american institute polytechnic oldb.

The greater part of a recent evehing was occupied by long lecture on longevity, of which the points of interest may be condensed in a few words, viz : 1st. That persons whose ancestors have long lives live long themselves, and vice versa; a fact well known. 2d. That persons with large, well devel oped trunks live longer than those with small trunks and short necks. 3d. That large noses and the ears low down on the side of the head is also a sign of longevity. The lecture stated that he had taken the trouble of investigating these points during the last thirty years, among more than 200,000 people, and so far we have no fault to find, but object to a person spinning out three or four facts, which he can state in as many minutes, to a long address of more than an hour and aiming chiefly at amusing the audience more than in structing them; even the amusement aimed at was of doubt ful character, as the speaker said too much about himself, how he bad too small a nose and too short a neck; how hi ribs were too horizontal, so that he could not breath with his chest, but only with his abdomen. He complained that people commenced calling him an old fellow; said that his little fingers were crooked, which he demonstrated by exhibiting them repeatedly, that all his family and ancestors had such crooked fingers, etc. We confess we do not see the usefulness of this information for people who come to the Polytechnic Club to be instructed. but think that they care very little about the knowledge of these facts. Some of his arguments were rather unique; for instance, to explain hereditary tendencies, he proposed the question why a dog was a dog, and answered it by saying, because his father was not a cat.

Improvement in Self-Acting Car Couplings.
Although fearful accidents continually occur in the running of trains of cars, by which passengers are maiméd and killed, and the records, with all the horrible details, are spread far and wide by the spread far and wide by the
press, the injuries of railroad press, the injuries of railroad
employes received in the per formance of their duties are not so prominently noticed, and consequently comparatively few appreciate the extent of these accidents. Yet one cannot spend a day among railroad men without finding specimens of crippled humanity injured for life by some accident received while some accident received while
attending to the duties of attending to the duties of
their position. One of the their position. One of the
most dangerous of these dumost dangerous of these du-
ties is that of going between cars for the purpose of coupling or uncoupling. The object of the inventor of the coupling herewith illustrated is to entirely prevent the possibility of such accidents, by providing a self-acting coupprovi
ling.

At the base of a hook, A, secured to the end frame of a car platform or to the draw-bar in engages with the hook of thenext car. In operation thelink is supported at an angle above a hcrizontal by the long arm of a latch lever pivoted between suitable blocks on one of the bumpers, the other end being sustained by a right-angled catch, the horizontal end of which, C, proiects beyond the bumper in which it is seated when the link is supported in the position described above. The link being in this position, the bumper of the next car will strike against the projecting end of the catch, C, and, driving it in, release the link, which will fall by its own gravity and engage with the hook on the next car. The dotted lines in the engraving show the position of the parts when the cars are coupled. The bumpers may be made as show in the illustration, or as ordinary bumpers are made, in either case giving some elasticity, sufficient to relieve the shock of collision when the cars come together. The length of the upper part of the hook is sufficient to prevent accidental uncoupling on grades or curves. While one link is engaged that on the next car hangs free. The simplicity of this contrivance is such that it may be adapted to any car without radical alteration of parts, and it is adjusted from the car platform.
It was patented January 25, 1868, by Wm. Weiler, whom address for further particulars at Washington, N. J.

CONTROLLING WATER CURRENTS ... DEEPENING THE CHANNELS OF RIVERS.

We have received a pamphlet issued by the New Orleans Academy of Sciences, containing a plan for deepening the mouths of rivers and reducing the hight of bars in navigable streams. It is illustrated by engravings, and the plan is based upon the well known mechanical law, "the angle of incidence is equal to the angle of reflection." Taking advantage of this law, in its action upon all movable bodies,
the author of this plan', Lieut. E. Manico of the British Royal the author of this plan', Lieut. E. Manico of the British Royal
Marines, recommends the construction of jetties or dams built at an angle to the stream, the action of which shall be to divert the course of the current and confine it within certain limits.
He proposes to build caissons of iron or wood filled with stone, or heavy ballast. whose weight will hold them down and whose angular forms prevent them from being moved by
the currents or waves of strong or stormy waters. They are cubes of any dimensions, single, or joined together in the form of the letter L, or T, or any other that may be desired, or single cubic yards holding half a tun's weight, or eleven hundred pounds of stone. The crates in which queensware is usually packed for commerce, will give one a good idea of their form. Their cubical shape, and crossed bars of iron, or wood, possess many advantages for the work of "rip raps," or regular foundations for all submarine structures, whether jetties, breakwaters, forts, or light-houses upon bottoms of jetties, breakwaters, forts, or light-houses upon bottoms of
mud, sand, or rock. They are used by the British Government for such works on tempestuous and rock-bound coasts, but they are especially suited for such a bottom as that of the bed of the Mississippi, and of the bars atits mouth. Their ribbed planes prevent them from sinking deep into the mud or sand, and their ribs, and angular points and edges, hold them firmly upon rocks, or soft bottoms. Their cross bars urnish holds for the hooks of cranes by which they can be lowered down and placed with the regularity of bricks in a wall, or like the stones of the pyramids, terrace above terrace, or they can be chained together, or dropped irregularly and held by their angular points to make a submarine spine or ridqe, against which loose stones may be dropped, and piled at an angle of 45°. Let them be dropped, or placed upon any bottom, or in any current, and experience proves that they cannot be moved by water. Every interstice between the stones they hold becomes filled with mud and sand, until the whole caisson is like a solid stone. Such an object, which cannot be removed by a current, controls it. The water fills and surrounds it with deposit. It is isolated, and made a bar or island; and it turns the currentin another direction. The wreck of a vessel, with its ribbed and angular skeleton, produces a similar effect; and sometimes becomes a dangerous
impediment to navigation. One has recently made itself an

enter the North sea, in sight of which vessels from every continent must pass to enter the Thames. They have made
a permanent foundation there which stands the shock of the storms which beat upon it from the coasts of Scandinavia, and the Arctic Ocean; and they will resist equally well the ground swells and the Typhoons of the Gulf of Mexico.
Wherever they are sunk, they will remain forever, unless lifted up by very powerful machinery, applied very soon after their deoosit. For they become immediately filled; and their materials compacted with sand, clay, shells, and what. ever else the water can driveinto them; and even in the salt water the teredo would have but a short time to work upon their ribs, if made of wood, before they would be buried in the mass of deposit heaped by the waves against them and upon them. One important advantage secured by the construction of the jetties at the mouths of the passes, would be the permanency of the work. The new land would be made rapidly, and attach the jetties themselves to the permanent shore. Storms from the south-west might make tempurary deposits and slight obstructions at the mouth of that pass; but as soon as the storm shall have subsided, the strong river current passing over the bar, at a rate varying from $1 \frac{3}{4}$ to 3 miles per hour, condensed and accelerated by the converging etties, will sweep them away into the deep waters of the Gulf. The Mississippi river, with a current of 4 miles per hour a short distance from the south-west pass, has cut itself channel from 60 to 120 feet deep. It is self-evident that if it can be confined between converging dams, and extended into the Gulf, it will make foritself a similar channel where the bars are now formed.
The expense of the work is easily estimated, and when the benefits are considered which would accrue to the whole valley of the Mississippi, now occuvied by $17,000,000$ of inhabitants, and to the millions more in our own and other ands interested in its priceless commerce, the sum of 1,000 , 000 , which would more than cover all the cost of removing the principal obstruction, the bars of the South-West Pass, seems contemptibly small."

Primitive Climate of the Earth
The primitive atmosphere of the earth was greatly rieher in carbonic acid than the present, and therefore unfit for tho respiration of the warm-blooded animals. The agency. of plants in purifying this atmosphere was long ago pointed out, and the great deposits of fossil fuel have been derived from the decomposition of this excess of carbonic acid by the ancient vegetation. In this connection the vegetation of former periods presents the phenomenon of tropical plants growing within the Polar Circle. Prof. T. Sterry Hunt considers as unsatisfactory the ingenious hypotheses proposed to account for the warmer climate of ancient times, and thinks that the true solution of the problem is to be found in the constitution of the early atmosphere, when considered in the light of Dr. Tyndall's researches on radiant heat. He has found that the presence of a few hundredths of oarbonic acid gas in the atmosphere, while offering almost no obstacle to the passage of the solar rays, would suffice to prevent almost entirely the loss by radiation of obscure heat, so that the surace of the land, beneath such an atmosphere, would become like a vast orchard house, in which the conditions of climate necessary to a luxuriant vegetation would be extended even to the polar regions.-Mechanics' Magazine.

The Woodpecker's Foresight

The woodpecker in California is a storer of acorns. The tree he selects is invariably of the pine tribe. He bores sev eral holes, differing slightly in size, at the fall of the year and then flies away, in many instances to a long distance,and returns with an acorn, which he immediately sets about adjusting to one of the holes prepared for its reception, which will hold it tightly in its position. But he does not eat the acorn, for, as a rule, he is not a vegetarian. His object in storing away the acorn exhibits foresight, and knowledge of results more akin to reason than to instinct. The succeeding winter the acorn remains intact,but becoming saturated with rain, is predisposed to decay, when it is attacked by maggot who seem to delight in this special food. It is then that the woodpecker reaps the harvest his wisdom has provided, at a time when, the ground being covered with snow, he would experience a difficulty, otherwise, in obtaining suitable or palatable food. It is a subject of speculation why the red wood cedar or the sugar pine is invariably selected. It is not probable that the insect, the most dainty to the woodpecker's taste, frequents only the outside of two trees; but true it is, hat in Calaveras, Mariposa, and other districts of California, trees of this kind may be frequently seen covered all ove heir trunks with acorns, when there is not an oak tree with in several miles.-A. B. Barton.

Coloring of Zinc Plates.

A variety of beautiful colors, corresponding to those of the rainbow, can be imparted to zinc surfaces by a simple chemi cal application continued a length of time proper for the de sired color. It is necessary that the metal be pure, and es pecially free from lead. It is therefore to be rubbed with siligeous sand moistened with hydrochloric acid, then dipped in water and rubbed vigorously with blotting paper. The zinc is then immersed in a solution of 8 parts by weight of dry tartrate of copper in 4 parts caustic soda, with 48 parts distilled water, the whole at a temperature of about $50^{\circ} \mathrm{Fah}$ The colors will appear successively, in the primatic order according to the period of immersion. In two minutes, the violet will appear ; in three, dark blue ; in four and a half, a golden yellow ; in eight and a half, a red purple. Intermediate terms give intermediate tints. When colored, the zinc is well washed with water, and for greater permanence of color may be varnished,-Annual of Scientific Disoovery, 1868.

