material. Too many instances of the change by these causes of a fibrous texture to a crystalline structure are well authen ticated to leave any doubt upon the subject. Not only do railway axles made of the toughest wrought iron invariably show a crystalline character when fractured, but even the axles of public carriages, subjected only to the jar of stone paved streets, present a similar appearance when broken. Whether this effect is often produced in iron rails, at least as laid in this country, where we allow "give" or spring and use wooden sleepers, we cannot say; every break we have ever seen appearing to be due to an original defect in the rail or to the inferiority of material. Still every forger knows
that it is comparatively easy to make the toughest steel that it is comparatively easy to make the toughest steel
brittle by cold hammering. While an iron rail might retain its fibrous character until so worn on the face as to require re placement, the Bessemcr steel rail might, fromits superior resistance to wear, even if not from its inferior resistance to the crystallizing process, be in an unsafe conditior internally while presenting a fair external appearance.
Under these circumstances it would seem that good management and discretion require that the substitution of steel for iron rails should be at present limited, and they be placed at such points on the road that while they could be exposed to the most thorough trials of frequent and heavy trains they could be examined daily and their condition be constantly known. The superiority of Bessemer steel over wrought ron in tensile strength, weight for weight, as it comes from the manufactory may not be a matter of doubt; indeed ali experiments seem to prove it beyond a peradventure, but the life of Bessemer rails and the changes they may undergo while being used on the road are to be ascertained only by time.
We think, however, that the Engineer goes too far in as erting that for other purposes Bessemer steel has failed to meet the expectations of its advocates. According to trials made at Manchester, Woolwich Arsenal, and the statements of such authorities as Fairbairn, Templeton, Scott Russell; and others, Bessemer steel has proved superior to the best cast steel and toughest wrought iron in tensile strength, the Bessener requiring a breaking weight of $162 ; 970$ pounds, while Sheffield cast steel, ranking next in tenacity broke with 30,000 and Swedish iron with 72,000. Thusit would seem that for permanent structures as bridges, buildings, ships, etc., not subjected to concussion and where lightness is a avorable if not a recesssty quality, Bessemer steel deserves a foremost place in engineering material.

LOCOMOTIVE EIGGINEERS...THEIR RESPONSIBILINIES and Estimation.

It may be doubted if any class of mechanics are so inade quately appreciated as locomotive engineers. Few others have responsibilities equal to theirs and none have more arduous and dangerous duties. The terms of their qualifications for the positions they hold are rigidly exacting. Generally they must serve a novitiate in the locomotive building or repair shop, and then a year-perhaps more-in the poition of fireman or " greaser" before a machine is entrusted to their care. They are expected to have gained a sufficient practical run it and keep it in order, but to make at least temporary repairs in an emergeney.
It might be supposed, under these circumstances, that their wurk would be appreciated by the public generally, or at least by their employers; yet it is seldom we hear of any recoguition of their services, and presentations of merit by railroad companies to engineers are so few that it is difficult to recall an instance. Yet recorded occurrences of rare heroism on the part of locomotive engineers show that they are a noble class of men, and many cases of heroic self sacrifice have occurred which have never been publicly noticed. Instances of engineers sticking to the foot-board and throttle even in the plain and immediate view of almost certain death are not unknown ; choosing rather to achieve a posthumous reputation for courage than to retain a life saved at the expense of honor.
The employment of the locomotive engineer is one of continually recurring perils. He stands as Uriah in the "fore ront of the battle;" if there is danger ahead he is the first to see it and must be the first to meetit. If death comes to any it must come probably to him. And frequently he is without any warning as to what danger may be before him, and without signal or guide to avert it. In the darkest nights, when the fog may be "cut with a knife," he must drive his unpitying steed, over tressel work, bridge, and culvert, either of which may have been undermined by torrents or storms or burned by sparks from the locomotive of a preceding train, even if the evil passions of men have not combined to provide the means for a catastrophe. Miles away from the habitations of men, he may have no assurance that kindly hearts will prompt to timely warning. He cannot rest, cannot relax for a moment the vigilance which is the price of safety for himself as well as the hundreds of human lives behind him. Overlooking,his fireman, noting the hight of the water in his boiler and the pressure of the sterm, keeping his eyes directed ahead and his hand on the throttle valve or reversing lever, he must be continually wide awake and watchful while on the road. Sach laboris exhausting; it affecta the mental as well as the physical powers.
The jars and jolts of the locomotive are believed to tend greatly to the impairment of the engineer's health. The violence and extent of these shocks can be understood only by those who have ridden the iron horse. The passengers in the upholstered cars conceive but a faint idea of the movements of the locomotive from the easy swinging of the cars. At times the whole machine, withits tuns of moving weight,
appears to leap from the track; it jerks from side to side of the road as if a sentient organism in spasms, and shakes the engineer and fireman in every fiber of their bodies. With all this the engineer must not allow his attention to bediverted from his duty. He gets to learn the present condition of his machine even by the noise it makes as it echoes through cuts or tunnels or spins hummingly along the open track. If a single thing is wreng his educated ear detects in the darkest night what his obscured sight fails to discover.
The perpetual strain upon the mind-the sense of never mitigated responsibility-and the continual facing of possible death or disaster more or less affects the mental character of the locomotive engineer. He partakes of the character of his machine-of which he becomes insensibly a part-and is sometimes rough, perhaps, in manner, always ready, and blunt in his communications with others. But from his position and the demands of his office he seldom speaks-never converses -when on the engine. Thus he becomes in time taciturn in manner, although not in reality. This brusqueness and reticence if not a part of his duty becomes a part of his character, and even if time permits, he seldom allows himself to unbend in social life. With such responsibilities as he bears levity soon becomes gravity, and light heartedness, seriousness.
It is not too much to say that the locomotive engineer rather than the conductor, is the real manager of a train The latter mingles with the passengers, and being ostensibly what his title imports, he receives the credit for a favorable issue out of a threatened danger, which more properly, in many cases, belongs to that isolated individual, the locomotive engineer.

OFFICIAL REPORT OF Patents and Claims

Issued by the United States Patent 0ffice,
for the weet endina december 24, 1867.

fatents are oran
On dling each Caveat...................................

ion for Belessic.... ion for the Extension

In addition to which there are some small revenue
ot Cansda and Nova scotia pay 8500 on application.
2- Pamphets containing the Patent Laws and full particulars af:he mode of applying for Letters Patent, specifying size of model requirea, and much other information useful to Inventors, may be had gratis by addr
MUNN \& CO., Pubishers of the Scientiftc American, Newo York.

2,439. - Traczachearkr. - Ernesto Abbiati (assignor to

 72,440.-MORTAR MILL.-Alfred A. Anderson, Galesburg, Ill
 constructed and mounted on a carriage, substantially as des citbed
72,441 . CAR Coupling.-Cyrus P. Bachelder, Franklin, N.
 its handles, a, and brackets, b, in combtnation with the rods, d. spiral springs,
h, and croos piece, e, all operating substantialily as and for the purpose de-
siribed.
72,442 - DEVICE FOR
 (or the purpose set forth. ${ }^{\prime}$. Plane.-L. Bailey, Boston, Mass

 are provided with notches, h, to fit over rounds, e, all atranged in the man-
ner nebstantialy a showand described.
72,445 . Truss. John Randolph Blake, and John Lewis
 seribed, forthe purpose pecified.
72,446 . F F Tr TrAP. Almeron Bristol, Constantine, Mich.

 IN. London, Conn.
I claim the notchs, in the tool, in oonnection with the wire, e, or its
equivalent in the V . groove, in the gib or key, substantially as and tor the

 I'cl 1 m, , 1st, In combination - with a rod or torsion dor spring pha, Pa
 72,450.-GOIDEFOIT WATER WHEELs.-Nathan F. Burnham
 pairs of guides, unbstanthlly in the mander and tor the parpose dezeribril.
 box, A, with the inclined tiottom, B, all arranged as shown and described.
72,452 .-MUSKETO AND FIX NET. - Eben O. Carrington Philadelphia, Pa.
blaim the polvanal bars, c. with end spring seotions. in combinatto
with the tapey or strips, e, and fold, f, as and for the purposes specified. 72.4 claim the Basm FAOCET.-James Chambers, Boston, Mass

 Linciliar
72,45
and
72,42 worth, Kanasa. for Gas Purifiers.-B. E. Chollar, Leaven
 2,456 . - Double Cultivator Plow. - Philip Coonrod,

 72,457.-SHUTTLE.-George Cromppton, Worcester, Mass.
 2,458.-Steam Enaine Globe Valve.-Alfred Crossley,

 72,460.-ARTIFICIAL FUEL.-Aaron M. Daniels, Hartford,

 ana decribed. G, in combination with the trap door, B, substantially as
specithed.
 and
samucl M. Wilson, and Alva P. Russeli, Janesville. Wis.

 Poune, Richmond, Va.
I claim, Ait, A screm driver capa ble of being varied in length substantialls
in the maner set forth. 2d, Also the combination of the notched blade, B, and locking spring, C ,
constructed and arranged to operate as and tor the purpose specifled. constructed and arranged to operate as and tor the purpose specinled.
72,464 . Tool For Opening Cans.-Geo. A. Dickson, Wood-

 Combination with other parte, as herein described.

 tht, The combination of parts of frames or stands, oto be employed in sink. 72,467.-Head Rest.-A. Dunlap, Clyde, Ohio
 2,468.-Lathe Tool Holder.-Jacob Edson, Boston, Mass. 1. claim the arrangem ent of the clamp-holding. projection a, andthe clamp.
, with the shank, A , and one or two cutters, C Co appled thereto, as speci:
 With the anxiliary projection, d, ar-
a, as soecilied
recore notched or toothed grooves
recelve one or more tools or cutters

 lem, Ind.
We slane obliquely projecting bars or bases, , attachea to the panels,
Abstantially in themanner as and for the purpose set forth. 72,470 - ANIMAL Trap.-Augustin Ellis and Oliver Albert-
son, Salem, Ind.
We olimm, The combination of the lidg, D E, to the bait- box, A, tilling

 72,472.-Seed Planter.-Jos. K. Frautz, Goodville, Pa.

 in described forthe purpose specified.
72,473 .-RAIL FENCE--Ambrose Frayer, Ripley, Obio.
 cogether, whereby the rails
oost and'upon the sills,
72,474 . ABPARATUS
lliston K. Fruber, Modena, III.
I laim the millstone, G proil
 of its length, and through the corner at an angle, so as to open on the face of
he stone a short iditance rrom the eye, constructed and operating substan,
hally as herein indicated.
72,475.-CHORN.-J. C. Gaston, Cincinnati, Ohio

Also, in oom bination with the abave, proviang the cover with the air tube
c, with a semi- cyllin rical shaped eap, e, as and for the purpose set forth. 72,470.-Tire BENDing and Shrinking Macyine.-Jacob

