the dnited states assay office in new york
We condense from one of our city cotemporaries the fol lowing in relation to the United Assay office, in this city:Adjoining the sub-treasury in Wall street is a granite building of modest appearance, bearing over its entrance the words "Assay offics." It is fitted up in the same style as a broker's office, and three or four clerks appear to be quite able to transact all the business pertaining to this Bureau without over-exerting themselves. In fact, it would not appear at a first glance that much business is ever transacted there ; yet there from $\$ 14,000,000$ to $\$ 15,000,000$ of the precious metals are received and accounted for during the year. The larger portinn of this is in the form of gold dust from California, Nevada, Montana, and Idaho. Much the larger portion of all the bullion received is either in the form of dust, grains, bars, or amalgam. A comparatively small quantity comes in the shape of gold and silver plate, watch cases, foreign coin and ornaments. These are sent in by jewelers or private parties to be remelted, for plate, watch cases, and ornaments change their fashion like other things of less value, and have to be remodeled to be salable.
Few persons are aware of the actual quantity of gold produced by our mines since their first discovery. In a recent official report this amount is placed, in round numbers, at $\$ 1,000,000,000$. Since 1849 California has produced $\$ 900,000$,000. Her productive powers, however, for the last thirteen years have steadily decreased, and for 1869 the estimate is only $\$ 25,000,000$. Montana has produced $\$ 65,000,000$; Idabo, $\$ 45,000,000$; Colorado, $\$ 25,000,000$. The estimated production of Nevada in 1869 is placed at $\$ 20,000,000$; of Montana, $\$ 12,000,000$. It is believed that not more than 50,000 persons are now engaged in mining in this country-a considerable falling off from the rumbers of previous years.
The deposits received having been carefully weighed and a certificate given, are numbered and sent at once to the melting room, a spacious apartment provided with furnaces, tanks, etc., and floored with iron tiles. Each deposit, or as much of it as can be conveniently handled at once, is placed in a crucible, and as soon as melted is poured into iron molds. If the deposit is of gold, two pieces are cut from the lump and set aside for the Assayer. If of silver, a small portion of the fluid metal is dropped into water, which granulates it, aud these granules are used by the Assayer. The crucibles are carefully scraped after being used, so that not a particle of the metal is lost, for the Assayer, it must be understood, has to account for every grain of the metal received.
About $7_{\frac{1}{2}}$ grains of gold are used it each assay. This small quantity, with the right proportion of silver, which is estimated by the Assayer with an accuracy attained
by incessant practice, is placed in a cupel-a cup of calcined bone-and deposited in a small furnace heated to redness. A strong current of air passes over the contents of the cupel, oxydizing the lead. The oxide diseolves the oxides of the other base metals, which are absorbed by the cupel, and the result is a button of pure silver and gold. This button, after being hammered and rolled, is placed in a bottle partly filled with nitric acid, which is set in a sand bath. This acid dissolves the silver, leaving the gold untouched. When the process is finished, the pure gold left in the cupel resembles tinder. It is then annealed, rendered into a compact coil,
called the "cornet," and weighed. The weight gives the called the " cornet," and
exact amount of pure gold.
Two pieces were, it will be remembered, taken from the metal atter it had been melted. Each of these pieces is assayed separately, and the results must, of course, agree. It they should not do so, it it evident that a mistake must have occurred somewhere, and the who'e process has to be repeated.
As soon as the assays are completed the Assayer reports to the Assistant Treasurer of the United States, and, on this report, the depositor is paid. If he desires to receive gold coin, one-half of one per cent is charged. For gold bars, which are handier for shipment, he has to pay six cents for $\$ 100$.
For every ounce of pure gold which his deposit has yielded, For every ounce of pure gold which his deposit has yielded,
he receives $\$ 20 \cdot 672$, less the charges stated above. Depositors of silver receive its full value, less what is called the "parting charge," which is about five cents per ounce. Brittle metal has, however, to be toughened, for which there is an extra charge. The private assayers of California, before the establishment of a Government Assay Office there, used to make no charge for the assay, taking their pay out of the drippings from the crucibles. The Government Assayers account for the entire weight of the deposit.
The depositor baving received the full value of his deposit, the latter of course becomes the property of the Government, and it now has to undergo a process called "parting" before it is sent to the Mint, or used in any way for commercial purposes. In parting gold, silver is added in the proportion of about two parts in weight of silver to one of gold. Formerly no account was taken of the silver already in the gold, but Mr. Mason, in charge of the melting and refining department, found that a great saving might be effected if it was first ascertained how much silver the gold bullion already contained. This practice is now carried out, and instead of invariably adding two parts of silver to one of gold, only sufficient silver is added to make the proportions above stated. There is thus a saving, by Mr. Mason's method, of about 30 per cent in the material, and in one year the sum of $\$ 22,000$ was saved. The mixture of gold and silver is next melted, thoroughly mixed, and poured into water, by which it is granulated. The granules are placed in porcelain jars containing nitric acid. Heat is then applied, and as the acid
boils, the yellow fumes which our readers have doubtless so boils, the yellow fumes which our readers have doubtless so
often seen proceeding from the chimney of the Assay Office, often seen proceeding from the chimney of the Assay Office,
are given off. This process goes on for about twenty-four hours, when the jars are emptied, and in the bottom is found a brown substance resembling mud or anything else upon
earth rather than "gold-glittering gold." It is in fact, how ever, pure gold, or at least, very nearly so. The silver has been dissolved by the nitric acid, and is in solution. It is carefully put aside for future treatment, for in the Assay Office nothing must be lost or wasted. The brown substance found at the bottom of the jars is placed in large wooden tubs and washed by percolation in warm water until all traces of acid have disappeared, and it ig said to be " sweet."
The gold is then of 940 fineness. Formerly it was subjected to a second boiling in nitric acid, which left it about 993 fineness, but by the process at present in vogue it is treated with sulphuric acid, by which a fineness of 998 is attained. This is termed pure gold, although it is not actu ally so, but to deprive it of the two parts of alloy it now contains would involve an expenditure of time, money, and trouble altogether useless. After its treatment with sulphuric acid, the gold, which still looks more like red mud than a precious metal, is again wasbed until " sweet." It has now a redish yellow hue. After being dried, it is taken to a hydraulic oress, where it is made into "cheeses," so called from the color and shape. The cheese made in the Assay Office is richer far than the most fertile vales of Gloster ever producedricher far than the most fertile vales of Gloster ever produced-
Each "cheese" is but thirteen inches in diameter, but it is worth about $\$ 20,000$. These cheeses are baked in an oven heated by steam until all remaining moisture is expelled when they are remelted, cast into bars or bricks, assayed and stamped with the weight, fineness, and value. And now they look like gold indeed.
The reader will remember that the nitric acid poured over the gold and silver granules, in the porcelain jars, and now containing a large quantity of silver in solution, has yet to be disposed of. A solution of chloride of sodium-common salt-is first added to the solution, and a deposit of white powder is the result. This powder is chloride of silver. The next process is to free the chlorine from the silver, and this is done by placing it in vats with granules of zinc, The chlorine and zinc readily combine, and the silver is set free in the form of a light gray powder. This like the gold, is washed, pressed, and formed into "cheeses" worth $\$ 800$ each. These are melted, weighed, stamped, and ready to be disposed of as occasion may require. The silver obtained by the above process contains but one part of alloy in 1,000 the above process contains but one part of alloy in 1,000 . Some silver is so pure that it requires no " F .
after'being assayed, is sent at once to the mint.
The Assay Office was established in this city in October 1854, and since that time over $\$ 160,000,000$ have passed through the hands of its officers.

barometers as indicators of the weather.

As indicators of weather, barometers have fallen somewhat into disrepute ; and yet, when ueed in connection with other instruments, they are very useful in foretelling what the probable state of the weather will be within reasonable lim. its. In many cases they are to be found hanging by them elves, and scarcely ever referred to, on account of their sup posed liability to error. The usual weather marks upon the dial of a wheel barometer very often deceive the superficia bserver.
A barometer indicates only two of the conditions upon which weather changes depend, viz., weight of the air dependent upon moisture, and disturbances in the atmosphere more or less remote, according to their violence.
In certain latitudes, a sudden fluctuation of the mercury is always to be regarded as an indication of foul weather ; but it is not necessarily an indication of rain, although a violent disturbance of the atmosphere is generally attended with more or less condensation of the moisture which it holds in suspension.
If a barometer were sufficiently delicate in its operation to show the disturbances which take place at a great distance from its location, and which tabe place in rapid succession, at from twelve to twenty-four hours previous to heavy storms, it which, although they are sensitive to romite dsturbances, d not show them with sufficient plainness to be easily observed in the crdinary method of reading the instrument. It is also so inconvenient to make such observations with sufficient fre quency to take account of the rapid and slight variations dependent upon such remote causes, that they usually elude ooservation. Recent experiments, however, go to show that they are most important in their relations to weather phe-
It is frequently the case that when air is in the same hygrometrical condition, that the mercury in the barometer will wove in different directions within an interval of three hours, proving that weight, or, more properly, pressure of the atmos phere, does not depend upon the moisture held in suspension solely, but aleo upon the waves produced ata distance and communicated through air, very much as winds at sea produc heavy swells very far from the place where they acting directly upon the water.
Changesin weather depend upon atmospheric disturbances and the nature of the change depends upon the temperature,
and the hygrometical condition of the atmosphere. A ba ometer used together condition of the atmosphere. A brome ter, and the indications of change shown by the barometer interpreted by the indications of the two latter instruments, will be found more reliable than is at present currently be lieved.
Drilled vs. Punceed Holes - A large number of specimens of steel plates were recently tested at Chatham Dock yard, to determine the difference in strength between steel plates with punched and drilled holes. Alt hough the pieces
were so prepared that they should break at the smallest part, they all, without exception, fractured at a place where two
small holes had been punched. But when the holes were drilled, and in the largest sectional area of the steel, they as uniformly broke in the smallest part, exactly the reverse of the previous trial. From this and other experiments the advan ge in tensile strain, gained when the holes are drilled rather than punched, was calculated to be $22 \cdot 5$ per cent.
MANOFACTURING, MINING, AND RALLROAD ITEMS.
During the construction of a mountain tunnelfor the Don Pedro II. rail.
Way of Brazil, a temporary road of f f veceet three tinches age was Way, of Brazil, temporary road of fivefeet t trree nincheseg gage was laido over the mountains, having the extraordinarily short curves of 239 feet radus, on
gradients 296 feet to a mile, or a little steeper than one in eighteen. The line Sradients 296 feet to a mile, or a little steeper than one in eighteen. The line
was regularly and successtully worked for three years, with six-coupled and
 eading ends, the others with an arrangement for permitting ite end wheels traverse laterally.
The town of Winchendon, Mass, claims to manufacture more wooden ware than any other town in the world. Two of the largest frms turn out $\$ 500$, Ooo and \$20.000 worth per year, respectively, and the smaller estallishments
of the place make the aggregate annual product of the wooden ware intereat of the place make the aggregate annual product of the wooden ware interes
mount up to over $\$ 1,000,000$. In addition to these factories, Winchendon con mount up to over $\$ 1,000,000$. In addition to these factories, winchendon con
tains two cotton nills, two bobbin factories, two machine shops, and two sewing machine manufactories.
The dimensions of the heavy express engines, on the Great Northern rail way of England, referred toin our last week's issue, are as follows :-Driving nd trailing wheels, 7tt. in diameter, and coupled together; leading and ten
der wheels, $4 \mathrm{ft} .3 \mathrm{in} .\mathrm{in} \mathrm{diameter} \mathrm{throughout;} \mathrm{barrel} \mathrm{of} \mathrm{boiler}$,10 ft .1 in . long y 3 ft . 10 in . in diameter inside, in the smallest part; fire-box casing, 6 ft . in. long by 4 ft . wide outside; cylinders, 17 in . in diameter, with a stroke of 24 in.; heating surface in box, $1141 /$ square feet, and in the tubes 907 square feet making a total heating surface or $1,021 /$ square feet, with a grate surface of
19% square feet. The tenders hold 2,500 gallons of water, and two tuns of uel. The propeling power of each engine is equal to 12,000 lbs., and the ad hesion on therails may be taken at $11,700 \mathrm{lbs}$.
Gold prospecting in Siberia is carried on after a somewhat singular plad. The mines are an object ot much attenition on the part of the Russian govin any part of the territory, the successful discoverer is obliged to report to the nearest government oflcial, who apportions him a space of about four square miles, on condition that all the precious metal he obtains is to be carlied to a government depot, where it is coined into money, the p
ifteen per cent for expenses, being then paid to the discoverer.
The bridge over Dale Creek, upon the highest summit of the mountain Where the Union Pacific railroad cresses, 18 a pine timber bridge, 610 feet in ength and 135 feet above the creek. The structure was all built, ready for the transit trains, in the short space of thirty-flive days.
Tbe recent report of the directors of the Pitts burg, Fort Wayne and Chica
co railway, shows that the deterioration of iron rails necessitates the relay ing of their whole road with new iron every four years, and tiat the cross thes for the entire line must be replaced every four and two thirds years. he great wear of ralls is attributed to the increased wtight of locomotive to use. When steam power was first applied on railroads, the engine weighed eight, ten, or twelve tuns each ; now they weigh from forty to fltty tuns each. As the locomotives cannot well be made lighter, the only appar tremedy is the employ went of teol rails.
Work on the West Shore Hudson river railway is to commence immediate ly, the contract for bulding the road as tar up as Newburgh-which point can
be reached without tunneling-having been awarded some weeks ago. The be reached without tunneling-having been awarded some weeks ago. The
capital stock of the road is $\$ 750,000$, a large portion of which has been subcapital st
scribed.
The Lebanon Springs railroad, connecting the Hariem with the Benning ton and Rutland road, it is expected will be completed and in running orde
in the month of August. The road, when flnished, will oonstitute an impor tant connecting link, so that passengers and freig bt will go directly throug from New York to Montreal without shange of cars.
The California Legislature has offered a premium of flve dollars per ton tive ore
Quite a new feature in the geology of Berlin, Prussia, has lately been de veloped in the discovery in the immediate neighborhood of the city, of an nex haustible bed of salt. Government baving undertaken to work this de posit, a solid bed, struck at a depth of R77 feet, has proved to be an uninter upted stratum of five hundred feet thickness. How much deeper it goes is thickness of the bed is aetermined. This discovery is of great national im portance, for it opens a supply of this article of every-day consumption suf-
fient to supply all of Prussia, and make the councry independent of the tm flcent to supply all of Prussia, and make the country independent of the tm

Eecent gmericat and foreigu zenteuth

Oybtrr Dredae.-C. T. Belbin, Baltimore, Md -This invention relates t the old-tashioned oyster dredge, and consists in a new method of attachin the lower araftrods to the head, wheresy the instrument is made to
to better advantage, while its cost of construction is not increased.
Cider and Wine Mill.-James Walton, Sunfish, Ohio.-This invention re lates to that class of mills in which an endless apron carrier is employed, and consists in a new arrangement of gear for running the apron, a new adjust angeming or the grinding rolls, another for the apron ro

Compobition for Depiluting Hides.-Peter G. Schlosser, Midaletown, Md.-The object of this invention is to produce a composition byw bich hides
whether green or dry, can be depilated in an easy and expeditious manne without destroying or can be depilated in an easy and expeditious manner duce a greater percentagu, in weight,of leather, than is possible by any othe Cariter for bratding Maomenss.-Dexter A very, Westileld, Mass.-This invention relates to a carrier for braiding machines, the object of which is t beeps the thread tense, from wear, and to obtain a complete and effective carrier in the simplest and least expensive manner.
Vent for barreis.-Richard C. Fleming, Pbiladelphia, Pa.-This inven-
ion relates to a device for preserving beer ale add
 sible bag, which is to be filled with air, and which, as the liquid is being radually withdrawn. is becoming flled, and fills the vacuum which is cre ated in the barrel by the discharge of the contents.
Tailorb' Seat.-Friedrich Neuhaus, Belleville, Ill--This invention relates to a new seat for tailors, which is so arranged that it will allow its occupant
to assume a corvenient position, and that it will not prevent the proper cir to assume a corvenien
culation of the blood.
Gas Macrine.-H. S. Maxim and John F. Lockwood, New York city.-This nvention relates to a new gas-making device, which is more particulsrly in-
ended for use on railroad cars. The invention chiefly consists in heating the ended for use on railroad cars. The invention chiefly consists in heating the
hydrocarbon in the reservoir by a flame produced from the contents of the reservoir, the gas thus produced operating a valve, which, when closed, pre vents further escape of liquid to the flame.
Apparatub for Convering and Dumping Coal, ete.-Henty c. Clark
and Robert b. Litte, Providence, R. L.-This invention consists in providing whick, when vehicle in which the coal is transported, with a hinged gate
closed by the weight of the contents, and which is provided with an upward projecting lug or pin; when this pin strikes against an obstacle the gate Hop Box.- Wm. R. Crandall, Deansvilie, N. Y.-The object of this inven-
tion is to faclitate the sacking of hops trom the hop boxes commonly employed in hop yards during the picking season.
UTRRmN SUPPorter.-S. P. Cole, Janesville, Wis.-This invention consists in forming the pad or point of support for the neck of the uterus of a cup
having stretched across its edges a thin diaphragm of soft rubber, which is having stretched across its edges a thin diaphragm of soft rubber, which is
perforated to permit the escape of discharges. The form of the cup is elliptiperforated to permit the escape of discharges. The
cal, and it is also perforated like the daphragm.
StUMP Eextractor--Alfred Goodrich, Burnt Prairie, Ill.-This improve
ment consists in placing the extractiog machinery upon runners and so ar ranging the said machinery tbat it shall be easily operated, simple in construction, and capable of developing much powerfor the purpose intended Ore Skparator.- Robert C.Morton, West Lubeck, Me.-The nature of tbis
invention relates to the separation of metalic ores by the pulsation or unduinvention relates to the separation of metalic ores by the pulsation or unduferies of water cells, the plunger levers and cells being arranged to pulsate render this separator more perfect in its action and economical in its con truction than the separators heretotore made and used.
Horsishoe.--James M. Cuykendall, Metomen, Wis.-This invention con-
Hists in the manner of securing the calks to the shoe, which is done by securuists in the mannerof securing the calks to the shoe, which is done by secur-
ing a wedge-sbaped dovetail to the upper surface of the calks, said dovetails Atting into grooves, arranged on the under side of the shoe, which exte
Booc Crimping Machink, -R. H. Dorn, Port Henry, N. Y.--This invention
consists in the arrankement upon a esitable bench of a slide, made to move backand orth by a pinion gearing into arack on the under side of the mame on which rack a series of right-angled formers are carried on tits upper side. These formers are caused to pass between two clamping or pressing pins. which are moved in an opposite direction by gearing, in a similar manner and are provided with smoothing rollers, which bear against that part of the leather which is crimped in the angle of the formers, and turns in a direction so that the surfaces of the satd rollers, that come in contact with the leatser,
move opposite to that in which the leather is being carried by the formers, so as to produce a smoothing or rubbing action. The said clamping pins are provided on the innersides of the same with iron plates haviug rectangular grooves in ridges formed within them, and arranged with reference to
the formers in a direction opposite to the inclination of the sald formers, so the formers in a direction opposite to the inclination of the sald lormers, so
that their action on the leather will be to smooth it from the angle outward hat their action on
Catemenial Sack.-Andrew F. Baum, New York city.-This invention re.
ates to an improvement in india-rubber catamenial sacks, and consists in ates to an improvement in india-rubber catamenial sacks, and consists in
forming the edges by rolling up the material into a solid beador orming the edges by rolling up the material into a solid bead or rib, a
covering it with soluble rubber to make a strong and elastic binding.
Thrust Brabing.-A. W. Case, South Manchester, Conn.-This in
has for its object to furnish an improved torust bearing for verticalana horizoutal shatrs, such as water wheel shafts, propeller shafts, etc., which shali be simple in construction, and at the same time reliable and effective in operation, diminishing friction and resistingthe thrust of the shaft.
CAR \&rove.-Richard O'Brien, Dalton, Ohio.-This invention has for its object to furnish an improved railroad car stove, which shall be so constructed
and arranged that the stove will be always kept in a vertical position, even and arranged that the stove will be always kept in a vertical position, even
should the car be overturned, so that there may be no danger of fire from the stove being overturned.
Fastening for Garments.-Wendell Wright, Bloomfeld, N. J.-This inore especially designed as a substitute for studs, buttons, shawl pins, itc. The object of the invention is to obtain a secure, economical, and neat tastening of the knd speciffed, and one which may be readily appliedto and
detached from the garment, and will not require buttonholes or pertorations detached from the garment, and will not re
in the garmentin order to apply or use it.

Corn Coltivator.-Alexander Campbell, Oxtord, Ind.-This iuvention elates to a corn cultivator, and it consistsin 9 new manner of attacking ts e hovel standaros to the frame of the machine, whereby any desired pitch may be given the standards as required. The invention also conpists in a novel manner of securing the shares the the standards, whereby they may be re-
versed, that is to say, changed from one standard to another and also adJusted in a straight position so as to face the line of draft or be placed more
or less obliquely therewith either to toe right or left, as may be desired. or less obliquely therewith either to toe right or left, as may be desired. Spring for Vrhioles.-George Douglas, Bridgeport, Conn.-This inven-
ion relates to animprovement in springsfor vehicles, and more especially ion relates to an improvement in springsfor vehicles, and more espacially
refers to an improvement on a spring for which Letters Patent were granted ot this inventor, bearing date May 26, 1863. The present invention consists the leaves from shifting laterally, and substituting for said ribs and slots taper longitudinal ribs, swaged in the leaves in such a manner that the under projecting surfaces of the ribs of one leaf will fit inio the concave formed by he ribs of the leaf underneath, by which arrangement the lateral and longitudinal shifting of the leaves are entirely prevented. The invention rurther
consists in the application of india-rubber bearings to the cast-metal seat of consists in the application of india-rubber bearings to the cast-metal seat of from beink transmitted from the seat to the spring, and a greater yielding movement or play allowed the latter.
GaNe Plow.-Don Carlos Matteson,Stockton,Cal-Thisinvention relates to an 1 mprovement in gang rlows ; it consists in a pecular construction of the same, whereby the diftculty hitherto attending the springing and warping of the frame is a voided. The invention also consists in a novel arrange. ment of thedratt attacbment, wherebv the same may be placed at a suffcient-
ly low point without curving the trame of the macbine downward at its ly low point without curving the trame of the macbine downward at tts
tront part as is now required. It consists also in a novel arrangement of tne caster gage wheel, whereby the
machine for bending Carriage Cirolige-William Boyd, Hartiord. N. \mathbf{Y}.-The object ot this invention is to perform the bending of the iron
generally known as carriage circles. It consists of a bending beam pivgenerally known as carriage circles. It consists of a bending beam piv-
oted in the center of a bending circle and provided with rollers to imoted in the center of a bending circle and provided with rollers to im
pinge on the iron rod and bend it around the circle. Other devices tor adjusting the machine to different work render it effective and gener
availablefor bending carriage circles and sll other analogous work.
Gate.-Win. C. Hooker, Abingdon, ml.-This invention consistsin arrang. Ing a farm gate between the uprigbts, a vertically-vibrating frame, whereby the vibrating frame is connected by suitable rope gearing.
Nail and Spire Drawer.-Isaac A. Pinnell, Boonville, mo.-The objeet Construotion of Wherls for Vrhicles.- Heary Poth, Pittsburgh, Pa,The nature of this in vention relates to the construction of metallic hubs. It ers or projections which, when the plates are wrought together, slide upon each otherandtorm the mortises of the lub and provide the meansby which the tenons of the spokes are wedged or clamped firmly in place. It consists also in the employment of a differential threaded box by which the flanges re drawn together upon the spoke tenons with great powe
FILLING For Brds, COSHions, ETC.-George C. Barney, Chicago, Ill.-This
invention relates to a new and useful material for filling beds, cusbions, and invention relates to a new and useful material for filling beds, cusbions, and
other articles requiring a light, elastic substance for the purposs. This imother articles requiring a light, elastic substance for the purpose. This im
proved filling for beds, matresses, pillows, cushions, etc., consists in smal proved filling for beds, matiressee, pillows, cushions, etc., consists in small
pieces or scraps of paper cut or otherwise formed in any desired shape and pleces or scraps of paper cut or otherwise formed in any desired shape and
possessing that elastic nature which will keep the pieces apart, when laid
together in a mass and inclosed in a bed tick, pillow case, or sack covering of together in a mass and inclosed in a bed tick, plllow case, or sack covering of
any suitable material for these or similar articles of domestic use.
Bridle Bir.--P. J. McGuiness, New York city.-This bit consiets of two
pieces hinged or pivoted together in the middle, one end of each piece being pieces hinged or pivoted together in the middle, one end of each piece being
connected with the reins, while the other end carries a stop, which is near to connected with the reins, while the other end carries a stop, whicb is near to
the end of the other bar, and which, when on the rear side of the otner bar
prevents the t wo bars from turning independently around their pivol, while,
when the stop is in front of the other bar, the two bars will be turned when When the stop is in front of the other bar, the two bars will be tu
pulled by the reins, and will act as a curb-bit in the borse's mouth
Sramive Tool.-Wm. Serviss, Sidney, Ohio.-This invention relates to a method of constructing tools for grooving the seams of stovepipes, sheet iron
stoves, sheet metal conductors, and for all like purposes for which groovine tools are used, whereby the seam is formed more rapidly, and upon the inside instead of the outside, as is now commonly the case.
S \triangle w Mill.-Augustus B. Ehlers, Tandersville, Pa-This invention relates to an improvement in the construction of machinery for diving a straieht an oscillating iguide and slide, in such a manner tbat the saw shall advance and increase the bite of the teeth in the down stroke, and recede and with draw the teeth from the \log in the up stroke, thereby working witb much
less power, less wear, greater steadiness, and more rapidity. Traner less war,
Transverse Lock.-James E. A. Gibbs, Steel's Tavern, Va.-This inven-
tion bas for its object to furnish an improved lock provided with two bars or tion bas for its object to furnish an improved lock provided with two bars or
bolts extending out upon each side so as to reach entrely across the door or shutter to be secured, and cross barit, and whiclishall, at the esame time, be
easily operated by the proper key, but imposible to be picked or operated easily operated by
by any other key.
Distilling-Alexander Webster, Seneca Falls, N. Y.-This invention relates to improvements in the process of distilling, and it consists in combin-
ing a perforated steam pipe with a perforated cylinder, through which the ing a perforated steam pipe with a perforated cylinder, through which the
steam or vapor passes in its course from the still to the coll, an 4 , in connecsteam or vapor passes in its course from the still to the coll, an 4, in connec-
tion therewith, a cap by whicb the lighter and more volatile portion of the vapor is collected, whereby the pro
Botter Worker.-Hosea Willa
a machine for working butter
Elrctro-plating Frame or Holder.-W. H. Watrous, Hartford, ConnThis invention relates to an implement or frame for holding spoons or torks, or articles of a similar nature, suspended in the electro plating liquid.
Floating Water Powrr.-Albert B. Shepard, Sand Bank, N. Y.-This invention relates to a method of constructing apparatus for utilizing and economizing the power oi running water
great and sudden changes in depth.
Suspenders.-Wm. P. Towles, Baltimore, Md.-This invention has refer nce to a method of forming suspenders tor gentlemen's pantaloons, where by the stress or strain is bala
motion of the body allowed.
Watrr Wherls.-Joseph H. Bodine, Mount Morris, N. Y.-The object of with, that the greatest percentage of power may be obtamed and the flow water properly controlled, without employing any complicated or expensi apparatus.
Spari Arrestrr.-N. L. Carpenter, Natchez, Miss.- T his invention reeither locomotive or stationary, and the invention consists in sinking vert cal wells or recesses in the brick or mason work beneath the boiler.

Auswexs ta Correspondents.

All reterence to back numbers should be by volume and paoe.
J. P. G., of Vt.—Steel is successfully alloyed with other metals, improving its qualities for some purposes. One five hunaredtb part ot silver adds immensely to the bardness of steel and yet increases its
tenacity. One hundredth part of platinum, though not forming so hard an alloy as the silver and steel, gives a very great degree of toughness. Rhodium, palladium, irridium, and oosmium make steel very bard, but
their use, from their cost, is confined mainly to the experimental laboratory.
P. J., of Wis.-Practical men disagree as to the best time to fell timber to preserve it longest from decay; but as moisture, especially sap, is the first cause of the decay of wood, it woald seem that the season
is best for felling timber which produces the least sap. Therefore probably the hight of summer and the middle of winter are the best periods for
cutting timber. Girdling trees in early spring and felling them in the fall or winter is recommended by many as an excellent method.
C. B., of Iowa.-"How many square feet of sail or fan set at the best angle willit take to develope one horse power in a twenty-mile
breeze? What is the best angle with the course of the wind to set a sail to develope the most power? Will distance from the center of rotation
make any difference in the actual force per sauare make any difference in the actual force per souare foot ?" This corres-
pondent, in asking these questions, says he has searched in vainin many pondent, in asking these questions, says he has searched in vainin many
mechanical works for authority on this subject. It is one that appears to mechanical works for authority on this subject. It is one tbat appears to
have received but little attention at the hands of our mechanical writers. have received but little altention at the hands of our mechanical witers.
We know of no authority we can recommend. Possibly some of our practical correspondents can reply.
A. B., of N. Y., says: "In your 'Answers,' page 327 current volume, you say, the cause of the appearance of soliditv so strikingly
exhibited by the stereoscope is to a certain degree shown by a single photograph, etc. Would it not be well to say that it is mostly due to double vision, or a repetition of sight, as we see nature with two eyes, whereas all other pictures are but representations of nature as seen with one eye,
only. The two pictures of a stereoscopic view are the one picture as seen with the right eye and the other as seen with the left eye. The lenses through which the pictures are seen in a stereoscope represent tne two
pictures as being'on the same spot, therefore we see nature as it appears in our double vision of two eyes, or as seen from two points simultane
A. W., of Ind.-" Will it require more power to revolve a circular metallic dosk in a vessel (air tigbt) containing highly compressed
air, than in one containing a air the ordinary conditions found in the atmotionthanfree air.
F. W. D., of Ky.-A cement peculiarly adapted to stand petroleum or any of its distillates is made by boiling three parts of resin
with one of caustre soda and five of water. This torms resin with one of caustic soda and five of water. This torms a resin soap which
is afterward nixied with half its weight of plaster of Paris, zinc white, white lead, or precipitated chalk. The plasterhardens in about forty min-
B. H. K., of Pa.-Liquid glass would probably not answer your purpose for a cement, but the so-called artificial denture of the of lime, one part borax. and two parts of well-ground quartz ; this is mixed with a saturated solution of zinc in hydrochloric acid. It sets very rapidly. H. H., of Pa.-Shellac makes a very good cement to attach glass to metal, but both must be heated or it will not stick. If too
brittle, mix a little wax in it. It etands warm water, acids, petroleum, but neither ahol nor heat.
J. N., of R. I.-Steam is not decomposed by heat even at fifty atmospheres pressure. At $1,000^{\circ}$ Fah., it will be decomposed in con-
tact with iron, the iron oxidizing and the hydrogen being set free ; only at a very high temperature, at least $3,000^{\circ}$, it is supposed to separate in free A. B_{1} of M as -
A. B., of Mass.-The frosted appearance of sheet tin and
galvanized iron is given by a wash of bichloride of tin.
D. T., of Mass.-Prussian blue is no compound of the oxide of iron nor does it contain oxygen. It is not found as a mineral, nor is it a
chemical product obtained from minerals. Notwithstanding its containing iron, it is altogether an organic substance, and exclusively prepared from old leather, blood or animal matter of any kind, fused at a red
beat, with caustic potash in a niron vessel, the carbon and nitregen of the animal substance combining with cyanogen and this with the potash to animal substance combining with cyanogen and this with the potash to
cyanide of potassium. The presence of iron changes it into the ferrocyanide of potassium. The presence of iron changes it into the ferro-
cyonide, and a solution of this salt brought in contact with a solution of
certain salts or' iron forms different shades of blue precipitates, of which
Prussian blue is the richest in color. Its formula is Prussian blue is.the richest in color. Its for
F. W.P., of Ky.-A camera obscura for tracing pictures with a pencil 18 best made by placing a convex spectacle glass of some two or
three feet focal distance on the top of a dark conical box at that hight, and above this a piece of looking glass inclined an angle ot about 450 , the box is ilaced on a table and the paper placed on its bottom ; one hole is made in the side of the box to pass the hand in, and another to look through at its bottom.

姿usitess amd 2ersorat.

The chargefor insertion under this head is one dollar a line.
 proved oiler as a perfect article, and consider it the best and most durable proved oiler as a perfect article,
oiler made." Sold everywhere.
A. C. N. Schulze, Bellville, Austin Co., Texas, wants a firstclass machine for making brooms from broom corn, also, one for removing
the seeds irom the corn, and one for rounding the sawed bandles. Send the seeds irom the corn,
description and price.
The book on the watch can be obtained complete, neatly bound, of the author, H.F. Plaget, 119 Fulton st. Sent by mail for 60 cents.
N. B.-Most manufacturers of first-class steam engines are using Broughton's lubricators and oil cups. They cannot leak nor waste oil, and are in every respect the best in use. Send to Broughton \& Moore,
41 Center st., tor circulars. For sale cheap-Bedell's patent adjustable heel trimmer. Inquire of John Cbarlton, No. 9 Gold st., New York.
I want a partner to work an invention for perfectly nonexplosive boilers. No tubes or globe ξ; of wrought iron, light and portable,
and good circulation of water. Address W. Bye, Western House, Broadway, St. Louis, Mo.
We understand that the " Star Shuttle Sewing Machine Co." are manufacturing one hundred of their celebrated machines per day, at their works in Cleveland, Obio.
To patentees and others.-Brass, tin, and iron small wares of all description made to order. Dies and tools made for metal cutting,
stamping, spinning, and drawing. Tools on band tor the manufacture of stamping, spinning, and draw'ng. Tools on band tor the manufacture of
kerosene burners, stationers'hardware, oilers, toys, etc , etc, J. H. White Newark, N. J,
Wanted - the address of manufacturers of brass and malleable iron castings who bave facilities for
dress Bisbee \& Hearn, Yreka, Calitornia.
Universal filterwell.-Drives and works successfully in every variety of soil. Patented in Dec., 1867, by Oscar C. Fox, Georgetowd, D.c. Rare chance for limited capital.-State or the entire right for sale of the "weighing and measuring cup," and the "combiu:aion funnel,"
six distinct uses. Two of the best patents out. Address Goodes \& Co., six distinct uses. Two of the best patents out. Address Goodes \& Co.,
658 Franklin st., Pbladelpbia. Pa. Prang's American chromos for sale at all respectable art stores. Catalogues malled free bv L. Prang \& Co., Boston.
For breech-loading shot guns, address C. Parker, Meriden, Ct. For sale--Road or State rights to make and use Blythe \& Hayes' patent machine for turning off locomotive
Address W . Blsthe and N. Hayes, Alexandria, Va.
The surest detective of low and high water, and high steam in boilers yet invented. Springer, Hess \& Co., Philadelphia, Pa.
Winans' Boiler Powder (11 Wall st., N. Y.) A positively un-

ExTENSION NOTICES.

Clark aivord, of Courtland, wis, having petitioned for the extension of a patent granted to him the 2lst day of November, 1854, for an improvement
in hand brick molds, for seven years from the explration of said patent, hich take molds, for seven years from the expiration of said patent, aid petition be heard at the Patent Offlce on Monday, the 26th day of October next.
Horace W. Peaslee, of Malden Bridge, N. Y., having petitioned for the extension of a patent granted to him the 23d day of January, 1855, antedated
September 24,1854 , reissued Japuary 8,1856 , and again reissued March 19, 1867, for an improvement in machines for washing paper stock, tor seven 1867, for an improvement in machives for washing paper stock, for seven
years from the expiration of sald patent, which takes place on the 24th day of September, 1868 , it is ordered that the said petition be heard at the Patent Office on Monday, the 31st day of August next.

NEW PUBLICATIONS.

Cowdin's Report to the State Department. We have before us the offlcial report of Elliot C. Cowdin, United States
Commissioner to the Paris Exposition. The subject is silk and silk manufactures, and it embodies, beside a succinct history of the rise and progress of
the silk culture, a large amount of useful information to the silk grower and manufacturer of to-day. The subject is one which is of growing ioportance
to the interests of this country parts of which are excellently well adapted to this manufacture. We shall take occasion hereafter to quote froma Mr. Cowdin's report.
American Annual Cyclopedia for 1867. Vol. XII. From the publishers, D. Appleton \& Co. 90 Grand street, New York city,
we have received the AnnualCyclopedia for 1867 , a compendium of we have received the Annual Cyclopedia for 1867, a compendium of import-
ant events for that year, embracing every department of the sciences, arts politics, biography, literature, geography, etc. This volume is (mbellished with fine steel portraits of Peabody, Burlingame, and Chase, and an engrav-
ing of the Paris Exposition building. Among the hundreds of other subjects of interes can hardly be overestimated. The facts collated, which befor could be gathered only from periodicals, are arranged and embodied in a
succinct form, available for reference and equally valuanle to the student succinct form, avallable for reference and equally valuable to the student
and the general reader. The paper and printing are of the first quality, and the volu
lishers.
The Carpenter and Joiner, and Elements of Hand-railing thirty-two plates. By Robert Riddell. Philddelphia
Claxton, Remsen \& Haffelfinger, 819 Market street Tbe name of the autbor of this treatise is a sufficient guaranty of its value
The text is mainly a description of the plates, and is remarkably clear an explicit. The book seems to be well adapted to the use of the apprentice
and beginner, and also valuable to the master workman. The principles of and beginner, and also valuable to the master workman. The principles of
stair buil ding-tbat most diffcult art toacquire-appearto be so plainly ex-
. stair buil ding-tbat most diffult art toacquire-appear to be so plainly ex-
plained and illustrated that the student can hardly fall to master them by the plained and illustra
aid of this treatise.

