were soldered under continual reports produced by the heating of drops leaking out, but caused no accident.
"In one case a captain of artillery was hammering on a shell filled with nitro-glycerin, until it exploded and killed him.
"In one case a man took to greasing the wheels of his wagon with nitro-glycerin, not knowing what it was, and it wentall right until it struck hard against something, and the wheels went to pieces.
"In one case it was burnt in a lamp, as an improvement on petroleum."
Last in the list comes the Newcastle explosion, which, it seems clear, was caused by the grossest violation of the printed instructions. The cans containing the nitro-glycerin were opened with blows of a spade, and then thrown into a hole one upin another. From the shock thus occasioned the explosion took place.
This list is published that these accidents may serve as a warning against similar attempts to perform these feats, but the inventor protests against the very narrow view of trying to check the career of any improvement on the plea of liability to accidents. "There is," says he, "a very easy way of getting rid of them; we need only prohibit the use of steam, fire, poisonous substances, cutting tools, firearms, explosives, etc., and return to those days when ignorance and safety went lovingly hand in hand. But unless civilization is to be stopped,we cannot possibly confine the community to those articles only which it is impossible or even difficult to abuse. Something must be left to the understanding, and it is an excellent regulator. Thus, for instance, phosphorus, one of thr most dangerous poisons and combustibles is in every child's hand, and yet does ’ut little harm."

THE AĨCRICAN WOOD PAPER COMPANY AND THE FIBER DISINTEGRATING COMPANY.

A case of great importance to patentees, upon the validity of Reissues, and illustrating the importance of having a correct description of the invention in the original specification, has just been decided in the U. S. Circuit Court for the Eastern District of New York
In this case the American Wood Paper Company filed a bill against the Fiber Disintegrating Company to restrain the defendants from the use of certain inventions for which Letters Patent had been granted to the inventors in this country and by them assigned to the complainants. The whole of the inventions related to the manufacture of paper pulp from crude vegetable substances by means of chemical agencies applied at a high degree of temperature in a vessel or boiler of peculiar construction.
The patents, five in number, alleged by complainants to ha ${ }^{\text {ve been infringed by defendants, were : }}$
(1st and 2d.) Watt \& Burgess patents, being two reissues (Nos. 1,448 and 1,449) dated the 7th April, 1863, of a single reissue, 5th October, 1858, of original patent, dated 19th August, 1853, for improvements in the manufacture of paper from wood.
The two reissues were one for the product obtained by, and the other for the process of treating wood so as to produce paper pulp by boiling in caustic alkali under pressure.

Mellier's patent, dated 7th August, 1854, for an improve ment in making paper pulp from straw. The process being very similar to that described in the reissued patents of 7th April, 1863, and 5th October, 1858.
(4th and 5th.) For improvements connected with the ma chinery for the purposes of making paper pulp. But the only question of general interest to inventors is in connection with the reissues of the Watt \& Burgess patents, and on the Mellier patent, to which we confine our report.
The original Watt \& Burgess patent, of August, 1853, contains the following words:
"The shavings are then to be boiled in a solution of caustic alkali, the strength of which, being dependent on the nature of the vegetable substance operated on, can be only learned by experiment. For deal or fir wood we find that a solution of alkali of the strength indicated by 12° of the English Hydrometer answers very well. The length of time necessary for this part of the process is somewhat dependent on the nature of the vegetable substance to be heated. We find boiling in a solution of caustic alkali under pressure, of considerable service. We do not claim this operation as part of our invention."
In an English patent obtained by Watt \& Burgess, 1st August, 1853 , their complete specification, which is dated 18th February, 1864, contains exactly the same words. In their French patent, dated 27 th September, 1853, boiling in alkali is mentioned, but there is nothing whatever to indicate that this boiling should be under pressure, but it states " We have found it very advantageous to have a heating apparatus in the vats where the alkali solution is added; the pulp should be heated by steam, or other convenient method, to the boiling point.'
In October, 1858, Messrs. Watt \& Burgess obtained a re issue of their patent, and their specification contains the following words:
"The length of time necessary for this part of the process is somewhat dependent on the nature of the vegetable substance to be heated; that is, its resinous or gummy nature, and boiling in a solution of caustic alkali under pressure is of considerable importance. By the words ' under pressure' is meant a pressure at, near or above 300° of Fahrenheit's scale. ${ }^{21}$

To the speciflcation to the two reissued patemts of 1863 , the words used are subatantially the same, the claim in the first (No. 1,448) being for the product, viz., a pulp suitable for the man facture of paper made from weog or other vegetable
substances by boiling in alkali under pressure ; the claim in the second $(1,449)$ being for the process of boiling in an alka under pressure.
The defendants contended as to the Watt \& Burgess patent (among other things), that the reissued patents of 1858 and 1863 were improperly issued, being for a substantially different invention to that described by the specification to the patent of 1854 ; and with regard to the Mellier patent, they alleged that as they treated bamboo and not straw, and that while Mellier claimed the employment of a pressure of sev enty pounds, and a heat of $310^{\circ} \mathrm{Fah}$., as the pressure used by defendan' as denoted by the steam gage, never exceeded six ly pounds̀, they did not infringe on Mellier's patent.
It was argued by Mr. Jenckes for the complainant,
It was argued by Mr. Jenckes for the complainant, and by Mr. Russell and Mr. Harding for the defendants. Mr. Jencke contended that the reissue of the patents by the Commissioner was conclusive until reversed by a substantive proceeding for the purpose; that the inventions therein described were those really invented by Watt \& Burgess, and incorrectly described in the first instance; and he very ingeniously argued that, by inserting the words "under pressure," Watt \& Burges narrowed their claim. That Burgess believed, when he took out his English patent, that he could cover the open boiling process, as well as boiling under pressure. On examination it was found that Coupier and Mellier, in 1851, treated wood precisely in that way. His action was, therefore, exactly within the requirement of the law, that where by mistake a patentee has claimed too much in his original patent, he should surrender it and take out a narrower claim in his re issue.
The Court took time to consider, and on the 7th of January 1868, rendered a judgment of which the substance, so far a of importance from the point offered above indicated, is
First, that the Watt \& Burgess reissued patent (No. 1,448) is void, on the ground that it is impossible to consider that to be a new material, patentable as a new product, which i simply a substance long well known to exist in wood and ther substances in a state nearlypure.
Second, that the Watt \& Burgess reissued patent (No. 1,449), is also void, on the ground that the process described is substantially different from any described in the original patent. And this decision, which seems sound from every hough an invention be so undescribed and the evidence of actual invention at the date of application so clearly estab lished before the Commissioner of Patents as to entitle the inventor to a reissue, that the reissued patent will be void if the invention described in it be the descriptiou of an inven tion essentially different from the one previously described Third, the Mellier patent was held to be good and a decree made in favor of complainants on the ground that the 70 pounds pressure mentioned by the inventor was evidently meant in accordance with the French method of reckoning viz., internal pressure, from which one atmosphere has to be deducted to get at the pressure denoted on the steam gage as was further apparent from the temperature given of 310° Fah., which, on the French scale, corresponds to 70 pounds pressure, meaning internal pressure. That, further, Mellier's description sufficiently covered the treatment of bamboo, which is of the same natural order as the wheat, oats, and other plants, to the stalks of which the term straw is usually applied.
Decree in favor of the complainants on the Mellier patent bill. Dismissed as to the others.

Rotary Ventilating Fan or Blower

At the November meeting of the Massachusetts Institute fechnology, Mr. S P. Ruggles exhibited and explained a model of the ventilating fan or blower, in vented by himself, now in practical operation at the Institute and about to be introduced into the StateHouse in Boston.
It consists of three floats of which one remains for a short time stationary while the other two are moving, each in turn becoming stationary. The object of the stationary fan is to act as a wall to prevent the air going back, and to cause the air brought by the ascending float to pass upward through the passage which conducts it to the building. This action of the floats is produced by the shaft which carries them, being made in three parts, one within the other, each carrying a float. From the condition of rest the first float begins to move slowly, and gradually increases in speed for a quarter of a revolution, then carrios the body of air at a uniform peed for half a revolution, and then decreases in speed in the last quarter of revolution to the state of rest. When the
first float has completed a half revolution, the second begins to move, to follow in like manner ; the third float begins to move when the first has completed its revolution, and follows in the same manner as the other two, the action of the three producing a constant and uniform current.
This movement is produced by an ingenious arrangement of wheels of irregularly oval shape producing a crank motion. The fan at the Institute is vertical, ten feet in di ameter, and ten feet high; it makes about twelve revolutions per miuute, forcing out seven to eight handred cubic feet of air at each revolution; this amount must go forward and
never can go backward on account of the wall of the stationary float. It requires only about one sixth of the power re quired for ordinary fans of this size to move it.
Prof. Rogers alluded to the great number of rotary aspirators and blowers in use in Europe and this country, in all of which centrifugal action from rapid revolution is depended on ; in the apparatus of Mr. Ruggles centrfiugal action is not the motive force, but the mass of air is drawn in below and forced or bucketed up, and delivered to the discharge pipe. The temporary stationary condition of a float in a fan
blower had been used before the apparatus of Mr. Ruggles
but in fans with two floats only, in which no provision can be made against the backward flow of the air. In Mr. Rug gles' invention, the use of three floats, by the novel and in genious arrangement of shaft and wheels, render this retro grade action impossible, as all the air drawn in can pass in no other than a forward direction, where it is required for no ot
use.

Preservation of Stone.

This subject, which has attracted the attention of so many chemists, seems now to have been brought to a very successul point. We have received some specimens of chalk treated by a process discovered by Messrs. Dent and Brown, of the Chemical Department, Woolwich. Their process consists in he application of a solution of oxalate of alumina to the tone. The experiments date from December, 1865, and the results they have now obtained are most encouraging. The process is applicable to limestone, dolomite, and chalk, and may, we thint, be made subservient to the preparation of ithographic stone. Oxalate of alumina is readily soluble in water, and the solution, which is simply applied with a brush, is made of a strength varging with the porosity of the mate ial to which it is to be applied. The specimens we lave beore us are left in the original condition at one end, and have een prepared with the solution at the other. The physical haracteristics of chalk so treated aro-lightness, the posses ion of a glazed surfaceapproaching somewhat in appearance to marble, and greatly increased hardness ; in this respect he stone is about equal to fluor spar, or 4 in Mohs' scale Furthermore, the lime being transformed into one of the most insoluble and unalterable of its compounds, and the alumina being precipitated, the pores are filled with a substance almost unacted upon by water or by the impurities present in the atmosphere of large cities. We should be glad to hear that the discoverers had one of the experimenal bays of the Houses of Parliament placed at their disposal They might thus prove their process to be a formidable rival o that of their colleague Mr. Spiller which, according to presnt appearances, is likely to be the numerous schemes now sub judice at Westminster:-Chemical Newo.
Primitive Geometry.-M. Lenormant, a member of the French Academy, has been devoting considerable attention to he study of an interesting papyrus, just added to the British Museum collection. This ancient relic contains a fragment of a treatise on geometry applied to surveying, including a description of the modes of estimating the areas of a square, a parallelogram, of various kinds of triangles, and of the computation of the area of an irregular figure by means of riangles, and of the volume of a pyramid. the whole being illustrated by appropriatediagrams. M. Lenormant, in a reort to the Academy, refers the production of this papyrus to he period of the twelfth dynasty, which would be cotemporaneous with the reign of Solomon.
Steam Man.-A lengthy account is going the round of the ewspapers of a wonderful piece of mechanism in the form of " Steam Man," invented at Newark, N. J., by one Zaddock Deddrick. We have taken the pains to investigate the ruthfulness of the wonderful story and we learn that, al though an invention of the kind is in progress, it is far from being perfected; and we have the promise that as soon as the steam man is in a condition to travel we shall have an opportunity of witnessing it, and the liberty of explaining its construction and operation. In the mean time wo advise our contemporaries not to get excited over the steam man for he is likely to remain harmless for the present.

Electricity in a Vacudm.-A new apparatus for demontrating the fact that the electric spark will not pass through perfect vacuum has been contrived by M M. Alvergniat, of Paris. A glass tube, having inserted in it two platinum wires placed at a distance of two millimeters (three thirtyseconds of an inch) apart, is attached to a mercurial pneumatic machine. After half an hour's action the tube is heated ver chareoal to a dull redness, and the vacuum continued until a point is reached when, in spite of the slight distance between the wire points, electricity ceases to pass.

How to Hold Pearls.-It is stated that certain native art ists resort to an ingenious plan for firmly securing in any deired position such pearls as they wish to drill or work upon. The gems are first fitted loosely in holes bored in a piece of oft wood. A few drops of water are then sprinkled over hem, and this penetrating the fibers, causes the wood to well and the pearl is held as in a vise, but without marring or in any way depreciating its value. After a time the water evaporates, the fibers gradually relax, and the gem is gain set free.
Absorption of Gases by Solids.-Atmospheric air by passing through india rubber, Mr. Graham, master of the British Mint, has observed, becomes super-oxygenated, and will rekindle smoldering wood like pure oxygen. He has ven collected this gas by creating a vacuum in a thin india ubber bag, which latter is kept distended by mechanical means. Mr. Graham states that gases passing through solid films are first condensed into liquid form within the substance, and then pass off on the other side by evaporation.
"Wasiring-day Spring."-A correspondent says that in Saline county, Missouri, is a spring, a few miles from the Missouri river, which flows freely on Fridays, but is dry on very other day, and the people thereabouts call it washingay spring for this reason." From the above it would seem hat the traditional washing-day, usually considered as folowing Sunday, is not recognized in Saline county. If the pring was hereaway its usefulness would be much enbanoed by a change in its day of flowing.

The Public Clocks of New York.
Mr. D. W. Bradley, City Timekeeper, lately read an inter esting paper upon Tower Clocks, before the American Institute, in which were the following remarks:-
"With all due deference to the philosopher who said that time is money, I would observe that time is improvement progress, science, art ; and on the other hand it is idleness, dissipation, poverty, decay, ruin. As for ite being money, let me remark that I have been experimenting with it these thirty ears, and have never succeeded in making it yield more than enough to keep soul and body together. We visit St. Paul's. The bell was new a year ago. The old one got cracked,
and they set a man to boring the crack out. He worked and they set a man to boring the crack out. He worked
a week or two, and nearly froze to death, and when he fina week or two, at was found that the crack was larger than ever before. So they put in a new bell. The frame of the clock stands five feet long, two feet three inches wide and four feet high. The pendulum is of wood, 13 feet long, giving 32 beats, and the ball weighs 75 pounds.
"St. John's clock was built by Henry Harris, London, in 1812. It is nearly similar to St. Paul's, but is better finish ed, and has the worst eacapement I ever saw.
" The clock of the Dutch Reformed Church, Fifth avenue and Twenty ninth street, and that of St. Mark's, were made by Stokell. They are both like the clock of St. Paul's, though smaller and better. Stokell made some of the best egulators in this country.
"Trinity clcck is the heaviest in America. The frame stands 9 feet long, 5 high, and 3 wide. The barrels are 20 inches, turning three times in 24 hours. The winding wheels are driven by a pinion and arbor. On the latter is placed a jack, or a whee!, a pinion, and a crank; 850 turns of the crank are required to draw up each of the weights. It takes 700 feet of 3 -inch rope for the three cords; and the winding up of the weights consumes more than an hour of time, and requires the labor of two men. The pendulum is 18 feet long, and makes 25 beats. I cannot think that Mr. Rogers had a correctnotion of what he was going to do when he began the building of this clock. At first it would not run 7 days, and he was obliged to put in new main wheels. The clock was at last finished, and an agreement was made with the sexton's ever it stopped, provided he at once notified the timekeeper;
but as it stopped every day, and frequently three or four times a day, the expenşe of feeing the informer became irksome to bear, and the cumbrous timepiece was placed in new hands. By this time it had gained a poor reputation, which clings to it even in our day. The weights are $800,1,200$, and 1,500 pounds respectively, and drop 50 feet. A large box is placed at the bottom of the well, which holds about a bale of cotton waste to check the fall of a weight in case of accident. Two years ago I wound it up on Saturday. and on Sunday morning the chiming cord broke, letting the 1,500 pound
weight fall a distance of 50 feet, causing much damage. weight fall a distance of 50 feet, causing much damage.
The cotton box was strongly braced on all sites, but the force of the blow burst it open. The contents were well scattered, otherwise the organ bellows, just in line below, would have contracted under a pressure somewhat greater than that which the "blower" was accustomed to exert upon them. A much better clock could be built of the metal contained in the frame and main wheels of Trinity's. None of these clocks keep accurate time. Trinity does best, the clock of the Dutch Reformed Church next. During the late heavy snow storm the north window in the clock-room of St . Paul's was blown open. The snow came in, partiaily covered the movement, and drifted down into the box to the depth of several inches, nearly covering the ball ; yet the old pendulum waded through it with the glee of a school-boy, and stowed the snow on this side and that, and pelted it with such pertinacity that by the next morning the clock was 15 minutes ahead of time. The first warm day that followed, it fainted, and stopped running. There was an old German clock on the Post Office, but it was removed a long time ago. It had but one hand. Old St. George's clock is about 50 years old. It is smaller than the others, but has gained a reputation for accuracy. Twenty years ago a person who had not St. George's time was supposed, like a busy man, to have no time at all. As it is soon to be pulled down no care is taken of its inside, and the figures on the dial are grown so rusty that the time can only be guessed at. At the City Hall we find a good clock. The pendulum, 15 feet long, vibrates in 2 seconds. The ball weighs 300 pounds. To counteract the effect of lieat and cold the compensation principle has been applied to this pendulum. The contraction of the iron rods which would draw up the ball is opposed by the greater contraction of the brass bar on which the ball rests, thus letting it down. When the rods expand the greater expansion of the brass bar lets it down-only it don't-that is, not yet. regulated it from June 1866, to February 1867, without moving the hands, but after the latter date, for three or four months, I set it every week although the variations never exceeded 30 seconds. The pendulum has not lost one vibration in more than two years. The new clock of St. George's Sixteenth street, has never been excelled in finish. The frame is 8 feet long, 3 wide and 7 high. The main time wheel is 3 feet in diameter, has 180 teeth, turns once in 12 hours, has the figures on its face, and a pointer marking the hour. The second wheel is 27 inches, has 300 teeth, revolves every hour, and has the minutes on its face. The third wheel turns once in three minutes, and has the seconds pointed off on it. The pendulum is 35 feet long, and vibrates in three seconds, and the ball, weighing 390 pounds, is four feet in length by seven inches diameter. Two pinions and three wheels constitute all the machinary of this clock. Trinity's has five pinions and ten wheels. A duplicate of this clock is now being put up in the new arsenal at Rook Ieland. The clooks in the

Brick Church and that in St. Therese are small but good ones if attended to. They are cared for by the sextons, and get no care at all. A gentleman from Pennsylvania was lately telling me about his wonderful one, which did not vary 15 secondsin a year. On questioning him as to the observations he was in the habit of taking, he remarked that he took observations every day, by a noon-mark cut in the floor of his lack porch. The clock of the Third-avenue Railroad depot is a fine instrument. It is exposed to a greater range of heat and cold than any other clock in the city, yet keeps excellent time."
[We gave a detailed description of the "new clock of St. George's, Sixteenth street," on page 80, Vol. XV., Scientific american. The finish of that clock and the beauty of its construction is probably not excelled by any in this country whether of domestic or foreign manufacture.-Eds.

OFFICIAL REPORT OF
Patents and Clams
Issued by the Unired States Patent Offe
For the week ending Jandary $14,1868$.
Reported olfcially for the Scientifc American.

Patents are granted For seventeen years, the following
feing fiscledule of fees:-
 On issuing each original Patent.
On appeal to Com missioner of Patents.
On application for Reissuu...........
On application for Extension of Patent.
On granti in the Extension............
 1 la addition to which therc are some small revenue-stamp taxes. Residents 25 Pamphets containing the Patent Laws and full particulars of the mode of applying for Letters Patent, specif ying size of model required, and much other information useful to Inventors, may be had gratis by add
MONN ic CO.. Publishers of the Scientiftc American. New York.

73,220.-Holder for Drying Glue.-William Adamson, Philadelphia. Pa.
I clail the within-described holder on orhich to dry glue, the said holder
consisting of cords, wires, strips or sheets of suitabye material saiturated or coated whin yarumiu. or its equivalent, tor the purpose specificd.
 2d, Also cuttinga and bending into bell-meuth form tongues in the ends of
the tabes, for the purpose and substantialliv in the manner her in descrined
73,222.-HORSE HAY Fork.-D. W. Amos, Broad Top City,

 their center and to doubleprongs at their lower ends, all in one piece, sub
stantially as set forth.
2d. The combina of the levers, $\mathrm{F} G$, and bail, A, all constructed an
 and operatigg substantially as set forth.

 as hereio shown and described. E. B. Booth, St. Louis, Mo.
equivalents. ${ }^{\text {end }} 226 .-$ SAW. M. Boynton, Grand Rapids, Mıch.

 73,228- SHOE HoLDER.-A. N. Breneman, Lancaster, Pa.
I'claim the arrangement or the to and reel pieces, AB, when connected
y a hinge, C , in combination with the sliding wedge and band, DE, or tit

 he tse and in the manner herein described and set forth.
73,230 .- STRAP HOLDER.-H. W. Burgess. Ithaca, N. Y. Iclaim, 1st, The construction of the strap holder when the said surfaces
of the movabie piece or part B, and of the bed or opposing pitce or part, A,
remade to be a part or section of the volute curve, F , asigigured and de
cribed

 3s set forth ass an article of manufacure.
$73,231$. SHOVEL PLow.-H.C.Chander, Erie Township, Ind.
Iclaim, 1st, The notched beam at D, for the purnose of adinsting the ban

 Tethin, Baltimore, Md.
ciancombination
 substantially as herein described and represented. DEVIATION OF Loco-

 , 234 .-Pole Attachment.-Geo. N. Compton, Canton, O. I claim, 1ht, The combingtion ot the part. N. With the pins. a a a, and the
inc, G, the whe torming the ring peces, L G, shown in fig. 6 , in the man
er and for the purpose herein specined.

and dorvied witio easastic buclie etraps, Cand D, for the purposes and sub.

 tht. The recesses, k k , in the disks, B, for the reception of the forsed end
of the lever. H.
73 .
 he purpose set forth.
$73,241$. AMALGAMATOR.-A. L. Fleury, New York city.
I claim the herein described amalgamator, constructed and operating I claim the herein described amalgamator, constructed and operating sub-
stantially in themanner set forth.
73,242 . - BuckLE. George L. Gerard (assignor to himself and
 73,24ifed.- Machine for Scolloping Leather.-Andrew

 Harden, Chicago, Ill.
I clain t the gle glass bearing, B, in combination with the working parts or
nachinery, A , fiexible seat. d , arranged as set forth and for the purposes 73,246 .-Composition for Preserving Wood, Metal,

 tialiv as described.
$73,248 .-H 0$ RSE RAKE.-Benj. F. Horton, Ithaca, N. Y. Y.
1 cisim, ist. The arrangement of the teeth, and the knobs projecting from

 tially as described.
73,249. - Soda Fountain.-John S. So Hull, Cincinnati, Ohio.
I claim the soda fountain, G, tubes, H I and J. and cooler, E, combined 1 claim the soda fountain. G, tubes, H I and Je and coolpr, E, combined
and arranged dor jecting the water by compressed air forced into the water
fountan, substantlally as described. 73,250.-Steam Generator Water Gage.-John S. Hun-

forth. $251 .-$ Machine for Husking Corn.-H. W. Knowlton
 ine rollers, I L, substantially as and for the purpose set forth.
73,252. GENEMATING ILLUMINATING GAs. Ferdinand King (assignor to himselt and Charles W. Neudecher), Richmond, Va.
1 clian. 1 Itt, The method herein described of generating or producing illuminating gns.
2d, Also hhe compound oll berein deseriben. for the purpose set forth.
7,253.-PUMP.-James McBride. Flint, Mich. I claim an incloeed anaular space around the pump cylinder, deriving a
apply of air from the weli, substantially as and for the purpose described. supply of air from the well substantially as and for the purpose, des
78,254 .-ANIMAL TRAP.-Oliver Metcalf, Salem, Ind.

 3d, Connecting the platform, c , to the spring shaft, c , by
ble key rod b, appiled substantialy as described.
$73,255 .-\mathrm{PEN} . W \mathrm{~m}$. A. Morse. Philadelphia. Iclaim a fountain union pen. made of two parts, a c and F, the same being
adjustable, and connec ted, substantially as described and shown, for the pur73, int-MLAvil Loom.-Jas. E. Nute and Geo. H. Hathorn, Lincoln, Me.
, We daime , combination with the loom frame of the pivoted arms
ary beam, C, rod, c' and eye, d,', and screw nut, e, or equivalent, see ar

 73,257.-FENCE-E F. Olds, Brighton, and Warren Clark,
Green Oak, Mich
We calaint the special arrangement of the braces, C, in in combination with the
posts, , when the sidid brace are conn conetede tothe post and to each other in
manner and for the purpose substantially as described. 73,258.-Brick Machine.-S. J. Parker, Ithaca, N. Y. Iclam, 1 tht, The perpendicular adju table cam, C. in connection with the

 John
Tetrie
reluim,
radrim as

