Srientifir Americau.

MUNN \& COMPANY, Editors and Proprietors.

published weekly at

NO. 37 PARK ROW eARK BUILDING), NEW YORK.
o. D. munn, s. il. Waleg. a. e. beach.

"The American News Company," Aqents, 121 Nassa " The New Yoris News Company." 8 Spruce street
VOL. XVIII., No. 20....[NEW SERIEs.]. Twenty-third Year. NEW YORE, SATURDAY, MAY 18,1868

ALUMINOM-..-A FIELD FOR SCIENTIFIC EFFORT.

The comparatively new metal, aluminum and its alloys, hich have lately attracted considerable attention and awak ned some curiosity, seem to afford a promising field for the investigations and experiments of scientific men and inven tors. It is singular that since its discovery, as a metallic os ide existing in aluminous earths, no cheap and rapid method of extracting it has been discovered. All clays contain it some in a less pure state than others, but all in large pro portions; in fact it forms the basis of clay. It might be sup posed that chemical science, aided by mechanical ingenuity might, before this, have found a means of producing this metal in unlimited quantities and at a low cost. The pro cess, however, of its extraction is somewhat complicated and quite expensive. Its cost, at present, confines its use to smal articles and the purposes of ornamentation. Some of its al loys make it a substitute for siiver and gold, to the former of which it is superior in several respects. It is not affected by air containing sulphur; pure, it is whiter chatian silver and
is high a polish ; it is very ductile and malleais capable of as high a polish; it is very ductile and mallea-
ble, and its tenacity is wonderful. But, perhaps, its most remarkakle quality is its elasticity. When wrought by the hammer rollers, or in any other manner, and fashionedinto a hollow vessel it will withstand violent blows which would permanently indent other metals.
Cryolite a species of clay found abundantly in Greenland and also in the Ural, is preferred as a material for the ex traction of alumina. It is a compound of sodium, fluorine and aluminum. In its color it is snow white, It is not un justly called native fluoride of aluminum, and contains thir teen per cent of metallic aluminum. Fluor spar is frequentl employed in combination with cryolite, for the purposes o reduction, because of its value as a flus. The emerald, the topaz, and some other valuable stones contain a large per centage of aluminum or aluminous oxide, and the metal, al uminum has been extracted from the emerald, ruby, garnet, to paz and from corundum. Of course such scientific experiments are costly, and cannot, in themselves be of immediate prac tical advantage; yet it would seem that so valuable a meta as aluminum distributed (in the form of an oxide) more gen erally and plentifully over the globe than iron is, might be procured with no greater expenditure of labor, time, and money than iron. The fact of its being presented only in the form of an oside need not militate against its reduction from its matrix in a metallic form. Some of the best of iron -that cheapest, but most valuable of metals-is produced from its oxide. T, be sure, we cannot apply the same crude means to the reduction of aluminum from its base, mother clay, that we can use in the reduction of iron; and this is just where scientific knowledge and practical talent is needed We want the metal ; the exigences of the times demand it general use. It will readily combine with othermetals, as
copper iron, gold, etc., and with them forms very valuable allogs. With iron three parts, and aluminum one part, the composition will not oxidize when exposed to moisture ; with copper, ninety, and aluminum ten, a beautiful metal is pro duced, harder than the best bronze, whiter than copper an capable of being wrought under the hammer. One part of aluminum, to one hundred parts of gold, gives a fine green ish gold color, more agreeable to the eye than that of gold, and much barder. Some of these qualities seem to recommend this metal or its alloys as a material for minting, and other stamp it as of vast value in the arts
What we now need is its production in sufficient quantities and cheap enough to be employed in the arts.
the valde and uses of worn-out files.
Although the invention and use of machines for finishing work in metals has, to a large extent,superseded the employment of files, it is difficult to believe the day will ever come when the file will cease to be an important tool to the metal worker. We have planing machines, shaping machines, milling machines, and their adaptations, which do a large proportion of the work formerly performed through the medium of the cold chisel and file, directed by the expertness and skill gained by long experience ; but still the file is one of the most necessary and valuable tools of the machine shop. Numerous attempts have been made to cut files by machinery, and we understand some of the later have been successful, but have had no opportunity to test the correctness of the statemant. Generally, however, files are cut entirely by hand, and the skill required in their production affords one of the most beautiful illustrations of the capacity of the workman to reproduce indefinitely the results of acquired experience.
But "what shall I do with my worn-out files? shall I have hem re-cut? will it pay?' asks one of our correspondents. During an experience of fifteen years we had many opportunities to solve this question. Over and over again we sent our old, unbroken, files to be recut, with the assurance, each time, that they would last nearly as long as new, but each trial confirmed the conviction that it was all "vexation of spirit." If there is any annoyance more aggravating to the machinist than another, it is a file that fails him when engaged on a nice job. It requires some little time for the hand of the workman to become habituated to a new file, and to have it break or refuse to cut just when his whole mind is intent upon his work, is very vexatious. We never yet used
a re.cut file with any satisfaction. If one can be re-cut to a re.cut file with any satisfaction. If one can be re-cut to give good after servin, and the stock of which is sufficient to withstand the manipulation necessary to reproduce it. We have little faith in re.cut files ; they are tender, apt to break, uickly worn, and altogether unprofitable
Yet old files have a use. They make excellent hand turning tools. For this purpose the end merely has to be ground to the proper shape. Probably to the hand.tool turner no imolement is susceptible of a greater variety of adaptations han a turning tool made from a triangular or three-cornered file, while the flat files make superior chisels for finishing plain work, and the square file becomes both a roughing and finishing tool. Old files make good scrapers., For this pur pose they must, sometimes, be partially forged, enough arn their ends at an angle to the fila thers where files are subjected to the action of the hammer of the teeth is obliterated. No matter how careful the heating and the hammering, if a vestige of the teeth is left the result will be a weak place, a "cold shut," or a crack in the ool. It is useless to attempt to forge a good tool, as a cold hisel or turning tool, from an old file, unless the teeth of the file and their marks are all obliterated by the grindstone ; the indentations seem to enlarge and expand by the heat and sbow themselves in serious fractures at the most inappropriate time.
Treated in this way, old files may be wrought into dies for crew cutting, punches, small cold chisels, keys, and many ther articles and appliances contin ually needed in the shop The work of grinding can employ the leisure hours of ap rentices, and if judiciously performed, it will, at the same time, tend to true the face of the grindstone. Any of these ways of utilizing old files we believe to be preferable to the mistaken economy of paying for their re-cutting and worry ing over their unsatisfactory after performance.

IMPORTANCE OF STUDYING CAUSE AND EFFECT....A HINT TO INVENTORS.

A very large proportion of the time, labor, and money usu ally spent in perfecting new inventions is often needlessly expended in the trial of experiments to determine facts which should be determined without any experiment at all. We have in mind two remarkable instances of this kind, which have come under our own observation. One was the attempt ed construction of an air gas light machine, in which the ob ect to be attained was the supplying of the material (gasoine) to a reservoir in which revolved a device for charging he air with the vapor of the fluid. The condition to be observed was, that a given level of the fluid in the reservoir was to be maintained. To do this a second reservoir of the fluid was placed over the first, communicating with it by means of a tube passing from the lower part of the upper reervoir, and opening into the lower reservoir at the precise point at which the level was to be maintained. The upper eservoir was filled at the top, the communication between the two chambers being meanwhile interrupted by a stopcock, ad when filled, securely seated by a stopper screwed down pon a washer of leather. It was expected that this arrange ment would operate as follows: When the fluid in the lower chamber was exhausted, so as to uncover the mouth of the
tube, a bubble of air would pass into it, and rising to the upube, a bubble of air would pass into it, and rising to the upperation repeated would produce the required result.
Now had the fluid been glycerin, or sperm oil, or any other non-volatile substance, the result anticipated would have been attained ; but the gasoline volatilized so rapidly in warm weather, that the fluid was forced entirely out of the upper eservoir when the stopcock in the tube was left open, a reit which should have been foreseen and which was predictd by us before the apparatus was set in operation.
Even at this stage the radical fault of the device was not discovered, but the inventof strope to overcome the difficulty
by the use of siphons, tubes bent in the form of the letter S, tc.
The faults of this inventor are not, we are sorry to say, rare ones. They were his imperfect knowledge of the material with which he had to deal, and his tinkering when he should have been thinking, and searching for the information which he lacked. How much time and money have been thus wasted upon the futile attempt to construct the so-called perpetual motion! And have we not heard somewhere of a man who was to revolutionize ideas of motive power by pumping water with a diminutive steam engine upon a gigantic overshot wheel? Yes, we have not only heard of that individual, but have seen him expending his money, regardless of the warnings of those who saw and realized his folly, until a reasonable competence, which he had accumulated through a steady and industrious life, had melted away, and left him a pover-ty-stricken and disappointed old age. This individual is by no means a natural fool. He is capable of attaining and applying knowledge. He failed in that he substituted tinkering for thinking, and supposed himself competent toforce nature to yield him obedience, without a knowledge of her myste ries. The folly of this man forms the second instance of use less and vain experiment above alluded to.
He only need expect to avoid such follies who thoroughly informs himself in regard to what has been done in the particular department to which his proposed improvement belongs; who can distinguish principles, and avoid confounding them with mechanical details; and who has mastered the philosophy of all the natural phenomena with which he has to deal. To such a man, speedy and sure success will be the reward of his efforts, or the speedy and not valueless knowledge that success is, from the nature of the case, impossible.

great reduction in cost of foreign patents.

The increasing disposition on the part of American inventors to secure their inventions abroad, has induced us to reduce our fees for obtaining patents in all foreign countries to the lowest maximum price. Hereafter we shall solicit patents in England, France, Belgium, Prussia, Austria, Spain, Cuba, Russia, Saxony, Norway and Sweden, Australia, and in every other country which has patent laws, at greatly reduced prices, making our terms most favorable to the inventor. We have agencies established among the oldest and most reliable foreign solicitors, with some of whom we have had business relations for nearly a quarter of a century
It is important to the owners, that patents in foreign coun tries be solicited through some old established and well known agency. We have known parties to meet with great discouragement in trying to introduce their inventions in England, from the fact that the patent was solicited through obscure agents unknown to the manufacturers. The English people are very peculiar in this respect, and on the continent the same prejudice exists against patehts not obtained through well established houses.

We have in press, which will be issued in June, a comprehensive work on the patent laws of all countries. A pamphlet on foreign patents with terms for obtaining them, may be had by addressing this office.

ETCHING GLASS-ONE OF THE USES OF FLUOR SPAR.
The mineral known as fluor spar or Derbyshire spar from Castleton, Derbysbire, England, where it is found in large quantities, is largely employed in the form of fluorine or hydrofluoric acid, for the ornamental etching of glass. The acid is obtained by heating the fluor spar, coarsely pounded, with sulphuric acid in a leaden vessel; glass will not do, as the acid acts powerfully on that substance. Glass to be operated upon is coated with beeswax, or a resisting substance of which beeswax is the principal component. By means of a pointed instrument, as a needle, the design is sketched so as to expose the glass where the lines have been made. A mixture of spar and sulphuric acid is placed in a leaden tray and the glass with the side on which the design is sketched suspended over the mixture, when a gentle heat, as that from a spirit lamp, is applied to the under side of the tray. The vapor of the combined acid and mineral rises and attacks the glass, producing in a short time the design with as much delicacy and distinctness as could be done with the glass cutter's wheel. If desired, the figures or tracery may be left bright and the ground etched, simply by sketching with a camel's hair pencil, dipped in melted wax, the pattern or design on the glass. The effect is very fine.
This mineral is quite extensively manufactured into articles of use and ornament, it being readily wrought in the lathe by skilled workmen. Very handsome specimens of cups, vases, boxes, etc., are produced from the Derbyshire spar, which is frequently found of a rich blue, green, red, or purple color. The pure white variety is found in large quantities in Hardin county, Ill., and in other localitiesin this country, the colored specimens are quite plentiful.

THE WHEEL."

Our readers are aware that we design shortly to print, under the title of "THE WHEEL," such new or surplus correspondence on the Wheel-question as the writers desire to place in print at their own expense. The new publication will be issued May 15th, in handsome magazine style, price 25 cents. In addition to the above correspondence, "THE Wheel" will contain a large amount of other valuable scientific matter. For example, among its contents will be found the whole of the recent splendid series of lectures by Prof. John Tyndall, upon " Heat and Cold," profusely illustrated. These lectures are replete with rare and instructive information, given in most attractive style. To lovers of
interesting scientific truth they will be worth ten times the price of the book. All orders for "The Wheel" should b addressed to Muvn \& Co., 37 Park Row, New York.

to all whom it may concern.

Messis Munn \& Co.
37 Park Row, New York.
GENTLEMEN:-Whereas you have been in the habit of pub lishing in the ScIENTIFIC AMERICAN notices of pending
applications for the reissue of Letters Patent: and whereas applications for the reissue of Letters Patent; and whereas
such publication has been declared to be illegal by Mr. Justice Fisher ; and whereas we have lately filed in the Patent Office an application for the reissue of a patent owned by us; now you are hereby notified that in case you shall publish notice of our said application or the claims which we have made in the specifications accompanying the same, we shall hold you responsible for all damages that may accrue to us by reason or such publication, whether by delay in the grant of ou application, or by the expe.

The Grover \& Baker Sewivg Machine
By their Attorney, E. Renwick.
34 Beach St., New York, April 29th, 1868.
What is up now? Is there a Sewing Machine Company endeavoring to get a reissue of a patent to cover claims which they are ashamed to have the public scrutinize? or what is the matter?
On reading the first lines of the above letter we thought it a hoas, but on approaching the end our eye caught the signature to the document, and we could no longer believe the portentious threat a joke. The public will look with more than ordinary interest for the claims which the parties would restrict us from publishing. We expect some dire misfortune awaits us for not obeying "The Grover and Baker Sewing Machine Company.by their attorney, E. S. Renwick's " injunction; but the curiosity of our readers must be gratified, and we abide the result for our temerity.
P. S.-Up to the time of going to press wehad not received any notice from the Patent Office which we identify as coming within the above-injunction. We are looking with impatience, however, to see what it is that calls forth a letter of such threatening import.

East and West.

When we look east or west, our line of vision is of course at right angles to the meridian, and in a plane, which, being vertical, passes through the center of the earth. At the equator, this plane of east and west vision coincides with the latitude, that is, with the plane of the equator, and all countries actually east or west are in the direction which the eye takes in looking east or west. But in all other places the plane of vision deviates from the plane of the latitude, and people who think that the places set down on the map as east or west of them are actually in the direction that they are accustomed to calleast and west, are generally very much de ceived. The plane of latitude cuts off a slice of the earth, larger or smaller, according to its distance from the equator, north or south ; but the plane of east and west vision, passing through the center, divides the earth into equal hemispheres. The plane of latitude is always equidistant from the equator ; but the plane of east and west vision cuts the equator at the real horizon both ways, and comes out at the antipodes, as far south of the equator as the latitude is north, and vice versa.
This idea can be realized and made clear by the artificial globe, in the following manner: To find the regions through which the plane of east and west vision for any place passes, bring the place to the brass meridian, and also revolve the meridian till the place touches the wooden horizon. Then the plane of the wooden horizon will be the plane of of east and west vision for the given place. The sun at the time of the equinox, when it stands exactly on the equator, nevertheless rises exactly in our east, though we are
forty three degrees north of the equator, and as it ascends toward the tropic, rises apparently far to the north of east, though in reality it never comes north of the equator more than twenty-three and a half degrees. These phenomena show that our plane of east and west vision cuts the tropics and the equator, and, instead of coinciding with our latitude, takes nearly a southeast direction to our antipodes, on the other side of the equator.
These facts, says a writer in The Circular, ought to be considered by the Jews, who are said to pray with their faces to the east, imagining that they are looking toward Jerusalem. Praying in that position from New York, they are really looking over the Desert of Sahara, and Jtrusalem is far away from their line of vision to the northeast. Moreover, their line of vision is in the tangent to the curve of the earth, while Jerusalem is nearly a quarter of the way round the globe on the curve itself, and consequently far below the straightforward outlook. The real direction of Jerusalem from New York, as near as we can calculate with our rude appliances, is thirty-five degrees north of the. east line, and forty-five degrees below the horizontal line. In other words, a Jew, in order to pray right at Jerusalem from New York, ought to tace by compass about N. E. by E., and look at the ground about six feet before him.

Taxation.

From a very able essay from the pen of E. H. Derby, of Boston, on the position and prospects of the United States with respect to finance, currency, and commerce, we extract the following :-
"Mr. Rollins, in his last report, condemns those taxes whose collection is costly, and his objection applies most forcibly to taxes on gross receipts and incomes. On railways the cost of collection from the public ranges from fifty to
ninety fer cent. It now averagea nearly seventy per cent on
our American railways, for two thirds of the gross receipts are absorbed by expenses, and for each dollar of the tax col-
lected by the railway, three and a third must be taken from the public-such taxes carry with them their own condemnation. A tax on premiums of insurance, which compels the poorer classes to pay for the privilege of guarding their houses and furniture against their most dangerous foe, is also objectionable. To avert pauperism we should stimulate rather than discourage insurance.
" It is urged that the Income tax is a tax on capital. If it be so, let it be continued on coupons and on the dividends of actories, railways, banks, and insurance companies; but when it is applied to the irregular incomes of private citizens and uncertain receipts of professions, terminable with life or health, it may well be questioned. The Income tax in 1865, then three times as high as the English Income tax, was levied on four hundred and fifty thousand people, and doubt less as many more were required to make returns to prov they were exempted by poverty from the assessment.
"If we rate the cost to each individual of posting his book and making his computation at ten dollars only, the cost to the public, besides the salaries of assesors and collectors would exceed nine millions on the tax payers of 1866 , and an equal number exonerated. The estimate of Mr. Rollins for the returns the present year is less than twenty-five mil lions from the Income tax, while the returns from gross re ceipts of rallways were last year but four millions of dollars. Is it wise to continue taxes so costly to collect?
"But-a ftill stronger objection to the Income tax is the publicity it gives to the private affairs of the citizen. He is obliged to disclose important secrets, often to the injury o his trade and credit, or to the detriment of his family and fortune. No distinction is made between permanent and temporary incomes. With people of limited neans, the greenback set aside for a new suit, or to sustain the son in college or the daughter at school, obeys the peremptory call of the collector, and honesty pays what dishonesty evades. " The operation of the tax is most unequal. Massachusects, with seven thousand square miles only, contributes more than eight million dollars to the Income tax, while all the Cotton States, with half a million miles of surface, pay but three-fourths of that amount.
"The Income tax is a direct tax on the rents of real estate and operates as directly and effectually as a tax on the land itself. The constitution provides that all direct taxes shall be levied in equal sums on each Congressional district ; but now single districts in New York, Pennsylvania and New England pay more than twenty Southern districts. Such taxes, if continued, may be contested, and large reclamations probably demanded."

Whether an Application fora patent interferes with by the Patent is a Question to
An interesting question in relation to in
An interesting question in relation to interfering applica tions has lately been decided by Judge Fisher, of the United States District Court, Washington, in the case of Marsh vs. Dodge. This case was before the court in February last, on the question of priority of invention of the specific devices by which a self rake is attached to a two wheeled reaping machine, and was decided in favor of Dodge. Marsh then reconstructed his application and specifications, and began de novo. In the outset, he demanded that a new interference be declared between himself and Dodge, that the question might be tried again. The Commissioner of Patents refused to do this, and from his action the present appeal was taken. The following is Judge Fisher's decision

The appeal in this case is therefore dismissed.
Spiritualism in the London Polytechnic Institute
Prof. Pepper has been doing, this last winter, a great work before the thousands who nightly visit the above institution Besides explaining the latest discoveries in electro-magnet ism, light, etc., he discoursed on spiritual manifestations pointing out the extensive impostures that have been prac ticed on the public in the name of mesmerism and spiritual ism. He illustrates his lectures with startling illusions, such as the floating in the air of hats, tables, and even stout la dies. He does not only every thing that ever spiritualists have pretended to do, but a great deal more; with this difference, however, that he explains how it is done by well known nat ural and material means, whereas spiritualists pretend that they do it by unknown, supernatural and spiritual powers.

Solid Back Bruslies.

Mr. George L. Cannon, 152 Broadway, New York city, has shown us some specimens of brushes comprising all styles in common use, from the tooth to the blacking brush, which are made wholly by machinery and each bunch of bristles separately secured to the back, which is solid, having no cover o veneer. No glue or pitch is used to secure the bristles, each bunch being held by a staple of wire, the ends of which are staple ends firmly locks the bristles so that they cannot be removed. It appears to be a very valuable improvement.

OFFICIAL REPORT OF
 Patents and Claims
 Issued by the United States Patent Office.

For the week ending april 28, 1868
Reported offcially for the Scientifc American.
Patients are granted for seventeen years, the following

of Canada and Nova Scotia pay $\$ 500$ on application.
Pamphlets containtng the Patent La:os and full particulars of the mod of apply ing ror Letters Patent, specif ying size of model required, and much
other information use ful to Inventors, may be had gratis by addressing MUNV \& CO., Publishers of the Scientitc American. New York.
7,157.-Animal Trap.-A. J. Adams (assignor to himself

 Bark r, Battle Creek. Mich.
I calam the siliding adjustable frame, G. containing the holding devices for
he uncet timber, arransed reatively with the curved k nife,
he, when contructed and operating as described
77,159 .-CAR BRAKE.-William T. Batty (assignor to himself

 $7,160-$ CrorN.-Wm. T. Best (assignor to himself and Dan-

 ,161.-Spring for Chairs.-A. M. Blake, Canton, Ohio.
 purpose herein specified.
77,162 -CARRIAGE Lock.-J. A. Bower, Middlefield, Ohio. Iclaim in the brakesfor carriages the levers, B B, hingedheads, EE, ©prings, and
77,163 .-MANOFACTURE OF BRICE.-Silas H. Bowman, Half Moon Bay, Cal.
I cladm tot use petroleum and peat in the manufacture of bricks, by
axing both or eithero neof them with a clay of which bricksareto be made,

 $\underset{\text { (assignor to Russell and Erwin Manufacturing Company), New Britain, }}{\text { fitb. }}$

 he return or the exhaled gases into the gas pipe, substantially as herein de-
scribed.
nd, The expanding mouth piece, constructed and arranged substantially as

 Yawaumazawasw
 70, m69.-L whe thouth is open. Ceorge Cliff, Memphis, Mich.

$= \pm \pm= \pm=2=\$$
 MG*

 dry, ifited. Roller FOR Dra Wing Machine.-Francis Crague

