beam. The ice has been cut parallel to the plane of freezing from a block of the so-called Wenham Lake ice. It has been cut, I say, parallel to the surface along which the ice gruws [After a short time the image of the ice-flowers began to appear on the screen.] I do not know any experiment that I have ever made which is more delicate and beautiful than this. The flowers are growing larger and larger. First of all you see these leaves, and within you see a crimping Those spaces which you see are spaces entircly devoid of air, for you know that the water occupies less space than the ice The ice is larger than the water which formed it, and as the inner portions of this piece of ice melt, the water occupie less space than the ice, and a small vacuum is produced at that spot. This screen presents a glorious surface of ice flowers. Every particle of ice is built up in this beaatifu way. The ice has now become disintegrated, but I do not think your patience has been ill rewarded.

TURNING A MOVABLE WHEEL AROUND A FIXED WHEEL.
" How many revolutions on its own axis will a movable wheel make in rolling once around a fixed wheel of the same diameter?"
In the earlier stage of this discussion, the two-revolution philosophers found no fault with the terms of the original question, as above presented, but without any qualification took the position that our answer, "one," was an error, and theirs, "two," the only true and correct reply. One of these champions, referring to the terms of the question, says, "It seems impossible to conceive how it could have been more clearly put, and we think its propounder deserves great credit for its extremely direct and explicit language."
But as the discussion proceeds, the two-revolution philoso phers appear to have become sensible of the necessity of at taching new conditions or explanstions to the original ques tion, in order to render their several positions tenable. One portion of them think that it ought to be expressly statedas part of the question, whether the axis is to be stationary, or is to revolve with the wheel ; forif it revolves, the wheel will turn only once on its axis, but if stationary the wheel will turn twice on its axis.
To these we bave replied that they might make the axis fixed or stationary, just as best suited them. In our view, the number of revolutions made by the wheel upon its own axis, will be precisely the same in either case, namely, one. Others of the dual philosophers deem it important that the word axis should be more explicitly defined. Some want the axletree, or journal on which a wheel ordinarily turns, to be defined as the axis. Others want the axis to be settled as being an imaginary point or line, drawn through the center of the moving wheel. To these we have answered that they might take their choice, as it did not affect the practical result, for the wheel will make the same turns on its own axis, whether the latter is defined as a point or a bearing.
With another portion of the two revolution philosophers the daylight is beginning to dawn. They begin to see that unless the axial plane of both wheels is the same, all their mathematical calculations, postulates, theorems, astronomical references, and other supports, together with the dual conclusion based thereon, are likely to fall. They have been invited to answer explicitly whether the movable wheel in figure 11, made one or tioo revolutions upon its own axis; but have not yet responded. We also learn that our city tworevolution friends have been too modest to appear at the Print ing Wheel Manufactory to claim their prizes, worth $\$ 10$ each, deliverable on showing that the printing wheel turned twice n its own axis in rolling once around a fixed wheel of the ame diameter. Perhaps they did not wish to bankrupt the correspondent who made the offer, by carrying off his entire stock in trade
Here is a diagram of a little contrivance on the same prin ciple as the printing wheel which any two-revolution philosopher, residing at a distance may readily construct. B is a

Fig. 18.

wheel set in a forked handle, C. Now roll B once around a flxed wheel, A, of same diameter, such as a table leg or a bottle and if you succeed in making B turn more than once upon its axis, then come to town with confidenceand take home one of the $\$ 10$ prizes offered last week.
We have lately made count of the wheel letters, and find we have some five hundred on hand; and still they come. We beg to remind correspondents that there are many other interesting topics that should engage their attention; and for fear that all their ideas will turn into wheels if the discussion is prolonged, we feel under the necessity of now moring the previous question. Those of our way of thinking will say "one." Contrary minds " one and a quarter," "two," "three," or " four," according to their several positions. Except for some novel or interesting comment we propose with the present number to dirmiss the subject.

To the many esteemed correspondents who have taken part in the discussion we return our thanks for the candid and courteous manner in which they have presented their views.

Messrs. Editors :-I think in counting the revolutions of wheel on its axis from a pointer indicating its axial line, said pointer should not be allowed to revolve (as in W. E.
H.'s model) but should always point in the same direction, y to one of the points of the compass. The mere changing fits position is no reason why it should change its direcrion. On referring to the accompanying diagram, it will be tions on its axis while passing around the fixed wheel, A, once, its pointer, D, having been in conjunction with the pointer, E , indicating the axial line twice during its circuit.

I would add that the tact of the movable wheel winding the end of a string around itself only once while performing its circuit, the other end being held across the center of the fixed wheel, is not a proof of one revolution, as some of my one revolution frich I think I can mate a distinct proof of ng illustration.
It being conceded that the moon makes a revolution on its axis while passing around the earth, we will suppose one he earth. round itself while passing once around the earth? We must answer, no times. Now suppose that by some cause it made wo revolutions the line be wound around on onis, how many times We now answer once, of course, consequently proving " two We now answer once, of "cour
Two miter wheels, one fixed and the other held in position by means of an axle tastened at right angles to the axle of the fixed wheel and made to revolve around it in gear with the ixed wheel, seems to be regarded as an illustration of the one revolution" theory. I think it should not be noticed in connection with this question, it being in fact buta wheel
rolling on a plane, describing a circle of its own diameter, the plane of the wheel being at ripht angles (or nearly so to the plane on which it rolls. A. W. Browne. he prooke on which it rolls.
B. Y.
A. W. B.'s letter was accompanied by a very neat model, of whieh the diagtam, Fig. 19, is a view. A fixed wheel, B, movable wheel, and C, a bar-carrier, which conveys the wheel, B, around A. The ends of bar, C, are pivoted upon wrists, b; the dotted lines indicate different 'positions of \mathbf{C}. D, index attached to B; E, index attached to bar, C ; the ce ter pin of E forms the journal or axle on which B turns. This device differs not essentially from those presented by W. E. H., pages 150 and 166. In all of them that portion of the carrier which supports the movable wheel has the axis of motion at the center of the fixed wheel. In Fig. 19, the movable wheel makes one revolution on its own axis in roll ing once around the fixed wheel, as may be readily proved by extending the cord, F , from g, to the movable wheel on which the cord will wind once. But A. W. B. appeals to the moon and earth to prove that, because a cord from a fixed wheel to a moving wheel winds once, therefore the latter urnstwice on its axis. As neither of the bodies on which e depends are fixed, we submit that his appeal cannot rest Having called A. W. B.'s attention last week to Fig. 11, in which the one revolution of the moving wheel upon its ow xis is isolated, and made distinctive, our correspondent, will be observed, declines to attempt to apply his two-revolu tion doctrines thereto.

Messrs. Editors :-While the learned are demonstrating hat a wheel revolving around another of the same size, the latter being fixed, will turn on its own axis twice, will you tully studied the diagrams on page 106 , present volume care notwithstanding the apparent clearness of the demonstra tions, I can demonstrate their fallacy thus: Postulate, attach one end of a cord to the rim of a wheel, and the other end to a fixed axle projecting from the center of the wheel, and the cord will be wound once around the projection at each revolution of the wheel, on its ownaxis. Now, any one can see, by experiments, or by a careful study of the diagram of Mr. the supposed projection while the wheel was once around the supposed projection, while the wheel was passing once on its own axis*

Birmingham, Mich,
P. S.--Oi course these gentlemen will find out, in due time, that one of the revclutions of the wheel is not on its
own axis, but on the axis of the fixed wheel.

Messrs. Editors:-The " wheel problem" has probably excited more thought and investigation, and will end in more benefit"to a large class of your readers than any similar question started in your paper for years. With a simple model it is not difficult to convince nine out of ten that the wheel revolves twice on its axis in rolning once around the
fixed wheel, and very difficult to convince them the the axis being carried around the circle with the revolving whee neutralizes one half the apparent result, showing the revolu tion on its axis to be " once.". The writer is not, therefore astonished at your patience" in keeping the question open, the result of which will be to open the eyes of many
readers, and also to increase your subscription list.
West Pittsfield. Mass.

Messrs. Editors:-I am searching for new and important the benes in scientific knowledge, and at first I did not se , I really think I see th point ; and I conceive it to be in the center of the fixed whee in the form of a pivot, a, upon which we will place a lever

Fig. 20.

C, fixed to the lever we will put the axle, b, and a pointer, c Now we will place upon the axle the movable wheel, B, and we are ready for the original question, to which we shall pay special attention.
How many revolutions will a movable wheel make rolling around a fixed wheel? Around is the word that governs the answer, and signifies moving in a circle. Every circle has a
center-no matter if it is only imaginary-and for the benefit of my many friends, I have provided the lever with a con fit of my many friends, I have provided the lever with a con
venient handle to the center of the fixed wheel, so they can all take hold and roll the movable wheel once around the fixed wheel, and then they will be able to decide by carefully watching the change of position of the pointer, how many times the movable wheel turns on its own axis. I am for "one."
L. J. Cohoon.

Messrs. Editors :-I would like to ask you just " one" question about the "two" wheel problem. If you should fixed wheel, would the movable wheel make a revolution, or any part ot a revolution, upon its axis?
What a tempest you have raised upon this subject. Th old and the young are in a jangle over it. The unmarried of uncertain ages still adhere to "one." The pretty young la dies declare they must be "won." Under your lead the "ones" have it. Their hope is in you, and, like Sumner their cry is, "Stick," that " one"-ders may not cease.
Woburn, Mass.

Messrs. Editors:-We have tried the wheel experiment repeatedly, looked at it in every possible light, and have final y come to the conclusion that you are right. This is the uni
versal verdict of many persons here. To the superficial observer it would appear to make two revolutions, but upon trial I can readily see that the movable wheel makes but one revolution on its own axis, and one revolution aronad
center of the fixed wheel. center of the fixed whe
M. Lebanon, N. Y.

Bringing the Wheel Question to a practical iesue :
Messrs. Editors:-I have always; held that a movable wheel makes but one revolution on itsonon axis in rolling once around a fixed wheel of the same size. I have borne the as saults and researches of the "two revolution" party' with commendable patience. two o'clock in the morning quietly answering objections. My my biscuits have come to table lined and figured, evidently with a piece of burnt wood. Bridget has complained of a mysterious disappearance of sauce-pan lids. My sulky wheels have several times been removed. Yesterday,however, my equable temper broke down, when one of the "two revolu utionists" brought the moon into the discussion. Now I take notice that when one calls the moon to his assistance he is in that the moon is made of green cheese, he is a fool, or takes me tor one.. The old woman, who tried' to dissuade hier son from Sabbath breaking by citing the shocking example and punishment of the "Man in the Moon," was at fault both in religion and science. Messrs. Editors, that old woman is not dead yet. In short, I am a plain, matter-offact man, and consider all those ${ }^{4}$ kinds of celestial appeals, come they from professor or pedler, as mere moonshine.
This question can be brought to a practical issue: If a whole wheel makes tioo revolutions in rolling once around a
fixed wheel of the same size, a half wheel must make one fohole revolution in rolling half way around a fixed wheel of equal diameter. A corduroy road and a wheel-barrow having but a half wheel, will furnish the apparatus to try this on. See sketch, which explains itself.
Anyone wishing to try the experiment may address
Practical Lodge, Western Wilderness. Joв Stubbs.
Fig. 21.

WheELER-"Twoo Revolutions, or One?"

The Saline Springe of Onondaga, N. Y.
The brine from these springs results from water penetrating immense subterranean deposits of rock salt, made by the natural evaporations of salt water lakes, like the Great Salt Lake, Caspian Sea, etc., which lakes existed in geological periods millions of years ago, the basins forming them being afterward covered up by later deposits. They belong all to the upper silurianera, and are at such great depths that they are perhaps inaccessible to man, but the way the salt is obtained there is so economical that it is far superior to the quarrying done in dry salt mines; it is simply pumped up in solution through comparatively narrow and inexpensive tubes. When we take in consideration that most of the
natural rock salt has to be dissolved, filtered, and recrystallized, we see here that nature has done the dissolving and filtering, in fact the brine in Syracuse is so clear that a simple evaporation, either by fire or solar heat, is sufficient to produce a superiorarticle of table salt.
The state owns the springs, pumps up the water, chiefly by the water power of that part of the Erie canal passing through Syracuse, and sells the brine to the manufacturers of the salt. The total quantity of salt obtained in Onondaga county since 1797 is not less than $200,000,000$ bushels, half of which was obtained during the last fifteen years. Each bushel contains 56 pounds of salt. Taking now in consideraticn that one cubic foot of solid salt weighs 140 pounds, 15 cubic feet make a tun: The amount of salt, therefore, removed during the seventy years that: the springs have been In operation amounts to $5,000,000$ tuns or $80,000,000$ cubic reet of solid salt. 'This would form a single excavation in the earth of about 450 feet long, wide, and high; but the salt is not all removed in one breadth and the excavations
are certainly distributed irregularly, over a large extent of are certainly distributed irregularly, over a large extent of
subterranean territory. As the brine contains about 15 per cent of salt, it took seven times that amount of water to dis--solve it ; $560,000,000$ cubic feet or $5,000,000,000$ gallons of water have therefore all been evaporated by the heat applied during seventy years, and probably more, as the brines formerly used were not so strong by far as those obtained later by boring to a greater depth.

Ceditarial §ummary.

Greek Fire.-In anticipation of further Fenian demonstrations, a memorandum relative to the treatment of nitro glycerin and Greek fire has been issued in England by order of the Home Secretary. Of the former explosive, the simplest mode of disposal recommended is to sink the containing vessels in deep water without attempting to open them. True Greek fire, it says, is simply a solid, highly combustible composition, consisting of sulphur and phosphorus dissolved in the bi sulphide of carbon, to which occasionally some min eral oil is added, with the view of increasing its incendiary power. When the liquid is thrown on any surface exposed
to the air, the sol vent evaporates, leaving a film of the phosto the air, the sol vent evaporates, leaving a film of the phos-
phorus or sulphide of phosphorus, which then inflames spontancously. The proper mode of extingaishing such a fire is to throw damp sand, ashes, sawdust, lime, or any powder, wet sacking or carpeting, in short, any material which will exclude the air from the fire. No attempt should be made to remove the covering for some time after the flame has been extinguished. The place should afterward be thoroughly washed by a powerful jet of water forced upon it.

Concerning Frozen Potatoes.-Dr. Adolph Ott, a frequent contributor to these columns, has been examining frozen potatoes for the purpose of confirming or disproving the truth of the common theory that the sweet principle of frozen po tatoes is due to the conversion of starch into sugar. After a long series of experiments he concluded that this sweet principle was caused, during the freezing and thawing, by the sap bursting the cell and thus destroying vitality; at the same time decomposition sets in, which, though refarded by the cold, is not entirely arrested; the more so as at the season most likely to freeze, and especially during a snow storm, there abounds that powerful oxidizing agent, ozone. The -uter portions, no doubt, are first attacked by it, and may thus be traneformed into diastase, a body possessing the power of converting a comparatively large quantity of starch irst into dextrine, and then, at the temperature of 140° to $1^{\prime} 0^{\circ}$ as in the process of cooking, into sugar.
Observing the Bessemer Converter Flame.-At the Atlas Steel Works, Glasgow, a very neat contrivance has for some time been used for enabling the observer to determine the point when the combustion of the carbon is completed. A square thin frame contains a combination of colored glasses, for instance, one dark yellow and two blue, or any other colors giving together a very dark neutral tint. Looking at the flame through these glasses affords the double advantage of preserving the ege from unpleasant effects of the intense light, and of making all smoke and other disturbing changes
invisible. The flame, when thus viewed, looks white so long invisible. The flame, when thus viewed, looks white so long
as the intense brilliancy due to the burning up of the carbon as the intense brilliancy due to the burning up of the carbon
continues, but changes to a deep red at the moment all the continues, but changes to
latter has been consumed.

Utiluzation of Sfongy Cellulose.-In the process of making paper from wood, as practiced in Europe, round disks of wood are first subjected to the action of hydrochloric acid to dissolve out the spungy cellulose. This latter has, until lately, been a waste product, but is now converted into alcohol in this way: The wood is boiled for twelve hours in hydrochloric acid, diluted with ten times its volume of water. The
acid liquid, which is charged with grape sugar formed from acid liquid, which is charged with grape sugar formed from
the spongy cellulose, is then withdrawn, the excess of acid saturated with lime or chalk, and a small quantity of yeast i
added, the temperature being kept at about 68° Fah. Fer mentation soon ensues, and when bubbles of carbonic acid gas are no longer evolved, the liquid is distilled to obtain the cohol.
The Poison of Rattlesnakes-A Philadelphia physician, Dr. S. W. Mitchell, has been experimenting upon the venom of rattlesnakes, and concludes that there is no antidote to the poison, the remedies usually applied being nearly or entirely useless. Carbolic acid applied externally sometimes delays the result merely by affecting the local circulation. He has also confirmed the general belief that the poison is absolutely innocuous when swallowed, it being incapable of passing hrough the mucous surfaces ; also that it is so altered during digestion that it enters the blood as a harmless substance. The venom is not injurious to the rattlesnake itself or to any other of its own species. The doctor attaches considerable value to large doses of alcoholic liquors, especially where the patient was not intoxicated at the time of being bitten.

Smone from Gas Lights is not usually occasioned by im. purity in the gas, but the evil arises either from the flame being raised so high that some of its forked points give out smoke, or more frequently from a careless mode in lighting When we suddenly open the stop cock and allow a stream of gas to escape before applying the match, a strong puff fol lows the lighting and a cloud of black smoke rises to th ceiling. Daily repetition gives in time a blackened wall.
Gardiner, in his "Music of Nature," asserts that dogs in a state of nature never bark-they simply whine, howl, and growl. The Australian dog never barks, and Columbus found that the doge he had previously carried to America had lost their propensity for barking. This peculiar explo sive seems to be an acquired faculty, which the animal derives from his associations with man.
Tiers-Argent.-This beautitul white alloy, first made by Taloureau, consists of two thirds of aluminum and one third silver. It is now made perfectly homogeneous, and is easily fabricated. Its hardness and lightness are valuable qualities in table furniture. Spoons, forks, goblets, and salvers mad of this material are rapidly coming into use in Paris.
Leuwennock has computed that 100 single threads of a full grown spider do not equal the diameter of the hair of the beard, and when the young spiders begin to spin, 400 of them are not larger than one of a full growth, consequently 4,000 , 000 of a young spider, s threads are a bout the size of a single hair of a man's beard.
M. Salverte, in his work on the occult sciences, shows the probability that the ancients defended their building from lightning by conductors, and that the Temple of Solomon was thus protected.

manufactoring, mining, and railhoad items.

A bill to Incorporate the Idaho, Oregon and Paget Sound Railroad Compa ny has been introduced in Congress, petitioning for Dower to build a rallroad from a point on the Union Pacitc $113{ }^{3} 30$ / wsst 1 Iongitude, north to Snake
river valley, thence northwesterly to Columblariver valley, thence to Portland, oregon, and innally to Puzet Sound. Tbe companv ask for every alter-
 sections per mile on each side or the railroan linee also, United State bonds
to the amount of 916,000 and 83,000 per mile for level and mountain route to the amount of 916,000 and $\$ 33,000$ per mile for level
respectively. A branch road is to extend to Montana.
One of the turnaces of tbe Crane Iron Company, at Catasauqua, Pa., lately turned out two hundred and forty tuns of ir
ever equalled in this or any other country.
The only coal mines which last year were worked within the limits of the Pacifc territory, were those of Bollingham Bay and Monte Diablo, while the amount ext tracted was but 8,816 tuns from the former, and 71.32 from the lat-
ter, making a total of 80,138 tuns, against a product during the precedigg year of 90,000 tuns. At the Monte Dialolo mines increased facilltites for trans portalion ot to tide water rave been crented by the construction of railloads,
and it is expected that the buefficial results of these improvements will be and it is expected
felt another year.
A well of napltha has been discovered at Kudaca, in the Caucasus, by bor ink. The liquld was frst struck at a depth of 2 2n feet rom the surface, and they ieldfor eeveral weeks was at the rateeof 1,500 barrels aday. Sinco then a
fresh source has been met and a jet n n napitha, four inches in cilameter, rises
 ply or 3,000 barrels daily.
The famons Thames tunncl, which forthe twentr-f 1 ve years since tss comple. tion has proved an indifferent speculution, is at last to be made of some prac. titasa use. It 118 stated that two railroads on opposite sides of the river pro-
pose forming a junction by meane of this subaqueous passare-way, and will pose forming a Junction by meane of th1s subaqueous passage-way, and will
make cradual entrances a mile distant from either bank. The orikinal cost

 Cen ent irely consumed ody expenbees. Under the
bunnel may posibly become a pecuniary success.
The manuractare of salt commenced in the United States at Syracuse, in the year 199, since which tine this 1ocality has produced elghty millions of
bushe!s. Last year's ylicld amounted to $10,00,000$ pound, or about twothirds unshels. Last year's sicld amounted to $10,000,000$ pounds, or arout twothirds
of all tee salt coosumed in this country. A correspondent writes that salt of or arel te sal consumed in this country. A A orrespondent writes that
excellent quality is manufactured in Oneida county, daha Territory.
The citizens of Minneapolis are very much concerned over the anpleasant act that the Fails of St. Anthony are receding up stream at the rate of three undred teet per year. All efforts to prevent this stampede of the rapids, by the total destruction of the water power upon which their prosperity depends, and the consequent degeneration of the city to the rank of a mere village.
The iron and steel works at Birmingham, Conn., used 4,000 tuns of scrap
last year, making 3,500.tuns of finighed iron, 350 tuns of imported steel in carriage and, truck springs, and made 1,000 tuns of iron into axles of all grades
MM. Carver \& Co., of St. Eteinne. France, have successfully utilized the
gases given oif in converting bltuminous coal into coke. These gases are collected, drawn ofr into pipes, and cooled. From the liquids, condensed benzine, naphtha, sulphate of ammonia, and several dyestuffis are made; the an enensed gas is ued for hlumbang paros.
are eo hard as to cut glase like the diamond.

A singular gas explosion in anoil well is reported in the Titusville Herald,
he like of which, It says, has never been known in the oil regions. While the like of which, it says, has never been known in the oil regions. Whle
drilling an oil well, near Enterprise, the tools broke through the second sand rock into a crevice where an immense quantity of gas had collected. Thus liberated, the gis rushed out with a loud rumbling sound, tearing out the driving pipe and throwing it upward into the derrick. A loud explosion en-
sued on the eas becoming ignited from the fre in the engine, and the derrick sued on the eas becoming ignited from the
and engine houg̣e were both destroyed.
The manuacture of starch from potatoes is extensively carried on in the orthern and Eastern States. A sing le firm.
bushels of potatoes for this purpose in 1867.
zecrut ghmerican aud forcign Zateuts.

Watcrss.-George Froderick Roskopf, Chaux de Fonds, Switzertand.-
This invention relates to an improvement in the construction of watches, This invention relates to an improvement in the construction of watches,
which consists in having that portion of the mechanism of a watch the "escapement," fitted or attached to a plate or frame separate from the frame in which tue "train""or other portion of the movementisfitted, the plate or frame to which the escapement is fitted boing attached to the frame of the train in such a manner that it may be readily detactied when necessary, and any of the known escapements, on a similar detachable plate or frame itted or applied to the other portion of the movement. It also consists in constructing the detachable plate in such a manner, or arranging the several wheelmay be readily adjusted in a proper relative position with the pallets heelmay be readily adjusted in a proper relative position with the pallets
or other part or parts which work in contact with the teeth of the scape whel, the detachable plate being secured to or in the frame whicl coatains the train, or part of the watch movement, in such a manner that it may be adjusted so that the pinion on the ,scape wheel axle may always be adjusted
properly in gear with the wheel of the train in which it la designed to work. roplogear wih 12 whel Mandfacture of Hats, Caps, Bonnets, Neckties, and Ribbons.-Trefcombining paper pulp, india rubber, and parafiue in certain proportions nd thereby forming a composition peculiarly adapted to the manutacture of ats, caps, bonnets, neckties, ribbons, and other similar artccles.
Coltivator Tooph.-M. F. Lowth and T. J. Howe, Owatonna, Mjnn.-In this invention the tooth is hinged, and proviced with a brace, by which the angle of the tooth with the ground can be regulated, and which also oper-
ates to prevent the breaking of the tooth or beam by obstacles in the way of ates to prevent
the cultivator.
Animal Trap.-Major B. Marshall, Draw Bridge, Md.-This improved trap is designed particularly to catch animals that travelin paths or leads, and the
avention consists in so constructing it that it can be more eastly sprung, and avention consists in so constructing it that it can be more eastly sprung, and
will more effectually secure the animal than will the traps hitherto in use. Fluid Meter-Leicester Allen, N Y city.-In this invention a piston is alanced by a spring in such a manner that the piston, ach by the flow of the water, will open a valve and give free passage to the water as long as
there is no back flow, and wben there is any back action will close, or par-
tiall close the valve aud stop the flow. A registering apparatus records the tialv close the valve and stop the flow. A re
anount that has passed through the valve.
Cotton Saed Planter.-A. J. Going, M. D., Clinton, La.-This invention elates to a machine for planing cotton seed, and condists in a peculiar contruction and arrangement of parts pertaining to the seed-distributing ap-
paratus, whereby the seed may be sown with certainty and without the lia paratus, whereby the seed
bility of the hopper becomigg choked or clogged. It also consists in using
in in combination with the seed distributing apparatus above alluded to a for-

Holder for Razor STrops.-George Scott, Steubenville, Ohio.-This in HOLDER FOR RAZOR STROPs.-George scott, Steubenvilie, Ohio-- This in-
vention relates to a holder ror razur strops, and to the manner of secuing
the strop thereto, and consists in making the holder of a met allic spring the strop thereto, and consists in making the holder of a metallic spring
band, curved or bent in the direction of its length, within the strop, extended between its two ends and there secured, at its full tension or thereabouts and also in so bending the ends to the band that the strop can be secure
thereto without the use of rivets or any additional fastening devices of an

Knitting Machine. \rightarrow Senry Bogel, Watertown, Wis.-This invention re lates to a knitting machine for making plain knic fabrics of any number of stitches. It is of very simple construction, works almost without any notse, dles, and for repairing and cleaning the whole machine. Two sets or needles, each working independently of the other. are arranged in the machine, of pieces of fabric may be knit at oncc.
Wind Wheel.-Wm. C. Day, Mohawk, N. Y., and P. B. Day, Shelby, Mich. This invention relates to a wind wheel of that class in which vertical wings or sails are employed, and the wheel enclosed within a box provided with doors, by opening or closing which more or less wind is admitted to the
wheel, and the speed of the same regulated as desired, and by closing the doors the motion of the wheel entirely stopped. The invention consists in he application to the doors of the box which encloses tbe wheel, ot a chain operating the wind with a windlass, and arranged in such a manner that b simultaneously, and the wheel kept ruuning at a uniform speed, or stopped entirely, when required, with the greatest facility.
Subsoll Attachment for Plow b.-Charles Hayden, Collinsville, Conn.This invention relates to a mode of attaching a subsoll plow or share to an
ordinary plow, whereby the share may be adjusted, raised, or lowered, with fargreater faclity than hitherto,-readily detached when not required for use, so that the plow to which it is applied may be used as an ordinary plow be simple in construction and capable of being manufactured at a small cost
Folding bow dish for Spring balances.-Richard Murdock, Balti more, Md.-In this invention the dish or platform upon which the articles by arms bowed or curved outward and so arranged that they can be readily fixed in position or not, and when not in use, can be folded together upon the dish so as to occupy but little room.
Framb for Hop Vings.-Abram Shoemaker and Wallace Phelps, Conesville, N.Y.-This invention relates to a useful improvem
tion and arrangement of frames for training hop vines.
Hop Pigiting Tool.-John Dean, Baraboo, Wis.-This invention relates to a new device for picking hops from the pole, and consists 1 n the use of a
rake with curved tines and with cutters at the ends which serve to cut the rake with curved tines and with cutters a
vines as the tool is drawn along the pole.
Hydrant Fire Plda.-T. R. Bailey, Jr., Lockport, N. Y.-This invention relates to a met hod of constructing fre plugs or hydrants, and the invention
consists in operating a cylinder valve in a suitable case and in the arrange consists in operating a cylinder valve in a suitable ca
ment and combination of parts connected therewith.
Machine for Coiling Springb.-John Freeland and Dantel Ward, New York city.-This invention relates to a machine for coiling patent vo'ute and other similar springs while hot, and consists in a frame constructed with
head and tail blocks ilike a turning lathe having suitable driving gear and an adjustable spindle or mandrill around which the spring is coiled.

Bridge.-Frederick H. Smith, Baltimore, Md.-This invention has for its objeet to improve the consuruction of bridges so that any desircd part of the
botiom chord can be readily adjusted to tighten or loosen any desired part of the bridge or to allow any desired part of the woodwork to be removed and replaced.
Angular Shaft Coupling. John M. Case, Athens, Ohio.-Tbis invention
has for its object to furnish ah improvel coupling or gearing for connecting shafts to each other at any desired angle whing shall be so constructect and arranged as to securely couple the shafts, run with less noise. and with less friction than the ordinary bevel gearing,
require less material for tys construction.

