case, instead of having the heat transferred, as in liquids or gases, by the passage of hot masses through the remaining bulk, we have a transmission of heat from atom to atomi of the copper ; and this process, as I have said, is called conduction of heat, in contradistinction to the other process, which is called convection.
And now I have to go on to another subject of a somewhat different character; but in passing I must say a word upon a very useful piece of apparatus, the safety lamp, which, unfortunately, is not always wisely used. I will state the problem which the inventor of this simple, but very wonderful apparatus placed before him. You must know that in our coal mines the miners are prevented from using a candle to light them while at their work, in consequence of the quantity of gas which is in the airof the mines. In former times they used to employ a fint and steel, and work by the feeble light of the sparks. The problem which Sir Humphry Davy, the inventor of the safety lamp, set before him was this: "How can I give the miner light, and still preserve him from this explosive gas?" and he thought, "Can I put a light in any way within an apparatus so that, although the light shall shine through the apparatus, the gas outside will be prevented from exploding?' He found out that a flame could not pass through a piece of ordinary iron gauze. In fact, the flame is so much cooled by the wire gauze, in consequence of iron being a good conductor of heat and carrying the heat away from the flame, that the flame cannot get through. You see that when this iron gauze (Fig. 7) is placed over the

flame, the flame is entirely cut off, and cannot pass through and if we light the gas above tho gauze it will burn there but the flame is preventedfrom reaching the gas below the gauze. (See Fig. 8). Now, Sir Humphry Davy, when he made the miner's safety lamp, surrounded the candle wick or the oil wick with a wire gauze; and, although the light can pass through the meshes of the gauze, you might have an explasive mixture within and without the lamp, but the fame inside could not propagate itself to the gas outside, being unable to pass through the gauze.
I come now to another subject, and a very interesting one. I will ask Mr. Cottrell to heat a silver crucible, or dish, almost to redness; and supposing I then pour water into it, what do you think will occur? You might at first say," Well, the water will be converted into steam." That is not quite the case. You will find when I pour the water into the ves sel that the heat of the vessel produces such an amount of vapor from the water, that the water is supported upon a spring or elastic cushion of its own vapor, and is thrown into the form of a sphere, and the water rolls about in its own vapor. In order to show you this effect, wewill cause a beam of light to fall right into the silver basin, and that bean of light will illuminate the drop of water which we pour into the basin. The image of the interior will be then thrown upon the screen We now blow in a little water.
Now you see ronresented on the screen the globules of water rolling about-olling about upon a cushion of their own vapor. Sometimes in this experiment we get a most beautiful figure produced by the water. We get a rosette form of globule. The vapor breaks away from the water in a kind of musical way. We will see if we cannot get the rosette form-a crimping of the edge of the drop of water.

[After a few seconds the rosette form occurred. See Fig. 9] When the basin is not very hot, at first these little crimpings arise, and then, when the vapor is not sufficiently strong to lift the water out of contact with the basin, the water will come into contact with the basin, and will suddenly boil. There it is. [At this moment the spherical form ceased, and the water boiled up and immediately disappeared with a his$\sin \underline{\underline{x}}$ sound]
I must now send Mr. Cottrell down stairs to prepare something of very great interest and beauty; but as I do not know whether the experiment will succeed or not. I do not wish to raise your expectation. If, however, it succeeds, the experiment will be a very useful and a very important one.
consequence of this spheroidal condition of water on a hot surface. I have here a little copper boiler (F ig. 10). I will cork this boiler up, but I intend first of all to heat it very highly indeed, and then I will place a little drop of water Into the boiler. I now heat the boiler, and Mr. Chapman

will hand me some hot water, and when the boiler is heated I will pour a little into it, and that water will roll about as a spheroid. Vapor will be given off, but being small in amount, while the water is rolling about it will escape through a small hole in the cork. I will then withdraw the boiler from the source ot heat, and the drop of water will then come into contact with the hot boiler; steam will be generated, and I think that that steam will be sufficient to expel the cork into the atmosphere. [The experiment was
performed with the result anticipated.] There you see the performed with the result anticipated.] There you see the steam drives out the cork the moment the water becomes changed into vapor by contact with the hot surface of the boiler. In this way we may have very serious explo but that is a subject into which I cannot go at present.
I want now to make an experiment or two which shall illustrate the character of a certain substance with which am now going to operate. I have had occasion to mention gases several times in these lectures. Now, gases and, in
fact, the very air we breathe, are nothing more than the vapors of substances possessing very low boiling points. For instance, Mr. Faraday, to whom we are indebted for the very fnest investigations upon this subject, succeeded in squeez ing together the particles of the gas which is contained in this vessel, and forming it into a liquid; and there are other gases which have been liquefied by Mr. Faraday. One o them is a gas called carbonic acid, which we breathe out of our lungs. I want to generate a quantity of carbonic acid gas in this large round glass vessel. We have at the bottom of the vessel some bicarbonate of soda, and I have here an acid. If I pour the acid into the vessel it attacks the bicarbonate of soda, and we get this carbonic acid gas liberated. I dare say we shall presently have accumulated enough for our purpose. [After an interval]-Now let me see whether the gas which has been liberated has not the power of putting out a candle. This will show whether the gas exist vessel sessel or not. [A highted taper wa lowered into the acid gas therein contained.] Yes: there is the gas. You see it is incompetent to support the combustion of the candle The vesse' is very nearly full. Now I will show you that thi gas is very much heavier than ordinary air. I might ladle it out or dip it out in a bucket, and if Idid so in front of th screen you would see $1 t$ fall like water from a vessel, although under ordinary circumstances it is quite invisible. But want to show you its heavivess by means of a soap bubble I will blow a bubble from this clay pipe, and allow that bubble to fall upon this invisible gas. You will find that the bubble will float about upon the surface of the gas as if i were floating upon the surface of a visible liquid. [Succes sive soap bubbles were then prodnced, and on being detached from the tobacco pipe, were gently dropped on the surface o the carbonic acid gas, and while floating there, were illumi nated with electris light.]
Let me now tell you what I have sent Mr. Cottrell to do Down stadrs in the laboratory we have two very strong iro bottles, and these two bottles are filled with this carbonic acid. The gas in those bottles has been liquefied, and at the present moment he is turning a cock and allowing the liquid carbonic acid to turn into gas. What I want you to under stand is that when the liquid carbonic acid turns into vapor it generates enormous cold, just as our vapor of water did on its production, only the cold generated by the carbonic acid is far greater. The consequence is. that when this liquid is turned into a gas and generates this cold, a portion of the vaporis turned into snow, and we thus obtain carbonic acid snow. I am almost afraid to speak to you about this matter, get it I intend to put it into this vessel and make a few experiments with it which will both delight and surprise you. If we get the solid carbonic acid we shall be able to freeze water and produce ice in a crucible when it is actually heated to redness. First of all the carbonic acid snow is itsel very cold, but in order to make it still colder I pour a little ether upon it. This turns it into a paste; and this mixtur of carbonic acid and ether gives us nearly the greatest cold which has ever yet been produced. If we put that paste of carbonic acid and ether into the hot crucible, what occurs? The carbonic acid and the ether evaporate, and they so evap orate as to produce a protecting coating of vapor of carbonic acid between the red hot crucible and the pasty mass within it. In point of fact. the pasty mass does not touch the cruci ble at all. It remains intensely cold within the crucible If we are successful in getting the solid ca bonic acid, I shal dip this small brass sphere containing water into the mis ture of ether and carbonic acid in the hot crucible; and
have no doubt that the water will freeze and will burst the bass sphere, and we shall then be able to take from the red hot crucible a sphere of solid ice. Mr. Cottrell is a long time bringing the solid carbonic acid. I am afraid he is not suc. cessful. Allow me simply to walk down stairs and see that he matter is going on rightly. [The lecturer then went in quest of the carbonic acid. On returning to the theater he resumed as follows]-I am sorry to say that my worstan ticipations have been realized. The experiment below has has not succeeded. Here, however, is a little of this wonderful carbonic acid snow-solid carbonic acid. I will put a little in my mouth, and breathe against a candle. If I inhaled it I should kill myself; but I do not intend to inhale it. Iit I should kill myself; but I do not intend to inhale it. I-
intend simply to exhale. [The candle flame was then extin guished by the gas exhaled from the lecturer's mouth.]

TURNING A MOVABLE WHEEL AROUND A FIXED WHEEL.

How many revolutions on its own axis will a movable heel make in rolling once around a fixed wheel of the same diameter?"
This discussion continues with unabated interest and we are in receipt of a great variety of additional communica tions, with models and curious diagrams. Examination of the subject leads to study of the laws of motion, which be, comes more interesting the further it is carried and is undoubtedly of benefit to the participants.
The two revolution philosophers may rejoice in the accession to their cause of Dr. Vander Weyde, late Professor of Mathematics and Chemistry, Gerard College, whose letter ollows.
The editor of the Newburyport, Mass., Daily Herald, also appears as a two-revolution champion, and winds up a leading editorial as follows:--If the editor of the Scientific American "really needs any further light on the subject let him stand up face to face with another man of about his ize-or a good looking woman-and revolve around him of her, and he will see that he will face the same side of the room twoice, before he returns to his original position.
"The reason of the apparent discrepancy between a wheel revolving once to measure off its circumference on a plane and twice on a circle, is simply that in the latter case half of the motion is constantly wasted in space, so to speak, in getting round to the surface on which it is to revolver' that's what's the matter.'
Clear as mud that. If our cotemporary cannot do better the two-revolutionists will disown him. We would ssy to correspondents that we are always glad to hear fom them; but of course we cannot publish every letter. Weshall how: ver endeavor to give every side a representation, and if a direct reply is not always given, correspondents will find their nswer in some parallel representative case.
We still adhere to "one" and the majority of our correspondents coincide with us. We however take pleasure in givng a full and fair hearing to those who say "two," and for his reason make perhaps the most numerous selections from their letters.
Messrs. Editors:-Let us suppose fixed wheels of different diameters and the case will become clear. First, let the flxed wheel be very small, commence with ons infinitely small, a point; then a movable wheel turning around a point will have made exactly one revolution around its own axis when it has returned to its first position, no matter where this point is situated, it may be near the axis or near the circumference, inside, or even far outside the wheel. In the same manner the moon makes one revolution around its own axis whenitturns once around the center of the earth. (In regard to the earth the moon makes, of course, no revolution at all around its own axis but she does so in regard to sun, stars and the rest of the universe.)
But when a wheel rolls in the same time around another wheel the effect of this rolling is added to its own rotation; however small this fixed wheel may be the moving wheel will make more than ore revolution around its own axis; he number of these revolutions will depend on the relative ize of the movable and fixed wheels; so when the fixed wheel is half the size of the movable it will make one and one half revolutions; if the wheels are equal the movable will make two revolutions, if the fixed wheel is twice the size the movable will make three revolutions, if three times the size four revolutions, and, in short, the movable wheel will always make one revolution more then the number expressng how of ten the size of the movable wheel may be divided into that of the fixed wheel.
It is scarcely worth while to exhibit wood cuts to illustrate these truths. Let any one who is not clear on the subject make the wheels out of disks of cardboard and rotate them olling one along the other; it will serve him at the same ime for a mental, geometrical and mechanical exercise, taking or his model the figure, page 67 (which is perfctly correct nd demonstrates clearly the two revolutions), and making he wheels of different relative diameters the above-mentioned umber of revolutions will be found to take place when rolling one around the other. P. H. Vander Weyde, M D.
Messrs. Editors :-I have just tried the experiment of a movable wheel revolving round a fixed wheel of the same dimeter, and find it makes one revolution. I cut two wheels out of a thin piece of wood, made one fast, and f om a given point on each rolled one around the other and one revolution is all I could make. It is astonishing what an amount of $f \mathrm{~g}$: ures have been indulged in to prore the contrary while by a imple experiment they might prove " one to be correct.

Messrs, Editous:-About the wheel question: I would
MEssRs, EDIToks:-About the wheel question: I would
like to gis If . M. how many times the arrow head points to
ward the center of the fixed wheel in making one revolution around the fixed wheel? It points there but once and there fore the movable wheel makes but one revolution on its own axis.
N. L. B.

Boonton, N. J.
Messrs. Edrtors :-A wheel rolling once around a fixed wheel of the same size makes two revolutions on its own axis: you say "one" but avoid giving a demonstration anxiously desired by your readers- you are not obliged to give it, but must stand by the consequences. I maintain the "wheel" makes two revolutions on its ownaxis, this I will demonstrate with your permission, in the Scientific American ; but should you refuse my offers, then I would necessarily get the assistance of someother paper. An answer would oblige
Aurora, ill. James Thierry.
In reply, if our correspondent will look at back numbers he will see that we have been engaged in demonatrating the subject for several weeks past. But it seems we do not pro gress quite fast enough for him ; and he turns his wheel once too often for us. If he can write something interesting and short, we shall be happy to publish it.
W. E. H. replies as follows, to our comments on his article and diagram published last week:
" Until I received your paper of March 7th,I supposed that not only was I sound in the faith, but that my belief was known of all men.
"I most certainly hold that the movable wheel makes two revolutions on its own axis, while passing once around the fixed wheel. This I prove by showing that the index, b, se. cured to the movable wheel, points in every direction from its axis twice while passing once around the fixed wheel.
"With regard to the axis, I would say that an axis 'of a body' is 'that line about which the body revolves, or may be supposed to revolve.' It has no extension but length, and is no more capable of revolution than a cherub is of sitting down.
"If we once admit that an axis may be a cylinder, and revolve, such expressions as the earth's revolution on its axis every day, become absurd.
"For, if we suppose a pointer fastened to this so-called axis of the earth, near the pole, like the short pointer in the diagram of last week, it will turn with the earth each twentygram of last week, it will turn with the earth each twenty-
four hours. The earth, moving with the eame angular velofour hours. The earth, moving with the same angular velo-
city, the pointer will ever be directed to the same meridian; city, the pointer will ever be directed to the same meridian;
according to your argument the earth will not turn on its axis at all, seeing that, to turn over, it must have twice the angular velocity of the socalled axis. It was to avoid this difficulty that I used the word "bearing" so frequantly in my letter. The axis of the wheel coincides with the central line of the bearing of which it is also the axis.

Wм. Е. н."
W. E. H. also sends us, from the office of the two-revolution philnsophers, another very neat model illustrating their views, with the following note

"Messers. Edrtors:-Having leisure, I have made another machine to illustrate the question The postulate here taken is, that when one end of a shaft revolves on its center or axis, the other does also. Two wheels, B C, are fastened to the opposite ends of a shaft, A, one end of which is pivoted in a movable diek, D, which rotates around a fixed wheel, E, of the same size as C ; the shaft, A, being long and slightly inclined. The wheel, B, is to be turned by hand until it bas made a complete revolution, when the opposite wheel, C, will be found to have moved but half way around the fixed wheel, E. Another turn of the wheel, B, will carry wheel, C, completely around E .
"I have, also, attached a pulley. F. to the wheel, C , on which a cord, G, may be rolled, and will be found to encircle the pulley twice in each ' orbit.'

"Middletown, Conn.

W. E. H."

In reply to our correspondent's postulate, it is suffisient to say, that, because bothends of a shaft make the same rotation, it does not therefore follow that a wheel revolves twice apon its own axis, in solling once around a fixed wheel.
The above diagram represents a device by which compound rotary may be converted into direct rotary motion, or vice versa. The axis of wheel, C , is carried in the rotating dis's or
carrier, D , which has its axis of motion at a; and by reason carrier, D , which has its axis of motion at a; and by reason
of the gearing together of CE (the latter being fired) the wheel, C , is caused to rotate onse upon its own axis for each rotation of the disk, D, upon its axis, a. These motions are both transmitted uhrough the gear teeth; and a cord, \bullet, hung upon pulley, F , or upon wheel, B, will be wound twice for each rotation of the disk, D, because the effect of both ro tations, namely, the rotation of the carrier cr disk, D , upon its axis, a, and the rotation of the
axis, are both imparted to the cord.
Now when we separate these two morions and allow only one of them, namely, that of the wheol, C , to act upon the
cord, we shall then make clear to the eye the true and cord, we shall then make clear to the eye the true and
actual number of rotations of the wheel, upon itsown axis, in rolling once around the fixed wheel, E .
In order to separate the cord from the effects of therotation of the disk, D , we have only to set the cord spooi, H , upon the disk and extend the thread, I, to the pulley, F ; and now, on rolling the wheel, C, once around the fixed wheel, E , the cord will be wound up once, becauss the wheel, C, has otated once upon its own axis.
Our friend's model and diagram practically illustrate the error of the two-revolution philosophers, and prove the correctness of those who adhere to " one."

Messrs. Editors:-Having been a reader of your valuable paper for twenty years except the four years that I was locked up in Dixey, I feel an interest in anything in which its opinons are opposed by any one, as I have always found them correct. I do not suppose that you need any assistance to show that you are correct on the wheel question. But as it is an open one, allow me to give my views on the subject. L. M., and others are trying to prove to the world that there is a wheel withir a wheel ; allow me to say that I am unable to see it. If L. M. will place a pin in the center of the fixed wheel and onein the center of the movable wheel and connect them by a strip or rod, and mark a point near the center of the movable whes and pass the movable round the fixed wheel, he will find that the point marked will pass the connecting rod but once, therefore it makes but one revolution around its own axis, and one revolution around the fixed wheel, makgig two distinct revolutions.

Samoel Hand.
Messrs. Editors:-Here is a mathematical solution of L
M's problem. If a wheel three feet in circumference is rolled M's problem. If a wheel three feet in circumerence is rolled just three feet distance, the axis also has traveled just three fett indicated by the dotted line. Now when this wheel is rolled around another of the same size the axis will travel through a space of six feet, it being the circumference of a circle two feet in diameter.
Now for mathematics. If a wheel makes one revolution while its axis travels three feet how many revolutions does it make when its axis travels six feet? Ans. Two. Because six is twice as many as three. Surronder! all you" oneists" as gracefully as you may after such a persistent fight all on he wrong side.
The question is not how far the axis travels, and we there ore decline to surrender.
Messrs. Editors: Referring to the diagram in your last Vol. XVIII., page 133, of H. Anderson, Peekskill, N. Y., if the lonse end of thethread be held at the center of the fixed wheel, A (the only place to hold it), H. Anderson will find the thread wound only once around the shaft of the movable wheel, B.
A. R.

Rochester, N. Y.
Messrs. Editors:-As a solution to the question, "How many revolutions does a wheel make on its own axis rolling around another of the same diameter once '?' A. C. Sekell tries to prove that the wheel makes two. Mr. Sekell in his diagram makes the wheel turn a quarter of a revolution at each right angle of the square. But in doing this he changes the center. The second center is at the extremity of the diameter of the first circle. But in thus changing the center he destroys the first circle. Therefore the quarter of a revolution made by this circle cannot be added to the quarter of a revo lution made by the first circle in passing over the first side of the square.
Again, to prove it mechanically, suppose a wooden block squared, the sum of its four sides equal to the circumference of a wooden wheel. Putting an axle in the wheel, let us commence at the first corner of the square; roll the wheel on its axle to the second corner. Thus i ar one quarter of a revolution has been made. Now let us lock the wheel; change the center to the tire of the wheel; on that center swing the entire wheel around the second side, and we are ready to maise the second quarter revolution; yet the wheel has not revolved on its own axis, for the axle has been locked. Unlock Newbern
P. W. T.

Messrs. Editors:-Every one seems to understand the wheel problem, but none seems to understand the cause of the difference of opinion. I think both sets of philosophers may congratulate th:emselves on being correct upon this question. The wheel makes one or two revolutions, according to the point from which it is contemplated. In relation to any point inside the circle scribed by the center of the moving wheel, it makes one revolution. In relation to any point out-
side of this circle it makes two. In relation to the sun, the moon revolves upon its axis. In relation to the earth, it is fixed.
Bristol.
B. B. L.

It appears to us that both sides cannot be right. It is a question of fact, not of optical appearance.
Messrs. Editors:-If you want any wheels, to test " L.M.'s" principle with, we can send you a few dozen. Every one her has been manufacturing wheels for the last three weeke
North Madison, 0.
H. R. S.

MANEFACTORING, MININQ, AND RAILROAD ITEMS.

The extension of the Erie broad gage track to Cbicago is no longer doubt. ful. The contract tor the bullding of the intermediate connection of the
Grest Western with the Toledo, has been already made. This movs bas been demanded by the Western freight interest, on account of the higb ra:-
of the New YorzCentral, the late advanco belig such as to probibit the
warding of freights further than Toledo. If the Erre directors bad refused to meet the \downarrow 位s of the railroad interest West. a junction would
made with the Pennsylvania Central and the Baltimore and Uhio.
An English patent bas lately been granted for an improved metal, from hich it is claimed castings may be procured or steel manufactured in mucb less time and at a greatly reduced rate, than by other processes. After the
re is reduced in the blast f rnace to the state of molten crude metal, the hrnace is tapped, and the liquid metal runs off into a vessel or receptacle, when a blast of atmospberic air of a pressure of four pounds to the square inch, and upwarde, is introduced into the mass tbrough a hollow stirrink rod. The effect is the driving off of the impurities, and the metal mayrun directly into molds, or steel of a fine quality may be procured by adding unmelted piegeleisenor oth
The new West Shore Hud oon River Railroad is advancing with commendaThe ne:gy, and the contracts fort be firstixixty mileswill be closed this week. this company bave been successful, and t te latter will enter upon possession shortly. The new road will connectwith the proposed Midland line to Oswezo and the Lakes.
California is rapidy extending ber silk manufactures. It is announced cat at the to n of San Jose there has been started a silk mavurfctory with
capial of 100,000 . The machinery bas arrived, the foundations of the bilding are laid, and the worms are at work.
The Cheyenne papersclaim that besides her gold treasures the territory of Wy oming proves to be veryrich in the baser metals. Coppp1, iron, and lead re found in inexhaustible quantities along the base of the mountains for a ong distance, from the Colorado line north. Good coal can be found all over he Laramie Plains, and in

Tke propos Mexiced

The proposd Mexican Central Rallroad, if built, will prove of the greatest Mexico, four bundred and fifty mites, to Matamoras. From the Rio Grande exico, four bundred and fitty mitles, to Matamoras. From the Rio Grande
o the Mississippi, supposing Vic.sburg to be the objective point, is a disance ot six lundred and forty miles. There is a road now running from Vicksburg west to Monroe, alming at Shreveport, while an other is in pro gress from Houston eastward, asming to touch both New Orleans and Baton
Rouge. With the entire business of the best part of Mexico as a prize, both these roads would soon be completed.
The famous Comstock Lode, probably the most productive mineral vein in The famous Comstock Lode, probably the most prodnctive mineral vein in
the world, is a strip of land onls three miles long byb00 yards wide. The yield is valued at $\$ 12,000,000$ annually. Five thousandmen find eraployment in workthe it, and tue produce for each workman is about $\$ 3,000$ per annum. In 1865 wenty eight miles of tunnels and drifts. The longest tunnel made is 3,200 eet ; the greatest depth penetated is by the Gould \& Carry, $821 f$ eet.
General Palmer, the Treasurer of the Kansas Paciffc Railway, bas been exp.rrts that rarely have they beerf obliged to resort to the maximum grade permitted by congress, and on the highest summit on the route there wilf never be as much envw as on the Allaghanies; and for a su mmer and late autumn resort, there is not a fner spot oin the contment than "President's Park," at
that summit. If the company obtain the subsidy next spring, the road cau bat summit. If the company ob
be comoleted in tour years' time.
Gereat gamericau aud furcign zatents.

Under this heading we shali pubtish weekly notes of soms of the more proms nenl home and foreign patents.

Governor-Eptraim P. Rogers, Corning, N. Y.-This invention relates to new and improved metbod of constructing governors for steam easines an : other purposes, whereby the same are rendered more effective in their
operation, and whereby the expense or cost of a governor is materially operation,
lessened.
Frame for Carbiage tops-James E. Flagg, Perkinsville, Vt.-This ina top to be used as a substitute for an umbrella.
Cedrn.-C. H. Carver, Taunton, Mass.-This Invention has for its object to furnish an improved churn, simple in construction, easily cleaned, easily operated, and which will do its work quickly and thoroughly.
Crib attacement for Bedsteads.-Harriet Ruth Tracy, New York city. -This invention bas for i's objectt, furnish an improved bedstead and crib, so constructed and arranged that when the crib is not in use ard is pushed
nto its placein the bedstead, the sald bedstead and cribshall present a neat Into its placein the bedstead, the said bedstead and cribsball present a neat and uniform.

Sttachm

Self-raising Flour.-Wm. C. Hughes, Scio, Mich.-This invention relates 10 a metbod of preparing self raising flour, and consists in a thorough and
intimate incorporation of the fermenting principle wilh the flour when the grain is ground, in a certain proportion and at a low temperature.
Garness Pad Tree,-J. W. Hinman, Rerlin, Wis.-This inventioa relates to the construction of a pad tree tor gig, coach, or other harness, and consists in attaching the opposite sides or sectionsor the pad to a center piece by means of joints or binges, whereby it is rendered flexible and self-adjustable to the back of a borse, yielding on one side or the
resting in an easy and cemfor:able manner
Spring Bed bottem - E. E. Worden and H. Wilms, Brandon. Vt.-This in rention consists in toe use of elliptic springs or stays, and in the manner in which the upperirame is supported thereby, andalso in W Asbing Maceine -P. F Bindewald Strongile
Washing Mactine-P. F. Bindewald, strongsville, Obio.-This invention has for its objoct to furbish an improved washing machine, simple in con
struction, easily operated, effective in optration, and which shall be made wholly of wood, so that there may be no darger of the clothes being in jured by iron rast.
Seojring Labels in Gllas8ware.-Edward W. Davis, Pittsburg, Pa.-
This inveution relates to an inproved method of securing labels of brass and This inveution relates to an inproved method of securing labels of brass and ther metallic bodies in glassware.
Animal Trap.-William Miller, Chicopee, Mass.-This invention bas for its object to furnish a neat, simple, and effective meansfor catching rats, mice and other animals.
Harnebs Motion For Looms.-James Greenbalgh, Sen., Woonsocket, R. 1 This invention bas tor its object to improve the construction of the parts of a loom, by means of whichmotion is imparted to the barness, so as to
plify their construction and make them more effective in operation.
Fastenina Metallio Collars on Bottles.-Edward Wattis, Phi:g Fastening Metailio Collabs on Botrles.-Edmard Wattis, Pbiade. ing metalic collars to the necks of glass bottles or flasks, whereby the $8, m \mathrm{me}$ aresecurely fastened without cement, and are rendered darable and firmly attacired while the bottle lasts.
Combingd Boiler and Hot Air Registrb.- B. B. Perking, Cbestertown
Md. - In tbis invention a boller connected with the register is a atached to the Md. - In this invention a boller connected witn the register is attached to the
sice or end of the hot air llues in houses, tor the purpose of utllizing the beat conducted away by the walls of the flue and of supplylng hot water to the apper rooms of the house.
Rior Planter.-Elijah Wagoner, Westminster, Md.-This invention is a machine fir planting and covering rice, by whic', all the operations required
in the planting of that article are as carefully aild accurately pertormed as if done by hand, and by which one man is enabled to perform the work bitherto requiring the services of dozens of laborer3. Envelope--Sigmund Uliman, New York clty.- - I's :nvention a new
methed of constructing, folding. and sealing the euveiupe is cmployed, by
which the use of adhesive gum is dispersed with and when the envelope is Which the use of adhesive gunim is dispersed with, and when the envelope is
sealed it is impossille for any one to open and close it again without leaving sealed it is impossille for any one to
vidence of the tron8action upon it.
Lifessating Apparatcs.-John B. Stozer, New York city.-This inven

