A Novel Gunboat.
A boat named the Staunch, built for the Admiralty upon the proposition and plans of Mr. Rendel, of the firm of Sir W. Armstrong and Co , has just leen tried off the Tyne. A correspondent gives us the following account:" This vessel, though wholly insignificant in appearance and cost, reprethough wholly insignificant in appearance and cost, repre-
sents some very novel principles. She is only 79 feet long sents some very novel principles. She
and 25
feet beam ; her draft of water when loaded of 6 feet, and her displacement 150 tuns. She has twin screws driven by two pairs of condensing engines of 25 horse-power (nomirial) combined, giving her a mean speed of $7 \frac{1}{2}$ knots. Such being her dimensions and power it is hard to suppose that
she can be in the least ciegree formidable. She carries, howshe can be in the least ciegree formidable. She carries, howpearance carries it most efficiently. The gun, a $12 \frac{1}{2}$ tun 9 inch Armstrong, is mounted in the fore part of the boat in a line with the keel, and fires through a bulwark or screen over the bow, which is cut down and plated something like that of a monitor. Thus placed, it is easily worked in a rolling sea, and its change of position by recoil does not appreciably affect the trim of the vessel. At the same time, to provide for heavy weather, it is made capable of being lowered into the hold, so as to relieve the little vessel of its deck load, and enable it to carry the weight as cargo. Machinery is also employed for the purpose of working the gun, by which means more than half of the ordinary gun's crew can be dispensed with. It is in these mechanical arrangements that much of the interest of this vessel lies. The operation of lifting and lowering is performed by simple but powerful machinery. During the trials the gun, with its carriage and slide, and the platform carrying them-weighing in all 22 tuns-was
raised and lowered in a rough sea, with the boat rolling 11° raised and lowered in a rough sea, with the boat rolling 11°
each way, in from six to eight minutes. When the gun is each way, in from six to eight minutes. When the gun is
lowered the gun well is closed and the deck left perfectly clear, but in a few minutes the gun can be again brought up ready for action. During the trials the 122 -tun gun was easily handled by six men, and fired with extra charges of $56 \neq$ lbs. of power and 285 lbs. shot. Ie must be observed that very little, if any,.training is requisite with the gun of the very little, if any, training is requisite with the gun of the
Staunch. The vessel is so small as to be a sort of floating gun Staunch. The vessel is so small as to be a sort of floating gun
carriage. Her twin screws enabie her to turn rapidly in her own length. Her helmsman is placed jnst behind the gun. The gun, therefore, can be laid by rudder right and left with far more ease and speed than any gun of similar weight otherwise mounted. During the recent trials, with the engines driving reverse ways, the vessel made the full circle in her own length in 2 an minutes. With both engines going full ahead she made by the helm a complete circle of seventyfive yards diameter in $2 \ddagger$ minutes. The Staunch is wholly unarmored. Her strength and security lie in her great gun unarmored. Her strength and security lie in her great gun
and her diminutiveness. And she must be considered as one of a flotilla of similar vessels. Sisty such could be built at the price of a single armor-clad frigate, and ten of them, act-
ing from different points, doubling in their own length, ing from different points, doubling in their own length,
escaping into shallows, sheltering under forts, would drive off escaping into shallows, sheltering under forts, would drive off or render a good account of any hostile vessel venturing to
attack our harbors. Primarily they are intended for harbor attack our harbors. Primarily they are intended for harbor
defence ; but the power of lowering the gun and carrying it as cargo, would aff ord great security for these vessels at sea, and enable them to be sent from harbor to harbor with safety. The Staunch is now to be sent round to Portsmouth, saiety. The staunch is now to be sent round to Portsmouth,
where she is to be attached as experimental gunboat to the where she is to be attached as experimental
gunnery ship Excellent."-Pall Mall Gazette.

Trial and Loss of a Self-Propeling Vessel.

A San Francisco letter in the N. Y. World, says that a Mr. Robinson has from time to time, in the papers, put forward an invention which he claimed was to be almost self-propelling; without the use of steam power. The peculiar features of the new aquatic craft was, that two or three boats hitched together, one behind the other, by the action of the waves the series of boats was to obtain propulsive power. An experimental craft was built at an expense of about $\$ 8,000$. Considerable curiosity was felt in the community as to the sucvess or non-success of the new notion, and many went to view the craft during construction. If it succeeded, a revolution was to be worked in navigation. Sails and steam would be superseded. On the ocean and great lakes the rougher the sea the faster the boat would travel.
The inventor was sanguine that his new craft would travel the water by its innate propulsive power, independent of steam or other expensive motor, enjoying the tempest and glorying in the storm. The craft was completed, and the day for the trial trip appointed. So confident was the in ventor of success that he took on board stores for a ten day's voyage. At ebb= tide the new (to be) sovereign of the seas put off from the wharf to which she had been fast since her construction had been completed, and started out on her voyage. There were on board four persons: the inventor, Captain Young (a pilot), and two sailors. She was hardly clear of the wharf when she swung around broadside to the tide and commenced a series of movements not very promising of success to the undertak: ing. She would not obey the helm at all, but lurched continually, in an uncomfortable manner for those on board ; first one wheel house would be submerged, then the other. The new craft made excellent time, proceeding end wise like a crab, but the wheels seemed to have no effect whatever on speed or direction. The wheels, depending upon the water they were passing through for motion, would turn any light machinery
on board the boat, but would not move the boat ahead an on board the boat, but would not move the boat ahead an
inch. The craft would simply move with the water, not through it. The inventor wis still sanguine that, with regular waves, the boat would be an assured success. All he re-
quired was regular waves. Once outside among them, things quired was regular waves. Once outside among them, things
would change; the rougher it became the better. The boat went on like a raft until it got outside the heads, then over
the bar into rough water, and no sooner was it in rough water than the whole contrivance was turned over. The party on board sought the water for safety, and clambered into a boa which had been taken in tow in case of accident. The pilot boat Caleb Curtis picked up the unfortunate navigators. The steam tug Rescue came alongside the Curtis, and offered to tow the refractory craft up to San Francisco for $\$ 500$, but Mr. Robinsop did not seem disposed to give so much, so the unfortunate craft went on to ward the resting sun, keel upward. Mr. Robinson is reduced to poverty by the result of his illstarred experiment:

Earth circuit in Telegraphy

The failure of the earth circuit of a short telegraphic line n the Pewabic copper mine, Lake Superior, is interesting from a practical point of view. The wire used was a onesixteenth inch copper wire, wound in the same manner as waterproof fuse, the wire taking the place of the powder. To the surprise of all, no signals could be transmitted through the line. The end of the wire underground was put into a hole drilled into the rock and tamped in ; a bed of earth was then made, and lastly a pool of water tried, but all to no efthen made, and lastly a pool of water tried, bough.
fect. Above ground the line worked well enough.
Though the earth, generally speaking, will conduct elec tricity, some substances, of which any specific portion of the earth may be composed, will not conduct it ; for example, dry sand and dry freestono rock will not,and quartz rock will not any more than glass ; dry earth will not, as is recognized by all telegraph constructors, who bury the earth plates deep in damp earth. In this case an attempt was made to form an earth circuit in mon-conducting material. The end of the wire in the mine was tamped into the solid rock, probably quartz, which would be about the same as tamping it into a glass bottle, filled with earth or water. The chances of electric communication would be still less, if the wire was not perfectly insulated in its whole length. The remedy would be to make a return circuit of insulated wire.-Mechanics' Magazine.

mirrors Without Mercury.

The ordinary method of preparing looking glasses is with an amalgam of tin and mercury: four parts of tin to one of mercury.
In the invention, reported by M. Salvetat to the Society of Encouragement, in Paris, neither mercury nor tin is used at all. The tinfoil is replaced by platina, not applied in leaf form, of course, but chemically, in a metallic and brilliant powder. The operation is perfectly simple. The glass, hav. ing been carefully cleaned and polished, is covered, by means of a brush, with a mixture of chloride of platina, essence of lavender, and a dissolvent composed of litharge and borate of lead. When dry, the glass is placed in muffers, when the essence, being volatilized, leaves a deposit of platina dust firmly united to the glass. While two or three weeks are process only requires a few hours

Insect Fabricators of Mron.

It is well known that some insects are skilful spinners, but it was not known that some of them fabricated iron. A Swedish naturalist, M. de Sjogreen, has published a curious memoir on this subject. The insects in question are almost microscopic ; they live beneath certain trees, especially in the province of Smaland, and they spin, like silk worms, a knd of ferruginous cocoons, which constitute the mineral
known under the name of "lake ore," and which is com posed ko from 20 to 60 per cent of oxide of iron mixed with oxide
of of from 20 to 60 per cent of oxide of iron mised with oxide
of manganese, 10 per cent of chloric, and some centimeters of manganese, 10 per cent of chloric, and some centimeters
of phosphoric acid. The deposits of this mineral may be 200 meters long, from 5 to 10 meters wide, and from 8 to 30 inches thick.-Rev. de Thérap. Med. Chirurg.

mandfactoring mining, and railiodd items.

A report by the superintendent of the geologlal survey of indid; shows
that the British territories cannot be considered as either largely or widely that the British territories cannot be considered as either largely or widely
supplied with coal. He ascertained that extensive fields existed, but they the opinion of the superintendent, the very best coalfrom India the average quality of English coal, and, moreover, the former is not capable of more than two
the English coal.
The distance between London and Paris is now traversed dally by the Sot th,
Eastern and Northern of France railways, in less than ten hours. Two ex press trains leave the Paris terminus of the Northern of France system daily for England. More than 200,000 passengers passed over this route in 1867 . Among other sequences of the passage by the State Legislature of the Erie bill, is the prompt finishing of the Albany and Susquehanna railroad, now
destined to become virtually a branch of the Erie road, running trom Bing destined to become virtuallv a branch of the Erie road, running rom Blng-
hampton to Albany. The bill just passed requires the money recelved from the recent issues of bonds to be expended on the road, and as a consequence the entire Delaware division of the road is to be relaid with a double traok of steel ralls.
The London Colliery Guardian, speaking of the presence of phosphorous in the Cleveland Iron, which so seriouslyreduces its market value, and renders it necessary to bring iron from other districts to mix with it in the pud
diling furnaces-calls for some method of removing this sulphur, showin diling furnaces-calls for some method of removing this sulphur, showing
that if extracted, even in its lowest priced form-as a manurial ingredientit would be worth at least $\$ 330$ per tun. There is, therefore, a tolerable good
margin for working expenses, while the iron now worth $\$ 12$ per tun; and con margin for working expenses, while the iron now worth $\$ 12$ per tun, and con-
taining one per cent of phosphorus, would, if freed from this element, be worth at least as much as hematite iron, or say 13.50 per tun.
Engineer Roebling thinks that rallroad draw bridges are a nulsance, which can readily be done away with. He would substitute high bridges, even with steep approaches, a stationary engine and a wire rope being provided to as
ist the trains over the rise. In other words, treat the bridge lite and sist the trains over the rise. In other w
plane, and draws will be unnecessary.
A new railroad profect is exciting the wide eawase capitalistsor Pittsburgh, Pa. It is proposed to build a road from Plitsburgh to Newbern, N. C., along
the Monongahela river to its source in West Virgnial ; thence by Greenbrier Mountain and river to the Junction of the latter with New River, and thence to Newbern. The roar would penetrate a rich mineral region, and would bring large quantities of fron ore to Pltsburgh

The Metallic Cartridge Company, of East Bridgeport, Conn., have a con
ract from the government of Brazil for $6.000,000$ cartridges. They have now rract from the government of Brazil for $6.000,000$ cartridges. They have now
supplied two thirdis of the order, and after shipping the remainder the com pany will immediately begin the manufacture of $7,500,000$ for the Russian
grimer-
eriment. The daily product of the works at present is 150,000 to 170,000 cartridges.
The Allentown Rolling Mill is one of the largest establishments of the kind
in Pennsylvania. It is for the production of railroad iron exclusively, and urns out four hundred tuns of rails per week. The datly work is two hun red and sixty-six rails, thirty feet long and weighing ffity-six pounds to the The
The rails of the Union Pacific railroad are now being laid on the descend-
ing slope of the Rocky Monntains, the summit of the Black Hills, the higheat point of the system being crossed on the 16 th ult. According to Blicken. point of the system being crossed on the tith ult. According to Blicken
dor t 's survey, the railroad crosses the mountains at thts point at an eleva vation of 8,242 feet, belng, as we bave before had occasion to state, the highest point reached by any railroad in the world.
Professor Chapman, of Toronto, writes that he has discovered gold on Lake
Superior, the metal existing in certain spealgen Superior, the metal existing in certain specimens of galena and copper pyrites, occurring together in well defined velns in the region of Black Bay Surtace specimens entirely destitute of "free" or visible gold, show a value of nearly $\$ 21$ per tun, irrespective of the larke amount of lead and coppe
present in the ore. The rocks are identical, in general age, with the gold bearing roclss of Nova Scotia.
All the conductors on the New York and New Haven railroad have made heir appearance in new uniforms, furn1shed by the company. The largest
part of the road lying in Connecticut, the law of this State, requiring rallwa part of the road to be thus distingungecticut, the law of this State, requiring rallway their action in this matter is the dore to ne affect tuls company, and hence we note that our Leqaislature has empowered railroad conductors with the authority of special policemen, the better to preserve order on the railway ralins. We hope they will use their authority by arresting some of the nu erous pickpockets who infest the trains out of New York.
The Mount Washington Raillway, in the White Mountains, was completed ntxtmile tiae tracks are covered with snow twofeet deep. The number of atxtmile the tracks are covered with snow two feet deep. The number of
hands will be increased inthree weeks from fourteen to fifty. The present estimate of the cost is $\$ 100,000$, though the figures my add differently at the
completion of the work on the 1st of september. The road is bullt on what completion of the work on the 1st of September. The road is bullt on what
Is known as the "Marsh" plan, illustrated in Vol. X., No.10.

 Machine for Measuring Cloth.-George R. Mcintire, Houghton, Mich In this invention the cloth is placed between two rollers, which are rotate apparatus.Water Theel Bucert.--Jacob Clark, Clarksville, Pa. - In this invention Water as it ent two curves, one of which receives the direct impulse of the mpulse, as the water leaves the bucket.
Shingle Mackine.-Smith Head, Halifax, Pa.-This invention has two carriages and two sets of saws, and cuts a shingle at each forward or back-
ward motion of eitber carrige. It has a new apparatus for adjusting the ward motion of eitber carrige. It has a new
bolts to the saws, and a new edging apparatus.
Corn Plow, Planter, and Colitivator.-Isaiah B. Arthur, Sidonsburgh uards, and covering roller, with a new angereatly of the plows cultivato erating the seed distributor.
Crystal fountain.-J. C. Johnson, Louisville, Ky.-In this invention the water is mingled with air in the apparatus, and isfound in the form of beads orspray
purposes
Safrty Tbuck.-S. Y. Bradstreet, Monticello, Iowa.-This invention has for its object the prevention of railroad cars from bouncing off of the track, and consists in the employment of an auxiluary truok of peculiar construc tion, which guldes the main trucks,
structions be thrown off of the rails,

Nails,-F Davidson, Bichmond

Nails.-F. Davidson, Richmond, Va.-This invention relates to a machine for making cut nails, and it consists in a peculiar construction and arrange-
ment of parts, whereby a very simple and efficient machine for the purpose is obtained.
Lock.-H. H. Elwell, South Norwalk, Conn,-This invention relates to a lock of tlat class which are provided with a reversible slide catch so arrang to say, be capable of being applied to 2 door which swings in either direc tion. The object of the invention is to obtain a lock of the kind specified, Which will be simple in construction, and which will not be liable to get out
of repair, and require but a simple manipulation to adjust the slide catch as of repair, and require but a simple manipulation to adjust the
circumstances may require in applying the lock to the door.
SAWing Machine.-Thomas Jenkyn, Thetford Centre, Vt.-This invention
consists nection with frames and tables, whereby a machine is capable of performin various kinds ot work, such as slittlig boards, planks, or other stuft, cross cut sawing, the cutting of shoulders or tenons, grooving or beading, and chamfering or cornicing.
Clothes Wrivaer, -M. Pierce, Winona, Minn.-This invention relates to a
simple arrangement of parts, which is a great improvement on ordınary de simple
signs.
Car Brake-L. J. Smith, Hamilton, obio, and D. S. Kitght, New York city.-This invention relates to a combined railposd car brake and starter, the device being so arranged that when the brake is applied the starter will
be wound up, so that when the brake is again released the cars to which the be wound up, so that when the "brake is again released the cars to which the
device is applled will receive a scart, thus overcoming the inertia of the car whether the same is at rest or in motion.
Maghine for Binding Rings.-Wm. H. Peckham, New York city.-This nvention relates to a machine for bending metal bars into perfect and cor
rect rings, of any sultable diameter, and it is particulariy intended for jew eller's use, to form inger rings, bracelets, and other suitable articles, and may, if desired, be used with equal advantage tor shrinking tires and other large and heavy rings.
Lard Press.-Solomon S. Avis, Pens Grove, N. J.-The object of this in-
vention is to lurnish a cheap, vention is to lurnish a cheap, 8imple, and effective lard press for househol
use.
Fludid Metrr.-Charles E. Moore Elizabetiport N. J.-This invention consists of a measuring cup afflxed to a lever beam, properly weighted, by means
of which the quantity of spiritg flling the cup is both weighted and meas of which the quantity of spirits flling the cup is both weighted and meas
ured. The cup belug tilled is decanted automatically by its own weight, at which instant the spent pipe is cleansed by a proper mechanism, and the sup ply cut off until the cup returns to its frst position, when the spirit is again permitted to flow. The trimmings of the lever are connected with suitable registering mechanism, and the whole apparatus contaned in a locked cas of sheet metal, having a dial plate in front for the registering pointer
Gaterring T'trpenvine.-A. Pudigon, Charleston, S. C.-This invention
elates more particularly to the gathering of crude turpentine from the pine ree, but may be employed for the collection of all resinous gums of a kin dred character, which exude.from wounds in trees.
Making Roofing.-James H. Cole, Adrian, Mich.-This invention is de signed as an improvement upon the device recently patented by Edmund
Richardson and James H. Cole, for a process for making rooflng and maRichardson and James H. Cole, for a process for making rooflng and ma-
chines for the same, and consists in supporting the rolling instrument employed in said procsss, by an arm which reaches to and travels upon ways overhead, so that
direct the same.

