to the pond should take place."
Troutdale, as we have stater, is easy of access from the city of New York, and a visit to the ponds would amply repay
an \geqslant ine interested in the art or science of pisciculture. ans ine interested in the art or science of piscicultare.
It is a part of the business of the fish farmers to furnish in season impregnated trout eggs, either for the stocking, of ponds or of scientific observation and research. They can be carefully packed, and forwarded by express to any point, with full directions, or under the care of a competent person. By means of a small apparatus invented by Dr. Slack, which can be placed in an office or library, the fishes can be which can be placed in an office or library, the fishes can be
hatched without the necessity for a hatching house. This hatched without the necessity for a hatching house. This
apparatus is not unlike the aquarium in common use in our parlors, and requires very little more attention, though
the work of "manufacturing trout" at home would furnish far more interesting employment than a mere aquarium, and at the same time be not less pleasant to look upon'.'
The Evening Post says, on the subject of fish culture, that, "In nearly all our rivers the supply of fish is growing less. The stake nets in the Hudson, stretching for hundreds of rods into the channel do not take more in a day than were formerly taken in nets a quarter or a fifth of their size. In the Susquehanna, Potomac, James, and Deleware, where drif nets are used, the supply of fish is in like manner decreasing. No more fish can now be taken in a net a hundred rods long than formerly in one of five rods. The same reports come from the South ; and, unless the fisheries are suspended, or the supply of fish increased by artificial means, there will soon be no more shad in the market.
"The commissioners recently appointed by the Albany legislature. Messrs. Seth Green and Robert B. Roosevelt, have
entered upon their duties-the establishment of suitable hatching boxes along the upper waters of our rivers-with much interest and in a manner that promises the most grati fying results. Although appointed for New York only, they have lately visited several southern states, to endeavor to in terest the fisherman of the southern rivers in pisciculture and to induce them to adopt the system of artificial breeding that has proved so successful in Connecticut. Their objec in thus extending their observations and labors is to make fish culture general. It has been discovered that shad do not invariably return to the rivers in which they are spawned and in order that an even supply may be obtained it is neces sary that the propagation should prcceed simultanenusly on all parts of the coast. The James river was the furthes point south visited by the commissioners. There they suc ceeded in interesting the fisherman and establishing hatching boxes on a small scale. On the Potomac it is expected that their suggestions will be generally adopted.
"The Suequehanna and Deleware are to be visited, if they have not been already, and after introducing the system ex tensively in our rivers, the commissioners will proceed eas in July or August. By this means it is expected that the
next year's supply of shad will be largely increased, while next year's supply of shad will be largely increa
that of the following season will be still greater."

herring's center vent water wheel.

Perhaps one of the main faults of turbines in general use is the expenditure of a considerable amount of the force o the water against an immovable platform, tending to retard
the course of the stream ; and another is the diversion of the

Fig. 1

current toward the center, where comparatively little force can be exerted, and the want of an exit of sufficient capacity to release the water after it has Gone its work, or expended its force. The intention of the inventor of the form of wheel
shown in the accompanying engravings is to obviate these shown in the accompanying engravings is to obviate these the water.

3
Fig. 1 is a plan viex, as seen from its top, showing the saroll, A, the aliernate long and short buckets, B and C, and the center vent, D. Fig. 2 is a perspective view of the wheel, showing the long buckets, extending from the periphery of
the wheel to the center, and the short buckets, reaching fro the wheel to the center, and the short buckets, reaching from
the periphery to the inner edge of the lower rim. The buckets, both long and short, are radial at their outer ends, where the water impinges upon them. The bottom of the scroll, A bas a circular opening that receives the lower rim of the wheel, and the water acts first against the radial parts of the buckets, and then re-acts against the curved portions, passing out through the opening at the center of the lower rim, which forms a portion of the bottom to sustain the water. The wheel may be set to curn either to the right or left, a tion. The require, operating equally well in either direc
that the water has a strong action against them near the periphery, while a free escape is allowed for the water after its force is expended.
The device was patented Oct. 29, 1867, by George W. Her ing, and all communications relating thereto should be ad dressed to him, Joseph Taney, or Thomas N. Egery, all of Bangor, Me.

fell's railway over mont cenis.

In our editorial letter published on page 259 of the last volume, we referred to the near completion of Fell's over mountain railway. Since that time the cars have been put on, and from last accounts regular trips were being made. Some of the worst bits of the line, the steppest gradients, the sharpest curv ε \& the most appalling glimpses down precipices and into rugged ravines, where the train, if overthrown into hem, would a ost assuredly be smashed to splinters, occur within the first few miles after leaving Susa. But the new omer on the line contemplates these without emotion. No unpleasant sensation of peril distracts his attention from the engineering skill and resource displayed in the construction of the line, or prevents his enjoying the beauties of the mountain scenery. He feels like one drawn along a difficult road, but from whose mind every timorous sensation is banished, by seeing how completely the skillful driver has his steam horses in hand, directs them at will, curbs them with a fin ger. And, indeed, it is this curb power which constitutes one of the greatest marvels of the Fell system. When yoing welve miles an hour down gradients of one in twelve, the brakes are applied, the perpendicular whee is cease to turn he horizontal wheels clip the central rail with hundred-vise power, and within some thirty yards the train is brought to a complete standstill, without the slightest shock or concus-
ion. It would be possible to
end sion. It would be possible to employ such power as would bring the train up short, and produce all the effects of a railway accident. When one stands upon the line and contem plates the steepness of the slope down which one has just slid asily without strain or inconvenience, he to some extent realizes the prodigious force applied to restrain the momen tum of the string of ponderous capriages launched upon that declivity. It is the triumph of mechanical power wielded by a few brakemen's hands, that turn, without apparext effort, the bars in connection with the various wheels. The control is perfect, and measurable to a nicety. In fact, on the descent of the mountain there is nothing to warn a trav eler, who should not look of a window, that he is on a railway of a very unusual construction. The motion is steady and easy ; there is no jarring of any kind, and one soon ceases o notice the sloping position of the train.
Not less surprising than the steepness of the ascents and descents, is the abruptness of many of the curves, some of them forty-four yardsradius. It is probably by these that ner vous persons will be more unpleasantly impressed than by the up.and-down-hill work, until a littie practice removes the un founded apprehension. As before mentioned, some of the worst bits of the road are in the first four miles after leav ing Susa. Some of the curves are so sharp that one can hardly understand how the carriages, which are about four teen feet long, outside measurement, contrive to grind round them. But round they do go, with perfect ease, just when one might fancy they were about to fly off, like a steel bar escaping from a curved groove, and, as they turn, the wheels and rails together give out a shrill metallic sound, which one at first may mistake for a whisper of the railway whistle Just below the now abandoned but still formidable looking fortress of Esseillon, which all who have passed the Cenis will remember, frowning towarà France a little below Lanslebourg, is one of the most remarkable of these curves, horseshoe shaped and forming three fourths of a circle. The places where the line runs very close to the edge of deep precipices are few in number. What has been said already of the power which the engine driver and brakeman have at their command by means of the horizontal wheels, will have convinced all that with common care, there exists no danger, no possibility of the train gettixg of the rails. This conviction is soon arrived at by any person traveling on the line, and who, howeves small his scientific knowledge, takes the trouble to examine the principle and construction of the railway and carriages. Another danger, more than once suggesied as scarcely to be avoided, disappears upon actual observation. I refer to the risk of a crumbling of the edge of the mountain road. Aided a little by imagination, this looks very plausible upon paper. For the greater part of the d'stance, bat not throughout, the rail way gives the wall to the horse and pedestrian traffic, and takes the outside edge. This does not mean, however that it is constantly on the brink of precipices ; and, where it is so, every precaution has been taken. The masorry that already existed as a support to the coach road, has been exam ined, strengthened, aud extended. Large masses of fresh wall, often many feet thick, have been constructed in various places. It is so obviously the interest as well as the daty of he company to make assurance doubly sure in this respect, that it is absurd to suppose every precaution has not been re orted to.
Danger from avalarches las been guarded against bv covered ways, some in masonry-where stones and pieces of rocks are apt to fall -and others of iron roofing. The adoption of this plan has enabled the constructors of the line to make use of a considerable part of the old road over the mountain, a gradual ascent which was abandoned for a zigzag line, on account of the danger to paseengers from avaianches and falling stnnes. Exclusive of several short tunnels, the road is covered in for a distance of altogether pearly six miles, in several places on each side of the summit of the mountain The chimneys of the experimental engines were considerably lower than those of the French engines employed for the

