AMERICAN INSTITUTE POLYTECHNIC OLUB.

The greater part of a recent evehing was occupied by long lecture on longevity, of which the points of interest may be condensed in a few words, viz : 1st. That persons whose ancestors have long lives live long themselves, and vice versa; a fact well known. 2d. That persons with large, well devel oped trunks live longer than those with small trunks and short necks. 3d. That large noses and the ears low down on the side of the head is also a sign of longevity. The lecture stated that he had taken the trouble of investigating these points during the last thirty years, among more than 200,000 people, and so far we have no fault to find, but object to a person spinning out three or four facts, which he can state in as many minutes, to a long address of more than an hour and aiming chiefly at amusing the audience more than in structing them; even the amusement aimed at was of doubt ful character, as the speaker said too much about himself, how he bad too small a nose and too short a neck; how his ribs were too horizontal, so that he could not breath with his chest, but only with his abdomen. He complained that people commenced calling him an old fellow; said that his little fingers were crooked, which he demonstrated by exhibiting them repeatedly, that all his family and ancestors had such crooked fingers, etc. We confess we do not see the usefulness of this information for people who come to the Polytechnic Club to be instructed. but think that they care very little about the knowledge of these facts. Some of his arguments were rather unique; for instance, to explain hereditary tendencies, le proposed the question why a dog was a dog, and answered it by saying, because his father was not a cat.

Improvement in Self-Acting Car Couplings.
Although fearful accidents continually occur in the running of trains of cars, by which passengers are maimed and killed, and the records, with all the horrible details, are spread far and wide by the spread far and wide by the
press, the injuries of railroad press, the injuries of railroad
employés received in the per formance of their duties are not so prominently noticed, and consequently comparatively few appreciate the extent of these accidents. Yet one cannot spend a day among railroad men without finding specimens of crippled finding specimens of crippled humanity injured for life by some accident received while attending to the duties of their position. One of the most dangerous of these duties is that of going between cars for the purpose of coupling or uncoupling. The object of the inventor of the coupling herewith illustrated is to entirely prevent the possibility of such accidents, by sibility of such accidents, by
providing a self-acting coupprovi
ling.

At the base of a hook, A, secured to the end frame of a car platform or to the draw-bar, is pi engages with the hook of the next car. In operation thelink is supported at an angle above a hcrizontal by the long arm of a latch lever pivoted between suitable blocks on one of the bumpers, the other end being sustained by a right-angled catch, the horizontal end of which, C, proiects beyond the bumper in which it is seated when the link is supported in the position described above. The link being in this position, the bumper of the next car will strike against the projecting end of the catch, C, and, driving it in, release the link, which will fall by its own gravity and engage with the hook on the next car. The dotted lines in the engraving show the position of the parts when the cars are coupled. The bumpers may be made as show in the illustration, or as ordinary bumpers are made, in either case giving some elasticity, sufficient to relieve the shock of collision when the cars come together. The length of the upper part of the hook is sufficient to prevent accidental uncoupling on grades or curves. ficient to prevent accidental uncoupling on grades or curves. The simplicity of this contrivance is such that it may be The simplicity of this contrivance is such that it may be
adapted to any car without radical alteration of parts, and it adapted to any car without radica
is adjusted from the car platform.
It was patented January 25, 1868, by Wm. Weiler, whom address for further particulars at Washington, N. J.

CONTROLLING WATER CURRENTS .-. DEEPENING THE CHANNELS OF RIVERS.

We have received a pamphlet issued by the New Orleans Academy of Sciences, containing a plan for deepening the mouths of rivers and reducing the hight of bars in navigable streams. It is illustrated by engravings, and the plan is based upon the well known mechanical law, "the angle of incidence is equal to the angle of reflection." Taking advantage of this law, in its action upon all movable bodies,
the author of this plan', Lieut. E. Manico of the British Royal the author of this plan', Lieut. E. Manico of the British Royal
Marines, recommends the construction of jetties or dams built at an angle to the stream, the action of which shall be to divert the course of the current and confine it within certain limits.
He proposes to build caissons of iron or wood filled with stone, or heavy ballast. whose weight will hold them down, and whose angular forms prevent them from being moved by
the currents or waves of strong or stormy waters. They are cubes of agy dimensions, single, or joined together in the form of the letter L, or T, or any other that may be desired, or single cubic yards holding half a tun's weight, or eleven hundred pounds of stone. The crates in which queensware is usually packed for commerce, will give one a good idea of their form. Their cubical shape, and crossed bars of iron, or wood, possess many advantages for the work of " rip raps," or regular foundations for all submarine structures, whether or regular foundations for all submarine structures, whets of jetties, breakwaters, forts, or light-houses upon bottoms of
mud, sand, or rock. They are used by the British Government for such works on tempestuous and rock-bound coasts, but they are especially suited for such a bottom as that of the bed of the Mississippi, and of the bars at its mouth. Their ribbed planes prevent them from sinking deep into the mud or sand, and their ribs, and angular points and edges, hold them firmly upon rocks, or soft bottoms. Their cross bars urnish holds for the hooks of cranes by which they can be lowered down and placed with the regularity of bricks in a wall, or like the stones of the pyramids, terrace above terrace, or they can be chained together, or dropped irregularly and held by their angular points to make a submarine spine or ridqe, against which loose stones may be dropped, and piled at an angle of 45°. Let them be dropped, or placed upon any bottom, or in any current, and experience proves that they cannot be moved by water. Every interstice between the stones they hold becomes filled with mud and sand, until the whole caisson is like a solid stone. Such an object, which cannot be removed by a current, controls it. The water fills and surrounds it with deposit. It is isolated, and made a bar or island ; and it turns the current in another direction. The wreck of a vessel, with its ribbed and angular skeleton, pro duces a similar effect; and sometimes becomes a dangerous
impediment to navigation. One has recently made itself an

enter the North sea, in sight of which vessels from every continent must pass to enter the Thames. They have made
a permanent foundation there which stands the shock of the a permanent foundation there which stands the shock of the
storms which beat upon it from the coasts of Scandinavia, and the Arctic Ocean ; and they will resist equally well the ground swells and the Typhoons of the Gulf of Mexico.
Wherever they are sunk, they will remain forever, unless lifted up by very powerful machinery, applied very soon after their deoosit. For they become immediately filled; and their materials compacted with sand, clay, shells, and whatever else the water can driveinto them ; and even in the salt water the teredo would have but a short time to work upon their ribs, if made of wood, before they would be buried in the mass of deposit heaped by the waves against them and upon them. One important advantage secured by the construction of the jetties at the mouths of the passes, would be the permanency of the work. The new land would be made rapidly, and attach the jetties themselves to the permanent shore. Storms from the south-west might make tempurary deposits and slight obstructions at the mouth of that pass; but as soon as the storm shall have subsided, the strong river current passing over the bar, at a rate varying from $1 \frac{3}{4}$ to 3 miles per hour, condensed and accelerated by the converging etties, will sweep them away into the deep waters of the Gulf. The Mississippi river, with a current of 4 miles per hour a short distance from the south-west pass, has cut itself channel from 60 to 120 feet deep. It is self-evident that if it can be confined between converging dams, and extended into the Gulf, it will make foritself a similar channel where the bars are now formed.
The expense of the work is easily estimated, and when the benefits are considered which would accrue to the whole valley of the Mississippi, now occuvied by 17,000,000 of inhabitants, and to the millions more in our own and other habitants, and to the millions more in our own and other
lands interested in its priceless commerce, the sum of 1,000 ,. 000 , which would more than cover all the cost of removing the principal obstruction, the bare of the South-West Pass, seems contemptibly small."

Primitive Climate of the Earth.
The primitive atmosphere of the earth was greatly rieher in carbonic acid than the present, and therefore unfit for tho respiration of the warm-blooded animals. The agency. of plants in purifying this atmosphere was long ago pointed out, and the great deposits of fossil fuel have been derived from the decomposition of this excess of carbonic acid by the ancient vegetation. In this connection the vegetation of former periods presents the phenomenon of tropical plants growing within the Polar Circle. Prof. T. Sterry Hunt con growing within the Polar Circle. Prof. T. Sterry Hunt con-
siders as unsatisfactory the ingenious hypotheses proposed siders as unsatisfactory the ingenious hypotheses proposed
to account for the warmer climate of ancient times, and thinks that the true solution of the problem is to be found in the constitution of the early atmosphere, when considered in the light of Dr. Tyndall's researches on radiant heat. He has found that the presence of a few hundredths of oarbonic acid gas in the atmosphere, while offering almost no obstacle to the passage of the solar rays, would suffice to prevent almost entirely the loss by radiation of obscure heat, so that the sur ace of the land, beneath such an atmosphere, would become like a vast orchard house, in which the conditions of climate necessary to a luxuriant vegetation would be extended even to the polar regions.-Mechanics' Magazine.

The Woodpecker's Foresight

The woodpecker in California is a storer of acorns. The tree he selects is invariably of the pine tribe. He bores sev eral holes, differing slightly in size, at the fall of the year and then flies away, in many instances to a long distance, and returns with an acorn, which he immediately sets about adjusting to one of the holes prepared for its reception, which will hold it tightly in its position. But he does not eat the acorn, for, as a rule, he is not a vegetarian. His object in acorn, for, as a rule, he is not a vegetarian. His object in
storing away the acorn exhibits foresight, and knowledge of results more akin to reason than to instinct. The succeeding winter the acorn remains intact,but becoming saturated with rain, is predisposed to decay, when it is attacked by maggot who seem to delight in this special food. It is then that the woodpecker reaps the harvest his wisdom has provided, at a time when, the ground being covered with snow, he would experience a difficulty, otherwise, in obtaining suitable or palatable food. It is a subject of speculation why the redwood cedar or the sugar pine is invariably selected. It is not probable that the insect, the most dainty to the woodpecker's taste, frequents only the outside of two trees; but true it is, that in Calaveras, Mariposa, and other districts of California trees of this kind may be frequently seen covered all over heir trunks with acorns, when there is not an oak tree with in several miles.-A. B. Barton.

Coloring of Zinc Plates.

A variety of beautiful colors, corresponding to those of the rainbow, can be imparted to zinc surfaces by a simple chemi cal application continued a length of time proper for the de sired color. It is necessary that the metal be pure, and es pecially free from lead. It is therefore to be rubbed with si ligeous sand moistened with hydrochloric acid, then dipped in water and rubbed vigorously with blotting paper. The zinc is then immersed in a solution of 3 parts by weight of dry tartrate of copper in 4 parts caustic soda, with 48 parts distilled water, the whole at a temperature of about $50^{\circ} \mathrm{Fah}$ The colors will appear successively, in the prismatic order according to the period of immersion. In two minutes, the violet will appear ; in three, dark blue ; in four and a half, a golden yellow ; in eight and a half, a red purple. Intermediate terms give intermediate tints. When colored, the zinc is well washed with water, and for greater permanence of color may be varnished.-Annual of Scientific Disoovery, 1868.

A Novel Gunboat. the proposition and plans of Mr. Rendel, of the firm of Sir W. Armstrong and Co, has just been tried of the Tyne. A correspondent gives us the following account: "This vessel, though wholly insignificant in appearance and cost, reprethough wholly insignificant in appearance and cost, repre-
sents some very novel principles. She is only 79 feet long sents some very novel principles. She is only 79 feet long
and 25 feet beam; her draft of water when loaded of 6 feet, and 25 feet beam; her drafc of water when loaded of 6 feet,
and her displacement 150 tuns. She has twin screws driven by two pairs of condensing engines of 25 horse-power (nomirial) combined, giving her a mean speed of $7 \frac{1}{2}$ knots. Such being her dimensions and power it is hard to suppose that she can be in the least cegree formidable. She carries, how-
ever, as heavy a rifled gun as any in the navy, and to all ap. ever, as heavy a rifled gun as any in the navy, and to all appearance carries it most efficiently. The gun, a $12 \frac{1}{2}$ tun 9 inch Armstrong, is mounted in the fore part of the boat in a line with the keel, and fires through a bulwark or screen over the bow, which is cut down and plated something like that of a monitor. Thus placed, it is easily worked in a rolling sea, and its change of position by recoil does not appreciably affect the trim of the vessel. At the same time, to provide for heavy weather, it is made capable of being lowered into the hold, so as to relieve the little vessel of its deck load, and enable it to carry the weight as cargo. Machinery is also employed for the purpose of working the gun, by which means more than half of the ordinary gun's crew can be dispensed with. It is in these mechanical arrangements that much of
the interest of this vessel lies. The operation of lifting and lowering is performed by simple but powerful machinery. lowering is performed by simple but powerful machinery.
During the trials the gun, with its carriage and slide, and During the trials the gun, with its carriage and slide, and
the platform carrying them-weighing in all 22 tuns-was raised and lowered in a rough sea, with the boat rolling 11° each way, in from six to eight minutes. When the gun is lowered the gun well is closed and the deck left perfectly clear, but in a few minutes the gun can be again brought up ready for action. During the trials the 12 z -tun gun was easily handled by six men, and fired with extra charges of
$56 \pm$ lbs. of power and 285 lbs. shot. Ic must be observed that 56 ± 168. of power and 285 lbs. shot. I must be observed that
very little, if any, training is requisite with the gun of the very little, if any, training is requipite with the gun of the
Staunch. The vessel is so small as to be a sort of floating gun Staunch. The vessel is so small as to be a sort of floating gun
carriage. Her twin ecrews enabie her to turn rapidly in her carriage. Her twin gecews enabie her to tarn rapidly in her
own length. Her helmmanan is placed just behind the gun. The gun, therefore, can be laid by rudder right and left with far more ease and speed than any gun of similar weight otherwise mounted. During the recent trials, with the engines driving reverse ways, the vessel made the full circle in her own length in 24 minutes. With both engines going full ahead she made by the helm a complete circle of seventyfive yards diameter in $2 \ddagger$ minutes. The Staunch is wholly unarmored. Her strength and security lie in her great gun unarmored. Her strength and security lie in her great gun
and her diminutiveness. And she must be considered as one and her diminutiveness. And she must be considered as one
of a flotilla of similar vessels. Sixty such could be built at of a fotilta of similar vessels. Sixty such could be built at
the price of a single armor-clad frigate, and ten of them, acting from different points, doubling in their own length, escaping into shallows, sheltering under forts, would drive off or render a good account of any hostile vessel venturing to attack our harbors. Primarily they are intended for harbor defence; but the power of lowering the gun and carrying it as cargo, would afford great security for these vessels at sea, and enable them to be sent from harbor to harbor with safety. The Staunch is now to be sent round to Portsmouth, satety. The staunch is now to be sent round o Portsmouth,
where she is to be attached as experimental gunboat to the where she is to be attached as experimental
gunnery ship Excellent."-Pall Mall Gazette.

Trial and Loss of a Self-Propelling Vessel.

A San Francisco letter in the N. Y. World, says that a Mr. Robinson has from time to time, in the papers, put forward an invention which he claimed was to be almost self-propelling; without the use of steam power. The peculiar features of the new aquatic craft was, that two or three boats hitched together, one behind the other, by the action of the waves the series of boats was to obtain propulsive power. An experimental craft was built at an expense of about $\$ 8,000$. Considerable curiosity was felt in the community as to the sucvess or non-success of the new notion, and many went to view the craft during construction. If it succeeded, a revolution was to be worked in navigation. Sails and steam would be superseded. On the ocean and great lakes the rougher the sea the faster the boat would travel.
The inventor was sanguine that his new craft would travel the water by its innate propulsive power, independent of steam or other expensive motor, enjoying the tempest and glorying in the storm. The craft was completed, and the day for the trial trip appointed. So confident was the inventor of success that he took on board stores for a ten day's voyage. At ebb= tide the new (to be) sovereign of the seas put off from the wharf to which she had been fast since her construction had been completed, and started out on her voyage. There were on board four persons: the inventor, Captain Young (a pilot), and two sailors. She was hardly clear of the wharf when she
swung around broadside to the tide and commenced a series swung around broadside to the tide and commenced a series
of movements not very promising of success to the undertak: ing. She would not obey the helm at all, but lurched continually, in an uncomfortable manner for those on board ; first one wheel house would be submerged, then the other. The new craft made excellent time, proceeding end wise like a crab, Jut the wheels seemed to have no effect whatever on speed or direction. The wheels, depending upon the water they were passing through for motion, would turn any light machinery on board the boat, but would not move the boat ahead an
inch. The craft would simply move with the water, not inch. The craft would simply move with the water, not
through it. The inventor wis still sanguine that, with regular waves, the boat would be an assured success. All be required was regular waves. Once outside among them, things would change; the rougher it became the better. The boat
went on like a raft until it got outside the heads, then over
the bar into rough water, and no soonier was it in rough water than the whole contrivance was turned over. The party on board sought the water for safety, and clambered into a boat which had been taken in tow in case of accident. The pilot boat Caleb Curtis picked up the unfortunate navigators. The steam tug Rescue came alongside the Curtis, and offered to tow the refractory craft up to San Francisco for $\$ 500$, but Mr Robinsop did not seem disposed to give so much, so the un fortunate craft went on toward the resting sun, keel upward. Mr. Robinson is reduced to poverty by the result of his illstarred experiment:

Earth Circuit in Telegraphy.

The failure of the earth circuit of a short telegraphic line in the Pewabic copper mine, Lake Superior, is interesting from a practical point of view. The wire used was a one sixteenth inch copper wire, wound in the same manner as waterproof fuse, the wire taking the place of the powder. To the surprise of all, no signals could be transmitted through the line. The end of the wire underground was put into a hole drilled into the rock and tamped in ; a bed of earth was then made, and lastly a pool of water tried, but all to no efthen made, and lastly a pool of water tried, but al
fect. Above ground the line worked well enough.
Though the earth, generally speaking, will conduct elec ricity, some substances, of which any specific portion of the earth may be composed, will not conduct it ; for example, dry sand and dry freestono rock will not,and quartz rock will not any more than glass ; dry earth will not, as is recognized by all telegraph constructors, who bury the earth plates deep in damp earth. In this case an attempt was made to form an earth circuit in pon-conducting material. The end of the wire in the mine was tamped into the solid rock, probably quartz, which would be about the same as tamping it into a glass bottle, filled with earth or water. The chances of electric communication would be still less, if the wire was not perfectly insulated in its whole length. The remedy would be to make a return circuit of insulated wire.-Mechanics' Magazine.

Mirrors without Mercury.

The ordinary method of preparing looking glasses is with an amalgam of tin and mercury: four parts of tin to one of mercury.
In the invention, reported by M. Salvetat to the Society of Encouragement, in Paris, neither mercury nor tin is used at all. The tinfoil is replaced by platina, not applied in leaf all. The tinfoil is replaced by platina, not applied in leat
form, of course, but chemically, in a metallic and brilliant form, of course, but chemically, in a metallic and brilliant
powder. The operation is perfectly simple. The glass, hav. ing been carefully cleaned and polished, is covered, by means of a brush, with a mixture of chloride of platina, essence of lavender, and a dissolvent composed of litharge and borate of lead. When dry, the glass is placed in muffers, when the essence, being volatilized, leaves a deposit of platina dust firmly united to the glass. While two or three weeks are necessary for the manufacture of ordinary mirrors, the new process only requires a few hours.

Insect Fabricators of Mron.

It is well known that some insects are skilful spinners, but it was not known that some of them fabricated iron. A Swedish naturalist, M. de Sjogreen, has published a curious memoir on this subject. The insects in question are almost
microscopic; they live beneath certain trees, especially in microscopic ; they live beneath certain trees, especially in the province of Smaland, and they spin, like silk worms, a kind of ferruginous cocoons, which constitute the mineral known under the name of "ake ore," and which is composed
of from 20 to 60 per cent of oxide of iron mixed with oxide of from 20 to 60 per cent of oxide of iron mised with oxide
of manganese, 10 per cent of chloric, and some centimeters of manganese, 10 per cent of chloric, and some centimeters
of phosphoric acid. The deposits of this mineral may be 200 meters long, from 5 to 10 meters wide, and from 8 to 30 inches thick.-Rev. de Thérap. Med. Chirurg.

mandfactoring mining, and railiodd items.

A report by the superintendent of the geologlal survey of indid; shiows
that the British territories cannot be considered as either largely or widely that the British territories cannot be considered as either largely or widely the opinion of the superintendent, the very best coalfrom India onlty touche the average quality of English coal, and, moreover, the former is not capable of more than two
the English coal.
The dis tance betwen London and Paris s. 9 now traversed dally by the Sonth,
Eastern and Northern of Friance ratuays, in less than tee hours. Two ex astern and Northern of France raliways, in less than ten hours. Two ex
press transs leave the Paris terminus of the Northern of France system daily tor England. More than 200, ơoo passengers passed over this route in 1867.
Among other sequences of the passage by the State Legislature of the Erie bill, is the prompt finishing of the Albany and Susquehanna railroad, now
destined to become virtually a branch of the Erie road, running from Bingdestined to become virtuallv a branch of the Erie road, running rom Blng-
bampton to Albany. The bill just passed requires the money recelved from the recent issues of bonds to be expended on the road, and as a consequence of this provision, and the late terrible tragedy caused by a broken iron rall,
the entire Delaware division of the road 1 s to be relaid with a double traok the entire Dela
of steel ralls.
The London Colliery Guardian, speaking of the presence of phosphorous in the Cleveland Iron, which so seriouslyreduces its market value, and renders it necessary to bring iron from other districts to mix with it in the pud
diling furnaces-calls for some method of removing this sulphur, ding furnaces-calls for some method of removing this sulphur, showing
that if extracted, even in its lowest priced form-as a manurial ingredientit would be worth at least $\$ 330$ per tun. There is, therefore, a tolerable good margin for working expenses, while the iron now worth $\$ 12$ per tun, and conworth at least as much ashematite iron, or say 13.50 per tun.
Engineer Roebling thinks that rallroad draw bridges are a nulsance, which can readily be done away with. He would substitute high bridges, even with steep approaches, a stationary engine and a wire rope being provided to as sist the trains over the rise. In other w
plane, and draws will be unnecessary.
A new railroad projett is exciting the wide awakecap talistsor Pittsburgh a. It is proposed to build a road from Plitsburgh to Newbern, N. C., along
the Monongahela river to its source in West Virgnial ; thence by Greenbrier Mountain and river to the Junction of the latter with New River, and thence to Newbern. The road would penetrate a rich mineral region, and would bring large quantities of iron ore to Pltsburgh

The Metallic Cartridge Company, of East Bridgeport, Conn., have a con
ract from the government of Brazil for $6.000,000$ cartridges. They have now supplied two thirais of the order, and after shipplng the remainder the com suppied two thiras of the order, and after shipping the remainder the comi
pany will immediately begin the manufacture of $7,500,000$ for the Russilan gov-
erament. The dally product of the works at present is 150,000 to 170,000 careriment.
tridges.
The Allentown Rolling Mill is one of the largest establishments of the Kind
in Pennsylvania. It is for the production of railroad iron exclusively, and urns out four hundred tuns of rails per week. The dally work is two hun dred and sixty-six rails, thirty feet long and weighing ffity-six pounds to the yard, or five hundred and sixty pounds each.
The rails of the Union Pacific railroad are now being laid on the descend
ing slope of the Rocky Mountains, the summit of the Black Hillo, the bighest point of the system being crossed on the 16th ult. According to Blicken. point of the system being crossed on the 16th ult. According to Bilcken.
dorit's survey, the railroad crosses the mountains at thts point at an eleva-
vation of 8,242 feet, being, , we wave before had occasion to state, the high. vation of 8,242 feet, belna, as we bave before had occasion to state, the high est point reached by any railroad in the world.
Professor Chapman, of Toronto, writes that he has discovered gold on Lake Superior, the metal existing in certain specimens of galena and copper pyrites, occurring together in well defined velns in the region of Black Bay Surtace specimens entirely destitute of "free" or visible gold, show a value present in the ore. The rocks are identical, in general age, with the gold bearing rocks of Nova Scotia.
All the conductors on the New York and New Haven railroad have made their appearance in new uniforms, furnished by the company. The largest part of the road lying in Connecticut, the law of this State, requiring railway offlials to be thus distingus:shed, does not affect tuls company, and hence
their action in this matter is the more to be commended. in this connection their action in this matter is the more to be commended. In this connection
we, note that our Legislature has empowered railroad conductors with the we note that our Legislature has empowered railroad conductors with the
authority of special policemen, the better to preserve order on the railway anthority of special policemen, the better to preserve order on the railway
tralus. We hope they will use their authority by arresting some of the nutrains. We hope they will use their authority by arresting
merous pickpockets who infest the trains out of New York.
The Mount Washington Railway, in the White Mountains, was completed last fall one mile and thirty rods of the tbree milesup the mountain. Forthe ntxtmile the tracks are covered with snow two feet deep. The number of handmate of the cost is completion of the work on the tha of september. The road is built on wha

Madiine for Measuring Clote-George R. McIntire, Houghton, Mich In this invention the cloth is placed between two rollers, which are rotate
by its motion, and the revolutions of which are recorded by a registering by its motio
apparatus.
Water Wheel Boceret.-Jacob Clark, Clarksville, Pa.-In this invention the bucket has two curves, one of which receives the direct impulse of the
water as it enters the bucket, the other receiving an indirect or "reacting" water as it enters the bucket, the other r
impulse, as the water leaves the bucket.
Shinale Macennc.--Smith Head, Halifax, Pa.-Tbis invention has two carriages and two sets of saws, and cuts a shingle at each forward or back ward motion of eitber carriqe. It has a new apparatus for adjusting the Corn Pow Puab
Corn Plow, Planter, and Colitivator.-Isaiah B. Arthur, Sidonsburgh,
Pa.-This invention combines a new arrangement of the plows guards, and covering roller, with a new andgreatly simplified method of op erating the seed distributor.
Crxstal Fountain.-J. C. Johnson, Louisville, Ky.-In this invention the water is mingled with air in the apparatus, and is found in the form of beads orspray t
Safrty Trdex.-S. Y. Bradstreet, Monticello, Iowa.-This invention has or its object the prevention of railroad cars from bouncing of of the track, and consists in the employment of an auxiluary truok of peculiar construc tion, which guldes the main trucks,
structions be thrown off of the rails.

Nails.-F Davidson, Richmonds

Nails.-F. Davidson, Richmond, Va.-This invention relates to a machine
for making cut nails, and it consistsin a peculiar construction and arrang for making cut nails, and it consists in a peculiar construction and arrange-
ment of parts, whereby a very simple and efficient machine for the purpose is ment of pa
obtained.
Lock.-H. H. Elwell, South Norwalk, Conn,-This invention relates to a lock of that class which are provided with a reversible slide catch so arrang to say, be capable of being applied to 2 door which swings in either dire tion. The object of the invention is to obtain a lock of the kind specified, which will be simple in construction, and which will not be liable to get out
of repair, and require but a simple manipulation to adjust the sllde catch as of repair, and require but a simple manipulation to adjust the
circumstances may require in applying the lock to the door.
SAWiNg Machine-Thomas Jenkyn, Thetford Centre, Vt.-This invention nection with frames and tables, whereby a machine is capable of performin nection with frames and tables, whereby a machne is cadable of perfirs cut sawing, the cutting of shoulders or tenons, grooving or beading, and
curn chamfering or cornicing.
Clothes Wrivaer, -M. Pierce, Winona, Minn.-This invention relates to a
simple arrangement of parts, which is a great improvement on ordınary de simple
signs.
Car Brake-L. J. Smith, Hamilton, obio, and D. S. Kitght, New York city.-This invention relates to a combined railposd car brake and starter, the derice betng so arranged that when the brake is applied the starter will be wound up, so that when the brake is again released the cars to which the whether the same is at rest or in motion.
Mabitine for Binding Rings.-Wm. H. Peckham, New York city.-This vention relates to a machine for bending metal bars into perfect and cor
ect rings, of any sultable diameter, and it is particulariy intended for jew eller's use, to form inger rings, bracelets, and other suitable articles, and may, if desired, be used with equal advantage tor shrinking tires and other large and heavy rings.
Lard Press.-Solomon S. Avis, Pens Grove, N. J.-The object of this in-
vention is to lurnish a cheap, vention is to 1urnish a cheap, 8imple, and effective lard press for househol
use.
Fludid Metrr.-Charles E. Moore Elizabetiport N. J.-This invention consists of a measuring cup afflxed to a lever beam, properly weighted, by means
of which the quantity of spiritg flling the cup is both weighted and meas of which the quantity of spirits flling the cup is both weighted and meas
ured. The cup belug tilled is decanted automatically by its own weight, at Which instant the spent pipe is cleansed by a proper mechanism, and the sup ply cut off until the cup returns to its frst position, when the spirit is again permitted to flow. The trimmings of the lever are connected with suitable registering mechanism, and the whole apparatus contaned in a locked cas of sheet metal, having a dial plate in front for the registering pointer
Gaterring T'trpenvine.-A. Pudigon, Charleston, S. C.-This invention
elates more particularly to the gathering of crude turpentine from the pine elates more particularly to the gathering of crude turpentine from the pine ree, but may be employed for the collection of all
masing Roofing.-James H. Cole, Adrian, Mich.-This invention is de signed as an improvement upoi the device recently patented by Edmund
Richardson and James H. Cole, for a process for making rooflng and ma Richardson and James H. Cole, for a process for making rooflng and ma-
chines for the same, and consists in supporting the rolling instrument employed in said procsss, by an arm which reaches to and travels upon ways overhead, so that
direct the same.

