Iron Company, under Mr. Menelaus (who wrote a paper on machine puddling, to be read before the Institution of Mechanical Engineers, of Birmingham). As this company erected several of these furnaces, with a capacity of sixty tuns a weet each, it must have been considered a success, although I have never heard of its being adopted elsewhere. This patent furnace requires no assistance to puddla the iron. The iron is run in melted, the machine set in motion, and the charge boiled or balled, ready for the hammer or squeezers, without further assistance. The body of the furnace is a cylinder lined with probably something the same as the Bessemer retorts, and made to hold about five cwt. of iron. It is hung on large journals at each end of the cylinder. Through these journals the flame passes from the stationary grate to the stack. The operation of the machine keeps the fluid iron constantly in motion, and prevents it from adhering to the inside of the cylinder ; and as it comes to " nature," it gets gradually rolled into a ball the shape of the inside of the furnace. The iron made by this furnace was said to be of a more uniform quality than could be made by hand or by the assistance of othermachines. A bloom and specimens of finished iron made of it.were exhibited at the same time Mr. Menelaus read his paper on machine puddling in Birming. ham.

The Rusting of Iron.

Perfectly pure water will not rust iron until it is heated to redness, when the contact with the metal instantly forms a red-heat crust. If iron again be left for a very long time in water, a yellow envelope of hydrated peroxide will be formed. Water charged with atmospheric air will not rust iron, but oxidation will take place as soon as the air has constant access. According to Martell's and Hall's experiments, the rusty envelope is to be attributed to the presence of carbonic acid in the air, where, in its normal condition, it exists on an average of 4 in 10,000 volumes, Water charged with carbonic acid oxidizes fron with rapidity under visible evolution of hydrogen, the process being expressed by the foliowing formula :

$3 \mathrm{HO}+\mathrm{Fe}+\mathrm{CO}_{2}=\mathrm{Fe}_{2} \mathrm{O}_{3} \mathrm{CO}_{2}+3 \mathrm{H}$.

The temperature at which steam is decomposed by iron is at a red heat, but at the white heat the oxide loses partly its oxgen and forms the double combination of peroxide and protoxide, having the formula of magnetic iron.

The French chemist Gay Lussac holds that iron cannot be oxidized higher than 37.8 parts of oxygen to 100 parts of iron, answering very nearly to the above-mentioned double combination.
Water oxydizes iron more rapidly when it receives small quantities of mineral acids, while on the other hand an alkali or caustic lime destroys the oxidizing faculty of water, a fact which is easily explained when we consider what strong affinity carbonic acid has for those bases. We are indebted to Fayen for the determination of the limits of this veto power which alkalies possess over the oxidation of iron in water. He ascertained that a saturated solution of potassa protect iron, but not when diluted with from 3,000 to 4,000 parts. Saturated lime water, when diluted three times, protected iron, but not when diluted four times. Saturated carbonate of soda, diluted with from fifty to fifty-four volumes, protected iron, but not so when diluted with even fifty-nine volumes. The finest cast steel was protected perfectly by even less potash.
Iron is perfectly oxidized by being often sprinkled with pure water, and then on being exposed to red heat loses 1.74 per cent of water, having in fact been a hydrated peroxide with a formula, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, HO . Moist air rusts the iron yellow, and Bergmann considers the rust to bea compound of $76 \mathrm{Fe}_{2}$ O_{3} and $24 \mathrm{CO}_{2}$; Hausmann, of peroxide and water-but it is, as Thompson and Karsten have shown, a true hydrated basic carbonate of peroxide.

Rust is porus, and like all porous bodies, absorbs gases. White pig metal scarcely oxidizes; gray iron with more facility, bar iron still easier, especially when red hot. Cold, short iron rusts least and slowest. Polish is the best preventive of rust, particularly when the article is kept in dry sir. There are many recipes given of compositions designed to prevent oxidizing, but a coat consisting of common resin melted with a little gallipot oil and spirits of turpentine is generally considered to be the best. Bleaching also, in a slow fire, is a protective against rust, and this is constantly used for nails and tacks.

Improved Artificial Leather Belting.
Patented by Stephen M. Allen, Woburn, Mass.
I take ordinary scrap leather, though preferring the skivings or shavings of the cuticle, from tanneries, shoemakers' or curviers' shops, and soak and wash the same before or during the process of pulping, sometimes with pure cold or warm water, and sometimes using alkalies, or any other property Fhich will separate the tannin from the scraps of leather, so that when pulped and dried the fiber will adhere strongly together, and be less likely to absorb moisture. I then prepare the untanned scraps of hides, sometimes in lime solutions, or solutions of salts, so as to remove the stiffness when dry, with out destroying either the fiber itself or the adhesive properties of the glue or gelatine in the same. When the fiber is thus prepared, the tanned and untanned fiber will readily unite in combination, and will also unite with vegetable fiber, either with or without other gelatinous or resinous substances while pulping. I sometimes add to the combination of fibrous substances, when the same is being pulped, a proper quantity of bullock's or animal blood, which, with the previous prepaaration of the animal fiber, as before described, will make nearly a water proof sheet of artificial leather, and the same
will not be susceptible of absorbing moisture, so as to cause belt to contract or expand, either under the infi uence of hea or a humid atmosphere. When properly pulped, the same may be run off on an ordinary paper machine, or betwee rollers, and doubled to a proper thickness, and may be used either with or without further preparation, by printing, japanning, stitching, or water-proof applications. I usually subject the belting to a high temperature of heat, to set the glu ten and other resinous properties, and sometimes vulcanize the same, though forordinary use it is not necessary.

Bromo-iodized Rubber.

The following process of treating rubber and other gums without the use of sulphur has lately been patented by J. B Newbrough and E. Fagan, New York city: By adding to iodine one half its weight of bromine proto-bromine of iodine is formed, and this, when combined with rubber, or equiva lent gum, will produce a composition which will harden on being subjected for about an hour to a heat of $250^{\circ} \mathrm{Fah}$. Owing to the volatile properties of proto-bromide of iodine, it cannot be applied without difficulty to practical purposes To obviate this difficulty, we treat both the bromine and iodine, prior to combining the same, with oil of turpentine, or similar oil, which has previously been mixed with about one fourth itsweight of sulphuric acid, to prevent the formation of an explosive composition.
The pasty mixture, produced as above described, is combined with caoutchouc, or eqvivalent gum, in the proportion of about three ounces of the paste to a pound of gum, the proportion of gum being increased if a more elastic product is desired. After the gum and paste are thoroughly incor porated, the composition may be hardened by subjecting it to a dry heat (of from 200° to $320^{\circ} \mathrm{Fah}$.), for from ten min utes to one hour and a half, the time being lengthened to increase the toughness of the product.
The product thus obtained may be applied to many usefu and ornamental purposes, and any desired color may be im parted to the material by combining with the composition, before it is hardened, any suitable mineral or earthy coloring matter.

Manufacture of Carpets and othe

Thomas Crossley, of Bridgeport, Conr., has obtained a pat nt as above, the process being as follows:
"The cloth, after being woven from the raw jute, flax, or otton, is immersed in a bath of water, at, say, from 90° to 120° Fahrenheit, in which has been mixed a certain portion of either wheat or corn bran, and sub or bicarbonate of soda After remaining in this bath for a length of time sufficient to thoroughly dissolve the tannin in the jute or cotton, or the gluten or gum in the flax, I then remove the cloth and wash it thoroughly in clean water, and I afterwards immerse it in a bath of cold water, mixed with a solution of crystal ized tin and muriatic acid, of strong muriate of tin, with twenty per cent of sulphuric acid, at a strength of from one to two degrees Twaddell. After impregnating the cloth with this bath, it should be again washed in clean water, and then submitted to a bath of weak solution of chloride of lime after which the cloth is so washed clean and dried, and it is then ready for printing or dyeing.
"By these means I am enabled to produce a carpet or other abric, dyed or colored in any colors or design, by the process of dyeing or printing, without weakening or injuring the strength of the fibers, and at the same time to produce a car pet or other fabric, having all the richness and style of wool en or worsted goods, with equally durable colors, but at much less cost."

Recutting Files with Acids.

There are many recipes for converting old flies into new by means of acids, and among the latest is that recently pa ented as follows, by Albert I. Ferguson, of Sharon, Pa.
" The files must be thoroughly cleansed in warm water containing a small quantity of potash, which readily removes any grease or dirt from them. After the files are thus cleans ed, they must be washed with warm water and dried by arti ficial heat. Next, place one pint of warm water into a 'wooden vessel, and put into it as many files as the water will cover. Then add two ounces of blue vitriol, finely pulver ized, and two ounces of borax, well mised, taking care to turn the files over. so that each may come in contact with the mixture. To the above mixture now add seven ounces of sulphuric acid and one fourth of an ounce of cider vinegar which will cause the files to assume a red appearance at first but they will, in a short time, resume their natural color. Then they must be removed, washed in cold water, and then dried by artificial heat. When dry, they must be sponged with
olive oil, wrapped in porous paper, and laid aside for

Improvement in Combs.

Elias Brown, of Wappinger's Falls, N. Y., has lately re ceived a patent for a valuable improvement as above, which is coming into extensive use. The combs are stamped by a peculiar machine out of sheet steel, the mechanism being of such a nature as to leave the teeth of the comb rounded and smooth. The combs are then tempered and afterwards ornamented with an enamel which gives them a very soft and beautiful appearance. In weight they are about the same as rubber, over which they have several important advantages, such as freedom from odor, greater elasticity, cheapness, and durability. The agents are Noyes, Wilson \& White, 98 Franklin street, New York. Mr. Brown's large factory for the manufacture of these new combs was lately burned down at Wappinger's Falls. But he is rebuilding with characteristic energy, and will soon be in full operation again. He is
the first, we believe, to make a really superior comb from steel.

OFFICIAL REPORT OF Patente and Olaims

Issued by the United States Patent Office,

for the week ending febroart 4,1868
Reported officially for the Scientitic American.
PATENTS ARE GRANTED FOR SEVENTEEN YEARS, the following

In addition to which there are some small revenue-stamp taxes. Resident
Pamphlets containtng the Patent Laws and rull particulars of the mode of applying ror Letter's Patent, specifying size or modelrequired, and much other information useful to Inventors, may be had gratts by addres
$M O N N$ \& CO., Publishers or the Scientific American. Neo York.
3,942.-Cooking Stove.-Federal C. Adams and Joseph

 73,947.-Drawing Clamp.-Jules Bouniol, Philadelphia, Pa.
 73,948. - Pn PoToGRAPRIC PRINTING APPARATVS. - Ed win
Brown

 Duncannon, Pa
I clatmathecomotination of the hinged doors, c , with - the pasage way or
ntry, C , bo that the latter may be inclosed and made to forma portion of

 3,951.-Steering Apparat Us.-James L. Cathcart, George
 cribed.- Horse Rake.-A Aner Chapman, Delta, N. Y. I claim a grain head applied to the arms of a revolving horse rake, marked
, in the manner and for the purpose herein set forth.
7,953 . CAsE FOR Tooth PAsTE.-George F. J. Colburn,
 73,954.-LIFTivg Jack.-John Coulter, Sen., Xenia, Ohio.

 Iclaim the combination with the tip and Wood of the shutlie of an inter
posed shitel, c, arranged with relation to the tip and the shuttle wood, sub tantiallyas and for the purp oses set forth.

 sth, The tombrination with a pen washer of a wiping reel, as and for the
stresa degcribe.

Iowa.
Iclualma safety harness nook for Hberating horses from carriages, con
stud

73,959.-Ramitway Frog.-J. Hall Dow and Daniel J. Riker,

 fon. and Hugh Dydrator., Alf red Fellows, Thos. B. Harri

 73.973. - SEEDINQ MACINE.-M. Hayden, Detroit, Mich.

 73,978.-WASHing Machine.-Martin V. Jennings, Cen-
 73,979-CoRN CvLINTATRR.-N. S. Johnson, Maquoketa,

73,980-COMPOUND For Destrofing BJRRS in Wool.-W.
 73,981 .- FLOOR BOLT.-E. H. Kellogg, Mukwonago, Wis.

 ,

 ${ }_{7}^{\text {purpose }}$ desesibed.

 73,994-Apraratus For Separative Soap Bars.-Harvey
 73, $995 . \mathrm{J}$-Calcolating Machine.-A. C. Pierson, Rabway,

${ }_{7}^{2}, 996$.--W Whinick Machine.-J. F. Pond, Cleveland, Ohio

 cribed. - Lime KILN.-Wm. W. Potts, Bridgeport, Pa.

 $73,999 .-$ Door Spring.-L. C. Prindie, Chicago, Ill.
 2ate

 and rolier, D, when combined and arran ged subitantialif as descr bed.

74, 1006 - Cotion -

 ${ }^{\text {the }}$, crapapers, substantially as set forth.

 74, $008 .-$ SAFETT POCEET. - Cyrus Sanborn, Chichester, N.H.
 74,

 Iror CArriacs. James D. Sarven, Columbla, Tenn.

 cuations, I F, subbtantalily as and for the purpose specited.
 4h, intially as and Bro the purpose described. Shute, Waukegan, Ill.,
 74, ,o15. - Let ferthe Box.-John W. Smith and Jas. D. Smith,
 2et fortb.-HARVESTER.-Jno. W.Thompson, (assignor to Elvira

 74,018.-CONSTRUCTION OF FENCE.-Asahel Todd, Jr., Palt-

 74, Antede CAstren-Ale Alexander C. Twining, New Haven, Conn.
 74,020.-LANTERN GLobe.-William Westlake, Brooklyn,

 Constitutug a parlor or a a yard finy or vame as ase forth. Chicopee Falls,

 74,008- Heldi. Michler Tube Ferrule.-James U. Adams, RichI fild, Mich. Hembination of the ferrule, c , with the tube, A, and plate, a

 orth 7,030-- Brice MAchine- - John Armstrong, St. Louis, Mo.

 74,046-STRAM ENGINE-William T. Chamberlain, Norwich

 ${ }^{\text {ta }}$

 7,

 gefabile matter, either sepasetely or combined, tor the purposes herein
$74,064-$ Horse Hay Fork.-Henry A. Estes (assignor to

 7th. A machine for forming sheet-metal moldings, when the same are made
and operating substantiqly as herelnshownand described. 74,069.-Tunnel Excavator.-Theodore A. Fisher and
 cofter. construct 74,070.- Cotton Bale Tie.-Addison C. Fletcher, New
 materiai, substantialy as set forth. 74,071. - Boot Attachment to Carriages.-Marvil M. Fol

 74,072 .-SECuring Hooks and Eyes to Cards.-James D. Franklin (assignor to Ira Richards \& Co.), Attleborough, Mass.
I claim hooks and eyes sec urced to cards by passing the eyes thr ough the card soa a to project on ooth side thereof, and fastenng the hooks to their
nds and bodies, on one or both sides of the card, su ustantially as set fortb. 74,073.-SEEDING MACHINE.-Olney Fry, Jr., Albany, Oregon.

 otber and with thentrame, D, and tonnue, c, said parts being constructed and
arranged substantialy as herein shown and described and for the purpose

74,074-Dtrching Machine. - A. A. Fuselier, Algiers, La.
 74,075.-Steam Pdmp.-J. B. Gardiner, Springfield, Mass.

 ${ }^{7}$
 44,078- - Mantacactore of Clay Pipes.-H. A. Goodrich

 4,081 . - Mode of Constructing Molasses Cups of Sheet
 4a,onij bobill

 Thil

 ,

 7ed, 1900 - Stem-Winding Watches.-Edward Howard, Bos-

 74,098 . - Diss TILL

 trathaily as sho wn and desecribed and for the purposes set torthe

 ${ }^{\text {specicted. }} 7$

 74,104.-Corn Harvester.- James Mains, Olena, Ill.

 74, too

 ${ }^{\text {and }} 4,110$ derribed PA VEMENT.--H. G. McGonegal, New York city
 ${ }_{74,111 .-S n a p ~ H o o k .-J o h n ~ M c K i b b e n, ~ L i m a, ~ O h i o . ~}^{\text {ser }}$

 and eacilfed

 74,116.-LDRRIACATOR FOR LLOOSE PULLEY.-Geo. M. Morris

 for the purfobe set forthi

Also, the combination of the friction apparatu8, pubstantially ys described,

 74,133.- CONNETIING POMP KoDs.-H.F. Purmort, Saginaw

74,134-Self Lubricating Axle for Carriages.-Silas S .

 74, sisb. set Curtain Fixtore.-S. S. S. Putnam, Dorchester, Mass

 ${ }_{77,137}$ forth - Woven Fabric. -E. F. Richman, Muscatine, Iowa

 surface, and binding the whole toeether, , above shown
$74,188 .-C J T I A T O R$

 74, Brookline Mass

 dz, and carriage, D.

 in set forth. Spout Braceet.-Jeremiah E. Rohrer, Rohrers-

 I Caline, Ohire edicing prepareetrom the root of the cohush or blueberry gublanilill in the mannef herein specited.
 74,149.-Drying and Ventilating Apparates.-Jarvis

 74, 152.-Revolving Cannon.-August Schausten, Michigan

 4,153. ${ }^{\text {and }}$.

 74,155.-Folding Metal Shetrers.-Samuel J. Seely, New

 4, 458 . - Truss. Jacob A. Sherman, New York city. Ante

 hereil sbown and described. 7 , 6 .
 74,161-GrinDing MrLL.- John Snyder, Hart's Mills, Ind.

 74,165.-Machine for Exterminating the Cotton Worm,

 therir respective equivalents, substantally as shown and described.

 ITutile, Genon, Neradiad machine formed by the combination of the shart

 forth

 ond coit and equally eftrvercent. MR. C. Vernol, New York city,

 74,178 . - Metalitic Scroll Ends for Spring Bars for Car

 74, 780 . -LAst.-G. M. M. Wells, London, Eng'd, assignor to M

 7t, $183 .-\mathrm{PL}_{\mathrm{L}} \mathrm{T}$.

REISSUES.

2,849--Merhod of Cabting Surews.-William Allen In-

 2,85. Thraskiva MAchine AND SEPARATOR.-Hugh W

 specinied The combination and arrangement of the base, B, of the burner, the
tran poperent inclosure, M, the defiector, D , and chimney, C , substantaliIy as
 ${ }^{2}, \frac{5}{2} 56$ - OrSTER DREDGE.-Thomas P. Sink. Fairton, N. J.

DESIGNS.

2,905.-Lantern.-John Alexander, Brooklyn, N. Y., as , bitnor to Aeo. W. Brown \& Co., Forestrylle, Conn ork city
 (assengor to
pitenter
910 2,911.-TRADE MARET.-Wm. G. Creamer, Brookiyn, N. Y. Y. C ,912--Pistol Barrel - Emerrson Goddard, Brooklyn, N.Y. assignor to E. s. Renwick New York city.
2,913. - STove.-Wiliam Hailes, Albany, N. Y.
2,914 - LABEL.-Margaret J. Hays, Allegheny City, Pa.

 patents. 2,920.-BASE OR STAND.-Nicholas Muller, New York city
 2,928.-BotтLe.-Frederick' Stearns, Detroit, Mich.
Note.-Sevinty-pour Patents in the above list were sollicited through t b of complimentary lettersconstantly recelved at this oftce, we select for pubcation, as they came to band at the same time, and emanated from person resiang at such remote distances apart, thus exbibiting unity of sentiment
from one end of our country to the other:Thomas C. Hammond, of Sacrame Hon of the case without any extra trouble or expense, shd, as I conslder this result due to the able manner in which you have conducted the case, you
Fili please accept my thanks for your kind attention to the matter, and also he assurance that I shall recommerd your Agency as the clieapest and bes medium for the procuring of patents in t be country. I sballsecureyour val nable serv.
George W. Wheeler, of Hartford, Vt., says:-" Through your Agency we received the Letters Patent on Wheeler\& Allen's water wheel, the 13th of
January. We were disappointed in obtalning them so soon-only twentright daystrom the time of making application to the allowing of the pat at! I know of cases in our viclnity that bave been on the road from thre it ve months and are not tbrough yet. You bave given entire satisfactio
our case, and we would recommend you to others."

PENDING APPLICATIONS FOR REISSUES.
Application has been made to the Commissioner or Patents ror the Reissue of
the ollowing Patents, woith newo claims as subjoined. Parties who desire to oppose the grant of any of these reissues should immediately addres MUNX \& Co., 37 Park Roor, \boldsymbol{N}

67,167.- Ere Glass.-Charles Parker, Meriden, Conini., as

 e same are sol, Comblned and arranged as to operate substantially as de

 36,017.-HARVESTER.-Cyrus Newhall, Hinesdale, N. H.
 y connections passing through the driving ring.
2d, rine ombination withat twowheeled harveter ofa fngerbeam binged
othe main frame by coupling arms passing tbrough one of the driving

Fors.--Theabove claims for F eissut are now pending before the Pat. ent offce and will not be officially sassed upon until the expiration of 30
days trom thedate or Aling the application. All persons who desire to oppose thegrant of any of these claims should make immediate appli-
cation.
UNN \& CO.. Solicitors of Patents,3? Park Row. N. Y.

Inventions Patented in England by Americans. PROVISIONAL PROTECTION FOR SIX MONTHS.
 3,661.-Railway Rail.-Thomas Harbison, New Yorkcity. Dec. $24,1862$.

 3,696.-GAS BEDNRE. WHillis Churchill. New Fork city. Dec. 28, 186\%.

 3,689.-Burt Hingr.-Benj. F. Barker, San Francisco, Cal. Dec. 28, 1867.

